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Introduction: Lung cancer continues to pose significant global health burdens
due to its high morbidity and mortality. This study aimed to systematically
integrate biomedical datasets, particularly incorporating traditional Chinese
medicine (TCM)-associated multi-omics data, employing advanced deep-
learning methods enhanced by graph attention mechanisms. We sought to
investigate molecular mechanisms underlying stage-wise lung cancer
progression and identify pivotal stage-specific biomarkers to support precise
cancer staging classification.

Methods: We developed a novel multi-omics integrative model, named the
Multi-Omics Lung Cancer Graph Network (MOLUNGN), based on Graph
Attention Networks (GAT). Clinical datasets of non-small cell lung cancer
(NSCLC), including lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC), were analyzed to create omics-specific feature matrices
comprising mRNA expression, miRNA mutation profiles, and DNA methylation
data. MOLUNGN incorporated omics-specific GAT modules (OSGAT) combined
with a Multi-Omics View Correlation Discovery Network (MOVCDN), effectively
capturing intra- and inter-omics correlations. This framework enabled
comprehensive classification of clinical cases into precise cancer stages,
alongside the extraction of stage-specific biomarkers.

Results: Evaluations utilizing publicly available datasets confirmed MOLUNGN’s
superior performance over existing methodologies. On the LUAD dataset,
MOLUNGN achieved accuracy (ACC) of 0.84, Recall_weighted of 0.84, F1_
weighted of 0.83, and F1_macro of 0.82. On the LUSC dataset, the model
further improved, achieving ACC of 0.86, Recall_weighted of 0.86, F1_
weighted of 0.85, and F1_macro of 0.84. Notably, critical stage-specific
biomarkers with significant biological relevance to lung cancer progression
were identified, facilitating robust gene-disease associations.

Discussion: Our findings underscore the efficacy of MOLUNGN as an integrative
framework in accurately classifying lung cancer stages and uncovering essential
biomarkers. These biomarkers provide deep insights into lung cancer progression
mechanisms and represent promising targets for future clinical validation.
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Integrating these biomarkers into the TCM-target-disease network enriches the
understanding of TCM therapeutic potentials, laying a robust foundation for future
precision medicine applications.
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1 Introduction

Lung cancer is one of the leading causes of cancer-related deaths
worldwide. Early diagnosis and accurate staging are critical for
patient treatment and prognosis. Understanding the progression
across different lung cancer stages is essential for elucidating the
mechanisms underlying the transformation process of malignant
tumors. Various biomarkers emerge during these stage transitions,
serving as crucial molecular indicators and nodes within the
complex biological networks of cancer progression. By analyzing
systems biology data from lung cancer cases, we aim to gain deeper
insights into cancer staging. However, current methods for lung
cancer staging face limitations in accuracy and comprehensiveness,
highlighting the urgent need for novel methodologies to improve
precision and reliability.

With the rapid advancement of high-throughput biomedical
technologies, researchers now have access to extensive multi-omics
datasets, including gene expression profiles, DNA methylation
values, and microRNA expression patterns. These datasets offer
valuable information sources for disease research but present
significant analytical challenges due to their complexity and
heterogeneity. Effective integration and analysis of these data are
crucial for fully leveraging their potential in translational research.

Since the advent of precision medicine, biomarkers have become
increasingly important, widely used in screening, diagnosis, and
treatment of major diseases, including viral infections and cancers.
The development and application of emerging circulating
biomarkers have achieved notable success in targeted drug
therapies, cellular therapies, immunotherapies and cancer vaccine
development. Compared to traditional medical methods,
biomarker-based precision medicine offers substantial advantages
in both research and clinical treatment (JIANG et al., 2019). Multi-
omics data are characterized by large volumes, diverse data types,
and abundant sources. Applying artificial intelligence (AI)
techniques to analyze such datasets can significantly facilitate the
identification of biomarkers and therapeutic targets for various
cancer stages, thereby providing tremendous potential for
targeted drug discovery.

Given the high heterogeneity of cancer, identical therapeutic
interventions can yield varied outcomes among different patients,
necessitating more personalized therapeutic strategies. Precise
cancer treatment methods require a profound understanding of
tumorigenesis, including genetic mutations, protein alterations, and
changes in cancer cell phenotypes. AI technologies, especially deep
learning and graph neural networks (GNNs), excel in extracting
intricate patterns and internal relationships from genomics,
transcriptomics, and proteomics datasets. GNNs, for example,
have been successfully employed in predicting protein-ligand
affinities and have achieved superior performance in identifying
pharmacological inhibitors compared to traditional computational

approaches. The study and comprehensive analysis of multi-omics
data facilitate the development of personalized medicine for lung
cancer treatment. Rapid advances in high-throughput sequencing
technologies have made DNA and RNA sequencing more efficient
and accessible, generating vast amounts of multi-omics data and
enabling molecular analysis. Due to the heterogeneity of cancer and
the complexity of biological processes, utilizing multi-omics
sequencing data is critical for more accurate cancer classification
and tumor analysis. Researchers have proposed various methods to
classify cancer types or cluster cell types using multi-omics data (Li
et al., 2021;Ma and Zhang, 2019; Zhang et al., 2019; Yang et al., 2019;
Wang et al., 2021; Sharifi-Noghabi et al., 2019; Lotfollahi et al.,
2022). These studies indicate that using multi-omics data can
improve analytical performance and enhance the understanding
of key pathophysiological pathways at different molecular levels
(Heo et al., 2021). Additionally, AI can identify new biomarkers
from data, aiding in tumor screening, detection, diagnosis,
treatment, and prognosis prediction, thereby providing optimal
treatment for individual patients and improving their clinical
outcomes (Liao et al., 2022).

Graph neural networks (GNNs), as an emerging deep learning
method, can effectively capture relationships and feature
interactions among nodes in complex network structures,
showing great potential in the biomedical field. For instance,
Mastropietro et al. (2023) proposed using GNNs to predict
protein-ligand affinities, capturing complex relationships in
molecular structures. Zhi et al. (2021) network pharmacology
and GNNs to construct multiple cascaded GNN models,
achieving better modeling results and higher accuracy compared
to traditional methods, successfully identifying effective inhibitors of
dihydroorotate dehydrogenase (DHODH), a target for small cell
lung cancer (SCLC), proposing a new drug discovery method. Cao
and Gao (2022) proposed GLUE, which is composed of explicitly
encoding cross-omics regulatory networks, coupling heterogeneous
single-cell data such as scRNA-seq, scATAC-seq and even DNA
methylation into a unified latent space in a graph-guided variational
framework, and verifying its alignment accuracy and regulatory
inference efficiency in a million-scale cell atlas. Xu et al. (2024)
proposed the STANDS framework, which maps spatial
transcriptomic gene expression, tissue morphological imaging,
and control scRNA-seq, among other multi-omics data, to a
unified latent space through a GAN-based graph attention and
Transformer fusion strategy. This enables the detection of
abnormal anatomical domains in multiple samples, cross-sample
alignment, and heterogeneous subtype segmentation within a single
workflow. Lan et al. (2024) proposed DeepKEGG, which integrates
SNV, mRNA, and miRNA omics into a unified latent space through
a gene-pathway dual-layer sparse connection and path self-attention
mechanism, refreshing the benchmark performance in cancer
recurrence prediction and biomarker discovery. The CPathomic
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model proposed by Li et al. (2025) utilizes cross-modal contrastive
learning and an interactive-gate attention mechanism to map the
local-global representations of the entire pathological slice and
paired genomic vectors to a unified latent space, achieving the
complementary fusion of morphological and genomic signals.

In this context, this study proposes MOLUNGN, a novel
integrative analytical framework designed to enhance lung cancer
staging accuracy through comprehensive analysis of multi-omics
data using GNN technology. Approximately 85% of lung cancer
patients are diagnosed with lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC) (Molina et al., 2008), the most
common lung cancer subtypes. The TNM staging system, an
internationally recognized framework first proposed by Pierre
Denoix between 1943 and 1952(Brierley et al., 2017), serves as
the foundational principle for lung cancer staging. MOLUNGN
constructs a complex network integrating gene-protein-clinical data
from lung cancer patients and employs Graph Attention Networks
(OSGAT) for feature learning from specific omics data. It further
integrates multi-omics data through the Omics-Specific View
Correlation Discovery Network (MOVCDN) at a higher-level
label space, significantly enhancing lung cancer staging accuracy.
This approach allows for deeper exploration and identification of
critical biomarkers associated with different stages of lung cancer
progression.

The main contributions of this study include: 1) proposing and
implementing the MOLUNGN method, demonstrating its
effectiveness in lung cancer staging; 2) validating the superior
performance of MOLUNGN on multiple lung cancer datasets
through comprehensive experiments; and 3) identifying and
analyzing important omics features and biomarkers relevant to
lung cancer staging, offering novel insights into the molecular
mechanisms of lung cancer. The development and application of
MOLUNGN are expected to advance the understanding of lung
cancer progression, provide more accurate staging tools, and
support personalized medical strategies, ultimately improving
patient outcomes.

2 Materials and methods

2.1 Data sources and preprocessing

In this study, lung cancer, specifically non-small cell lung cancer
(NSCLC), was selected as the primary research focus due to its
clinical prevalence, accounting for approximately 85% (Lazar et al.,
2024) of lung cancer cases. The richness of available clinical samples
and reliability of the sources enabled a detailed exploration of
biomarkers associated with lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC) across different cancer
stages. Initially, two primary subtypes, LUAD and LUSC, were
systematically extracted from The Cancer Genome Atlas
(TCGA) database.

After initial filtering, take LUAD as an example, the dataset
comprised 517 LUAD samples and 1,200 case files, totaling
approximately 15.3 GB of text data. For the mRNA dataset,
integration was initially performed to examine intra-group
correlations within omics features. Utilizing the R programming
language, FPKM_unstranded values (Fragments Per Kilobase of

exon model per Million mapped fragments), indicative of gene
expression levels in non-strand-specific RNA-seq data, were
extracted and integrated. Subsequently, these FPKM values
underwent rigorous data cleaning, noise reduction, normalization,
and standardization, scaling feature values to a [0,1] interval for each
sample. Low-quality data exhibiting incomplete or zero expression
were eliminated, refining the dataset from an initial 60,660 gene
features to 14,542 high-quality genes. Dimensionality reduction was
further achieved by employing a feature selection algorithm based
on correlation, univariate statistical significance, and variance
contribution. Following comparative analysis of multiple feature
selection methods, a correlation-based approach was determined
optimal, resulting in a subset of 1,000 genes for subsequent analyses.

For the LUAD miRNA dataset, preprocessing initially yielded
1,880 gene features, further refined by correlation-based feature
selection to identify 512 critical miRNA features.

The DNA methylation data from LUAD, derived from the
Illumina HumanMethylation450 BeadChip platform, initially
included over 340,000 CpG sites and corresponding methylation
values. Data preprocessing encompassed standard data matrix
construction and extensive information fusion leveraging UCSC
Genome Browser annotations, R-based bioinformatics processing,
and standardized human gene databases. Original CpG site
identifiers (e.g., “cg00000108”) were systematically replaced with
adjacent gene or gene family names (e.g., “HMGN5”), ensuring
consistent nomenclature across the multi-omics datasets. This step
facilitated subsequent data integration, ultimately yielding
5,000 adjacent gene-associated methylation nodes.

Following separate preprocessing steps for mRNA, miRNA, and
DNA methylation datasets, data fusion and cross-validation were
performed based on consistent TCGA-ID sample identifiers.
Samples presenting inconsistencies or incompleteness across
omics datasets were excluded, leaving a refined cohort of
448 complete LUAD samples and 362 complete LUSC samples.
Sample classification into normal and tumor categories for
comparative analyses was conducted according to specified
ranges within the 15–16 digit TCGA-ID numbers.

An identical preprocessing pipeline was applied to the LUSC
dataset, and final screened omics feature summaries for both LUAD
and LUSC cohorts are presented in Tables 1, 2.

Clinical datasets underwent careful integration with matched
omics cancer sample data. Duplicate, incomplete, or outlier data
were systematically removed based on defined exclusion criteria.
Outlier detection procedures and data format conversions were
rigorously performed, concluding with the integration and
standardization of multi-view datasets. This meticulous
preprocessing preserved consistency and significantly improved
dataset accuracy, thus ensuring robust and reliable
experimental outcomes.

2.2 Method

This section describes the MOLUNGN model for cancer case
classification. Figure 1 illustrates the MOLUNGN framework,
composed primarily of two modules: omics-specific feature
learning and initial label prediction within each omics group,
followed by high-dimensional feature fusion and final label
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prediction across omics groups. Initially, in the Omics-Specific
Graph Attention (OSGAT) module, three fully connected layers
and the Correlation-based Feature Selection (CFS) method are
employed independently for each omics dataset to reduce
dimensionality and establish patient correlations for omics-
specific feature extraction. Subsequently, these learned feature
vectors are further processed by an enhanced Graph Attention
Network (GAT) to derive initial category labels.

Following the generation of initial label predictions from each
omics dataset, the Multi-Omics View Correlation Discovery Network
(MOVCDN) is applied to integrate these predictions, thus significantly
enhancing overall multi-omics classification accuracy. The
MOLUNGN model, designed as an end-to-end approach, leverages
feature fusion within a high-dimensional space to comprehensively
capture correlations acrossmultiple omics datasets, effectively achieving
accurate cancer staging and classification.

TABLE 1 Clinical sample summary table.

Lung cancer subtypes Multi-omics Original cases Preprocessed examples Final examples

LUAD mRNA 600 503 448

miRNA 567 504 448

DNA Methylation 501 453 448

LUSC mRNA 553 495 362

miRNA 523 474 362

DNA Methylation 573 369 362

TABLE 2 Omics feature summary table.

Lung cancer subtypes Multi-omics Examples Number of features

LUAD mRNA 448 5,000

miRNA 448 512

DNA Methylation 448 3,856

LUSC mRNA 362 5,000

miRNA 362 675

DNA Methylation 362 5,000

FIGURE 1
Illustration of MOLUNGN.MOLUNGN combines OSGAT for omics-specific features learning andMOVCDN formulti-omics integration. For concise
illustration, an example of one patient is chosen to demonstrate theMOVCDN component formulti-omics integration after omics-specific learning. Pre-
processing is first performed on each omics data type to remove noise and redundant features. OSGAT learns class prediction using omics features and
the corresponding patient similarity network generated from the omics data. Cross-omics discovery tensor is calculated from initial predictions
from OSGAT and forwarded to MOVCDN for final prediction. MOLUNGN is an end-to-end model and all networks are trained jointly.
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As detailed in Figure 1, for each omics dataset, the Graph
Attentional Layer is first used Fm � ReLU(Fm) as an activation
function to reduce the dimension of the original data. Additionally, a
normalization layer is incorporated to mitigate potential overfitting
issues. Within the OSGAT module, the dimension-reduced features
from each omics dataset traverse k independent graph convolutional
layers, with k dependent on the number of omics data types utilized.
Each graph convolutional layer initializes the weight matrix using
the Xavier initialization method (Glorot and Bengio, 2010),
multiplying the feature matrix X with the weight matrix W to
generate robust support vectors. This approach obviates manual
specification of feature weights, ensuring reliable and consistent
classification outcomes through model training.

The initial prediction label distributions, obtained via the
graph attention mechanism, subsequently inform the
construction of a cross-omics discovery tensor, elucidating
relationships between omics labels. This tensor is reshaped into
a vector and processed through two fully connected layers within
MOVCDN, employing LeakyReLU as the activation function. The
final classification prediction is produced through the
softmax() function.

Overall, the MOLUNGN model integrates advanced graph
neural network techniques to robustly and accurately classify
cancer cases by reducing the complexity of multi-omics data
while effectively capturing intricate relationships and interactions
inherent within the datasets. Consequently, MOLUNGN
demonstrates superior predictive performance and yields highly
reliable classification outcomes.

2.2.1 Feature initial selection
Generally, deep learning models inherently possess the

capability to learn relevant features autonomously through
iterative optimization of neural network weights, obviating the
explicit need for separate feature selection. Nevertheless, due to
the inherent ‘big p, small n’ paradigm prevalent in multi-omics data
(Diao and Vidyashankar, 2013), characterized by an excessive
number of features (p) relative to the limited number of samples
(n), deep learning approaches often encounter challenges such as
unstable training and overfitting. These conditions degrade model
generalizability and predictive accuracy, necessitating the
integration of explicit feature selection methods (Chen et al., 2020).

Feature selection methods offer considerable advantages,
notably removing irrelevant or redundant gene features, thus
enhancing model performance, computational efficiency, and
interpretability. The current feature gene selection methods
applied to mRNA datasets include: selecting highly variable genes
(Chen et al., 2016), minimizing redundancy in gene selection (Deng
et al., 2023), and utilizing co-expressed gene networks (Zhang and
Wong, 2022), etc. In this study, correlation-based feature selection
(Gopika and ME, 2018) (CFS) was specifically chosen due to its
superior capability to assess complex interactions and nonlinear
dependencies between features. Unlike simpler algorithms (e.g.,
univariate filtering or variance thresholding), CFS
comprehensively evaluates feature interactions, effectively
reducing the confounding impact of redundant or irrelevant
genes, thereby improving the accuracy and reliability of
selected features.

In this research, CFS was independently applied to each omics
dataset, selecting approximately 25% of the original features deemed
most informative. Post-selection, additional data cleaning and
rigorous standardization were applied before serving as inputs to
the deep neural network model. Furthermore, an upper threshold
was set to limit the number of features to a maximum of 5,000 per
omics dataset, effectively balancing computational feasibility and
robust predictive accuracy.

2.2.2 Single multi-omics feature learning based
on OSGAT

In the MOLUNGN model, Graph Attention Networks (GAT)
are specifically utilized for individualized learning on each omics
data type via the Omics-Specific Graph Attention (OSGAT) module,
effectively conducting separate classification tasks. Each patient
sample is represented as a node within the patient similarity
network, the goal of each network is to learn a feature function f
on the graph G � (V, E), which can utilize the characteristics of each
node and the relationship between the nodes described by the graph
G. The graph G uses the cosine similarity between samples as the
edge weights for graph construction. In the graph, each node
represents a patient sample, and each edge represents the cosine
similarity between samples. During the graph construction process,
when mining single omics data, that is, in the OSGAT module,
graphs are constructed for each type of omics data and training is
conducted for their respective classification tasks. In the MOVCDN
module, multimodal omics data are input into VCDN for fusion
training. Consequently, the OSGAT module integrates two
primary inputs:

1. A feature matrix X ∈ Rn×d, where n represents the number of
nodes (patients), and d is the dimension of the initial
input features.

2. A structured representation of the graph, described using an
adjacency matrix A ∈ Rn×n.

Given the high-dimensional characteristics of each type of omics
data, three fully connected layers were first used to reduce the
dimensionality and extract important features. Let X1, X2, and
X3 represent the matrices of mRNA expression levels, DNA
methylation levels, and miRNA expression levels in multi-omics
data, respectively. For the three fully connected layers, let Xm �
xm
1 , ..., x

m
N{ } ∈ RN×Dm denote the input of the m-th type of omics

data, and Fm � fm
1 , ..., f

m
N{ } ∈ RN×dm represent the corresponding

output, where N is the number of patients, and Dm and dm are the
feature dimensions of the input and output data. Initially, utilizing
the Deep Graph Library (Jin et al., 2019) (DGL) within the PyTorch
deep learning framework for graph construction and operations, for
each node i, the unnormalized attention scores eij for all its
neighboring nodes j are calculated. Here, for the preliminary
scores of nodes i and j, this study uses equation below to compute:

eij � LeakyReLU aT Whi
∣∣∣∣ Whj

∣∣∣∣[ ]( )
Where ℎi and ℎj represent the intrinsic representation vectors of

the i and j nodes in the graph, respectively. They are formed by
cascading three types of omics features: mRNA, miRNA, and DNA
Methylation, after normalization, with the aim of maximally
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condensing cross-modal biological clues. W is a globally shared
linear projection matrix, which compresses the heterogeneous and
high-dimensional inputs into a unified latent space, making the
downstream relevance measurements comparable and aggregatable
in terms of dimension and scale. a can be regarded as a learnable
“probe” vector, which performs a weighted inner product on the
concatenated [Wℎi||Wℎj], thereby producing a non-normalized
attention raw score for the edge (i,j).

To facilitate the comparison and induction of coefficients
between different nodes, the softmax() function is used for
normalization, ensuring that the sum of attention coefficients
between each node and its neighboring nodes is 1, as shown in
equation as follows:

aij � sof tmaxj eij( ) � exp eij( )∑k∈N i
exp eik( )

Based on the aggregation characteristics of attention weights, the
features of neighbors are updated.

T l+1( ) � σ ∑
j∈N i

aijT
′
i

⎛⎝ ⎞⎠
Where Ti′ is the transformed feature of node i, which

dynamically adjusts its own features through attention weights
aij.

GAT is widely used in classification learning tasks of graph
structured data, and the input matrix of this model contains node
structures and graph structures. Therefore, both the internal features
and graph structures of the training data were used for learning the
classification task.

2.2.3 Multi-omics feature fusion learning based
on MOVCDN

Existing deep learning-based multi-omics integration methods
typically fuse features from distinct omics modalities either in the
initial input or intermediate feature space (Zhang X. et al., 2021; Zhu
et al., 2015). Previous research demonstrates that the View
Correlation Discovery Network (VCDN) effectively captures
correlations between diverse data views within the label space,
particularly for tasks such as human action recognition (Wang
et al., 2019). Inspired by this, Wang (Wang et al., 2020) applied
VCDN to various types of omics data for biological data
classification. In this study, VCDN was used to model the
correlation between multi-omics data, and the module was
named MOVCDN. Let Mj ∈ RC×C×C represent the cross-omics
discovery tensor of the j-th sample. The specific calculation
equation is as follows:

Mj,abc � ŷ 1( )
j,a ŷ

2( )
j,b ŷ

3( )
j,c

Where ŷ(i)
j,x denotes the xth term ŷ(i)

j . Next, cross-omics found
that tensor Tj was reshaped into an C3-dimensional vector. Next,
the vector is input into a two-layer fully connected layer with an
output dimension of C for final label prediction. MOVCDN uses
cross entropy loss for training, that is:

LMOVCDN � ∑ntr
j�1
LCE MOVSDN Tj( ), yj( )

� ∑ntr
j�1

− log
eMOVCDN Tj( )·yj

∑k
i�1e

MOVCDN Tj( )k
⎛⎝ ⎞⎠

Where LCE is the cross entropy loss function, and
MOVCDN(Tj)k is the k-th element in the vector
MOVCDN(Tj) ∈ RC.

The total loss function of MOLUNGN can be expressed as:

L � ∑3
i�1
L i( )
C + ðLMOVCDN

Where L(i)C sets a separate supervision signal for the i-th omics
branch (i∈{1,2,3}, corresponding to mRNA, miRNA, and DNA
Methylation respectively) to ensure that each modality has
independent discriminative capability before fusion. ð is the
trade-off parameter between the classification loss of each omics
and the final classification loss of MOVCDN. In this article, set
ð � 1. In summary, MOLUNGN is an end-to-end model that aims
to jointly explore the correlation of cases in the internal
characteristics of omics information and the correlation of cross-
omics in the label space.

2.3 Experiment

2.3.1 Contrast model
In this experiment, MOLUNGN was rigorously compared

with 10 baseline classifiers, including KNN, Support Vector
Machine (SVM), LASSO, Random Forest (RF), XGBoost, and
the improved LUNGGCN model. For the KNN classifier, the
parameter K was set to 5. The SVM classifier utilized a kernel
function to project data into higher-dimensional spaces,
facilitating the classification of complex datasets. In LASSO, a
separate model was trained for each class, with final predictions
determined by selecting the label with the highest predicted
probability. The RF classifier employed multiple decision trees
constructed from diverse data subsets. Models such as KNN,
SVM, LASSO, and RF were trained by concatenating multi-omics
data, predominantly using the Scikit-learn library (Kramer and
Kramer, 2016) with default parameter settings. The MOLUNGN
and improved LUNGGCN models were implemented using the
PyTorch framework, maintaining consistent parameter settings
across both models. For evaluation, 70% of samples were
randomly assigned as the training set, with the remaining 30%
as the test set. This partitioning procedure was repeated ten times
to create different randomized train-test groups, and
performance metrics across these ten experiments were
comprehensively reported.

2.3.2 Parameter setting
The parameters used in the models during the experiment are

shown in Table 3.

2.3.3 Evaluating indicatorl
(1) Accuracy rate

Accuracy � TP + TN
TP + TN + FP + FN
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The evaluation index represents the correct proportion of the
model in all predictions. Among them, TP (True Positive): True
positive, that is, the number of positive classes correctly predicted by
the model; TN (True Negative):True negative, that is, the number of
negative classes correctly predicted by the model; FP(False Positive):
False positive, that is, the number of positive classes that the model
incorrectly predicts; FN(False Negative):false negative, that is, the
number of negative classes that the model incorrectly predicts.

(2) Weighted recall rate

Recallweighted � ∑N
i�1

supporti
total support

×
TPi

TPi + FNi
( )

Recall_weighted is an important indicator used to measure the
performance of classification models in machine learning. It mainly
focuses on the recall performance of the model on different
categories, and comprehensively considers the number of samples
in each category. It provides a single score to evaluate the recall
performance of the model in multi-classification problems,
especially in the case of unbalanced category distribution. The
recall rate is calculated for each category: First, the recall rate
(Recall) of each category is calculated, that is, the proportion of
the number of samples correctly predicted as positive cases in the
category to the total number of actual positive cases in the category.
Calculate the weighted average recall rate: then, multiply the recall
rate of each category by the proportion of the category in the total
sample (weight), and then sum the weighted recall rates to obtain the
final ’ Recall_weighted ’ score.

(3) F1 score

Typically, the calculation equation for the F1 score of the i-th
category is the harmonic mean of the precision and recall rates,
defined as follows:

F1i � 2 ×
Precisioni × Recalli
Precisioni + Recalli

This evaluation index is an important indicator used to measure
the performance of classification models in machine learning. It
comprehensively considers the accuracy rate and recall rate, and

provides a single score to evaluate the accuracy of the model. The
F1 score can be subdivided into F1_macro and F1_weighted
according to the actual data of the model and the feedback of
the results.

F1 macro � 1
N

× ∑N
i�1

F1i( )

F1_macro calculates F1 scores for each category, and then
calculates the arithmetic mean of these F1 scores. This approach
treats all categories equally, regardless of the importance of the
category or the number of samples. That is to say, each category has
the same contribution to the final F1_macro score.

F1 weighted � ∑N
i�1

support
tota support

× F1i( )
F1_weighted calculates F1 scores for each category, but when

calculating the average, the number of samples in each category is
used as the weight. This means that the category with a larger
number of samples has a greater impact on the final F1_weighted
score. This method takes into account the importance of categories,
especially in the case of uneven distribution of categories, and can
give a more balanced performance index.

2.4 Results and discussion

2.4.1 Comparison with other state-of-the-art
algorithms

In this experiment, the performance of the proposed
MOLUNGN method was comprehensively compared with eleven
baseline classifiers, including K-nearest neighbors (KNN), support
vector machine (SVM), LASSO, random forest (RF), XGBoost,
linear discriminant analysis (LDA), decision tree, logistic
regression (LR), and the improved LUNGGCN model. The
comparative analysis of these algorithms is detailed in Table 4
and visually represented in Figures 2, 3.

Figures 2, 3 comprehensively illustrate the performance
comparison among 12 different classifiers on the LUAD and
LUSC datasets, highlighting the superior performance of the
proposed MOLUNGN model across multiple evaluation metrics.

TABLE 3 Model parameter settings.

Parameter MOLUNGN MOGONET LUNGGCN

Layer Graph Attentional Layer Graph Convolution Layer Graph Attentional Layer

Num_epochs 200 200 200

Num_view 3 3 3

Num_class 5 5 5

Num_heads 32 - 32

Out_dims 2 2 2

Hidden_dims 16 16 16

Learning rate 0.008 0.008 0.008

Vcdn_features 128 128 -
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Notably, both MOLUNGN and the MOGONET model
implemented in this study contain two core algorithm modules: a
Graph Neural Network-based core module and a Multi-omics View
Correlation Discovery Network (MOVCDN) module designed
specifically for multi-omics data fusion. In contrast, the
remaining baseline classifiers employ only single-core algorithm
modules, resulting in limited effectiveness in capturing complex
multi-modal interactions.

By comparing MOLUNGN with the LUNGGAT model, it
was clearly demonstrated that excluding the MOVCDN multi-
modal fusion module resulted in significantly reduced
classification performance. Specifically, without MOVCDN,
the LUNGGAT model achieved evaluation metrics of ACC
(0.60), Recall_weighted (0.53), F1_weighted (0.50), and F1_
macro (0.48) on the LUSC dataset. However, incorporating
the MOVCDN module dramatically enhanced these metrics,
increasing ACC to 0.86, Recall_weighted to 0.86, F1_weighted
to 0.85, and F1_macro to 0.84, thereby affirming the superior
efficacy of multi-omics integration in practical biomedical
applications.

Moreover, the comparative analysis between MOLUNGN and
MOGONET further emphasized the advantage of the Graph
Attention Network (GAT) core module over traditional Graph
Convolutional Networks (GCN) in processing large-scale systems
biology data. Specifically, the GCN-based MOGONET model
exhibited lower performance (ACC: 0.62, Recall_weighted: 0.57,
F1_weighted: 0.54, F1_macro: 0.52) compared to the GAT-based
MOLUNGN model. These observations indicate that the graph
attention mechanism of the GAT module demonstrates superior
feature extraction and information fusion capabilities.

In summary, experimental results robustly illustrate that
MOLUNGN significantly enhances the efficacy of biomedical
data mining associated with lung cancer by integrating advanced
graph attention mechanisms and multi-modal omics data fusion,
thereby demonstrating substantial potential for clinical translation
and future biomarker discovery.

2.4.2 Ablation study
Through comprehensive ablation experiments, we

systematically evaluated the impact of varying quantities of

TABLE 4 Algorithm performance comparison.

Dataset Method ACC Recall_weighted F1_weighted F1 macro

LUAD MOLUNGN 0.84 0.84 0.83 0.82

MOGONET 0.64 0.58 0.51 0.51

LUNGGAT 0.61 0.53 0.50 0.42

XGBoost 0.53 0.48 0.45 0.27

LDA 0.53 0.43 0.39 0.25

KNN 0.50 0.52 0.45 0.27

Random_Forest 0.54 0.54 0.39 0.21

SVM 0.53 0.53 0.42 0.19

Lasso 0.50 0.50 0.39 0.21

LogisticRegression 0.49 0.50 0.43 0.26

GaussianNB 0.44 0.33 0.34 0.23

DecisionTree 0.51 0.38 0.37 0.25

LUSC MOLUNGN 0.86 0.86 0.85 0.84

MOGONET 0.62 0.57 0.54 0.52

LUNGGAT 0.60 0.53 0.50 0.48

XGBoost 0.53 0.50 0.51 0.38

LDA 0.52 0.49 0.49 0.36

KNN 0.48 0.48 0.47 0.32

Random_Forest 0.53 0.54 0.53 0.48

SVM 0.52 0.52 0.51 0.42

Lasso 0.50 0.49 0.50 0.46

LogisticRegression 0.48 0.48 0.48 0.45

GaussianNB 0.42 0.43 0.33 0.25

DecisionTree 0.43 0.38 0.44 0.33
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omics-specific features, different training set partitioning methods,
and multiple combinations of omics data on the performance of the
proposed MOLUNGN model, with particular attention to assessing
the significance of multi-omics integration. To thoroughly explore
the contribution of individual omics features and their
combinations, seven different omics integration strategies were
designed and examined, namely,: mRNA alone, miRNA alone,
DNA methylation alone, mRNA combined with DNA
methylation, mRNA combined with miRNA, miRNA combined
with DNA methylation, and the comprehensive integration of all
three omics modalities (mRNA + DNA methylation + miRNA).
Figure 4 presents detailed comparisons regarding the performance
of these omics data combinations.

Experimental findings indicated that the single omics dataset
based solely on mRNA expression demonstrated the lowest
predictive performance, attributed to its limited number of
features, minimal complexity in the graph structure, and reduced
node-level biological information. Conversely, dual omics
combinations, such as mRNA combined with miRNA or DNA
methylation, consistently resulted in significantly improved
performance across various evaluation metrics. The continuous
enhancement of the model’s performance indicators when
integrating multi-modal data from dual to triple omics further
confirmed that multi-modal fusion substantially enhances model
performance.

Figures 4A,B explicitly compare model performance across
various omics perspectives, employing three evaluation indicators
to analyze how different types of omics data influence model
efficacy. In these figures, distinct colored histograms represent
different omics data combinations utilized in the ablation
experiments.

In the ablation analysis, one or several types of omics data were
systematically removed to observe corresponding changes in model
performance. The results consistently demonstrated that omitting
any individual omics dataset led to a notable decline in classification
performance, underscoring the crucial importance of integrating
multi-omics data to achieve optimal classification accuracy.
Specifically, models relying on only a single type of omics data
exhibited relatively lower predictive accuracy; conversely,
integrating multiple types of omics data allowed the model to
capture a richer set of potential features and associations, thus
providing more accurate and reliable classification results.
Additionally, by examining the performance diagrams of the
single-omics models versus multi-omics fusion models, we
observed that the effectiveness of individual omics modalities
significantly impacts the performance achieved through multi-
omics integration, confirming the model’s ability to effectively
incorporate features from multiple omics dimensions.

Moreover, although increasing the feature dimensionality
inevitably raises the computational complexity, the availability of

FIGURE 2
The performance comparison of algorithms under LUAD data set. (A) Accuracy comparison. (B) Recall weighted comparison. (C) F1 weighted
comparison. (D) F1 macro comparison.
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richer omics data significantly enhances the model’s discriminative
capabilities among different sample categories. These findings
further substantiate the essential role of strategic feature selection
and multi-omics integration in biomedical data analysis. By
retaining the most relevant and informative omics features, the
model can comprehensively capture inter-sample differences, thus
markedly improving classification accuracy.

In conclusion, the ablation experiments clearly illustrate that
increasing the number of features within individual omics datasets
and integrating a greater diversity of omics modalities significantly
enhances node-level information richness and graph complexity,
thereby substantially improving overall model performance.
Incorporating multi-modal data allows more comprehensive
extraction and utilization of biological information from multiple
levels and perspectives, not only enhancing classification accuracy
but also providing robust support for biomarker discovery and
disease mechanism research.

In summary, the ablation studies yielded the following key
conclusions.

(1) The informational content and number of features in a single
omics dataset significantly influence model performance.

(2) Multi-omics data integration markedly improves
classification accuracy and overall model performance.

(3) Different omics modalities provide complementary biological
insights; thus, their integration comprehensively captures the
biological characteristics of tumors.

(4) Increasing the number and diversity of features increases
model complexity but simultaneously enhances the model’s
node information content and classification capabilities.

(5) Ablation experiments provide strong empirical support for
the necessity of multi-omics integration and the critical
importance of effective feature selection strategies.

2.4.3 Identify the key biomarkers by
MOLUNGN model

In the final section of this study, multimodal omics datasets were
systematically integrated with corresponding clinical annotations
derived from publicly available lung cancer case samples. Utilizing
the clinically recognized TNM cancer staging system (SchrlSder
et al., 1992), each patient’s cancer stage was meticulously extracted,
thereby enabling the integration and categorization of samples
according to their clinical stages. The MOLUNGN model was
subsequently employed to effectively classify the integrated multi-
omics data across various cancer stages and to robustly identify
stage-specific biomarkers pivotal for disease progression. To achieve
a nuanced understanding of the biomarkers associated with distinct
stage transitions, this study converted the complex multi-stage

FIGURE 3
The performance comparison of algorithms under LUSC data set. (A) Accuracy comparison. (B) Recall weighted comparison. (C) F1 weighted
comparison. (D) F1 macro comparison.
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classification task into multiple binary classification scenarios. For
instance, in the LUAD dataset, samples from stage I and stage II
were specifically isolated and analyzed within the MOLUNGN
framework to elucidate biomarkers indicative of the biological
transformation occurring between these two stages. The LUAD
dataset comprised stage I through stage IV samples, while the
LUSC dataset encompassed stages I through III.

By synthesizing multiple data modalities, including mRNA
expression, miRNA expression, and DNA methylation profiles,
MOLUNGN provides a multi-level, comprehensive approach for
investigating critical driver genes and biomarkers implicated in lung
cancer progression. From the systems biology perspective, this
integrative methodology facilitates deeper insights into the
molecular mechanisms underlying lung cancer initiation,
progression, and metastasis. Moreover, the identified biomarkers
and corresponding genes were systematically organized and
incorporated into the complex network model of “Traditional
Chinese Medicine (TCM)–Target–Disease,” further enriching

data-driven insights for exploring biological mechanisms and
potential therapeutic targets in traditional Chinese medicine-
based treatments for lung cancer.

Further in-depth data mining identified key biomarkers
distinctly associated with specific lung cancer stages, the
screening criterion for the top biomarkers is to select biomarkers
in descending order based on the characteristic attention weight
coefficient, as explicitly summarized in Table 5 and visually
represented in Figure 5. Notably, previous studies conducted by
Wang (Wang et al., 2022), Zhang (Zhang D. et al., 2021), and
Shepelev (Shepelev and Korobko, 2013) have demonstrated that the
RHOV gene, a prominent member of the Rho family of GTPases,
significantly regulates NSCLC gene expression profiles. In particular,
RHOV is notably overexpressed in lung adenocarcinoma (LUAD)
tissues, where it strongly correlates with patient prognosis and
survival outcomes. Mechanistically, RHOV actively promotes
LUAD cell proliferation, migration, and invasive capabilities
through activation of the JNK/c-Jun signaling pathway.

FIGURE 4
(A) Ablation experiment diagram under LUAD dataset; (B) Ablation experiment diagram under LUSC dataset Ablation experiment diagram under
LUAD dataset.
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Additionally, hsa-miR-30e-5p29(Xu et al., 2018), another critical
biomarker identified, exerts tumor-suppressive effects on NSCLC
via modulation of the USP22-mediated Sirt1/JAK/STAT3 signaling
pathway. Indeed, members of the miRNA-30 family (Yu and Sui,
2020) have been widely recognized for their regulatory significance
in NSCLC pathogenesis.

Furthermore, our analysis identified the BRCA1 gene as a critical
biomarker with notably diminished mRNA and protein expression
observed in lung adenocarcinoma and squamous cell carcinoma,
respectively. Promoter hypermethylation has been established as a
principal regulatory mechanism driving the aberrant expression of

BRCA1(Lee et al., 2007), thereby contributing substantially to
NSCLC pathogenesis. Additionally, the FGFR3 gene (Liao et al.,
2013), a member of the transmembrane receptor tyrosine kinase
(RTK) superfamily encoding single-chain glycoproteins, emerged as
another significant biomarker. FGFR3 is known to exert pronounced
inhibitory effects in lung cancer, particularly lung squamous cell
carcinoma, and thus represents a promising therapeutic target for
NSCLC treatment.

In addition, when a new case enters the prediction process, it is
necessary to first obtain its mRNA transcript abundance, miRNA
expression profile, and DNA methylation level data. After quality

TABLE 5 Important omics biomarkers identified at different stages in LUAD and LUSC dataset.

Dataset Stage Omics type Top import biomarkers

LUAD StageⅠ、Ⅱ mRNA expression RHOV、RAD51、FGFR3

miRNA expression hsa-miR-30e-5p、hsa-miR-675-3p、hsa-miR-26a-1-3p

DNA methylation 1-Mar、RIMS2、RHOT2

StageⅡ、Ⅲ mRNA expression REEP2、ITGA3、RCBTB1

miRNA expression hsa-let-7c-5p、hsa-miR-221-3p、hsa-miR-551b-3p

DNA methylation RICH2、RHOD、RHOC

StageⅢ、Ⅳ mRNA expression RC3H2、BRCA1、RCAN3

miRNA expression hsa-miR-93-5p、hsa-miR-92a-3p、hsa-let-7b-5p

DNA methylation RHOBTB2、RHOT1、RHOG

LUSC StageⅠ、Ⅱ mRNA expression A4GALT、TP63、FGFR3

miRNA expression hsa-miR-4999-5p、hsa-miR-5187-5p、hsa-miR-152-5p

DNA methylation WARS2、CSDE1、TMEM177

StageⅡ、Ⅲ mRNA expression HOMER1、ROCK1、IMPA1

miRNA expression hsa-miR-5699-5p、hsa-miR-362-5p、hsa-miR-16-2-3p

DNA methylation ZIC3、BAT5、MAP2K3

FIGURE 5
The figure includes a partial display of the important biomarkers discovered during the progression and stage transition of (A) LUAD and (B) LUSC.
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control, imputation of missing sites, batch effect correction, and
Z-score normalization of the raw read segments, the three types of
features are cascaded in the established order of the training phase
into a unified numerical vector, and directly input into the graph
attention network that has completed offline training. Since GAT
belongs to the inductive learning paradigm, focusing on the
generalization mapping of “node features to class labels” rather
than relying on static full graph topology, there is no need to
reconstruct the adjacency matrix during the inference phase to
output the posterior probability of lung cancer staging or
molecular subtypes; if it is subsequently desired to improve
model performance, new samples can be incorporated into the
training set for full retraining or progressive fine-tuning, while
the timeliness and stability of routine clinical inference links are
not affected.

Collectively, comprehensive pharmacological literature review
and comparative analyses demonstrate remarkable consistency
between MOLUNGN model predictions and empirical outcomes
from experimental studies involving cellular and animal models,
further validating the scientific rigor, reliability, and translational
potential of the proposed MOLUNGN framework in lung cancer
biomarker discovery and mechanistic exploration.

2.5 Conclusion

In this paper, we proposed a novel multi-omics integrated graph
deep learning framework named MOLUNGN, explicitly designed
for the precise staging and classification of lung cancer using
comprehensive biomedical datasets. MOLUNGN integrates
specialized omics-specific prediction modules based on Graph
Attention Networks (GAT), effectively capturing intra-omics
characteristics and leveraging intrinsic patient similarities within
individual omics datasets. Furthermore, a Multi-Omics View
Correlation Discovery Network (MOVCDN) was developed to
model complex cross-omics correlations in the high-level label
space, substantially enhancing classification accuracy and
robustness.

Utilizing publicly available lung cancer datasets and clinical
annotations, our MOLUNGN model demonstrated superior
performance compared to state-of-the-art baseline methods.
Specifically, MOLUNGN achieved impressive results on the
LUAD dataset, with accuracy (ACC) of 0.86, weighted recall
(Recall_weighted) of 0.86, weighted F1-score (F1_weighted) of
0.85, and macro F1-score (F1_macro) of 0.84. Similar
performance enhancements were observed on the LUSC dataset,
with ACC of 0.86, Recall_weighted of 0.86, F1_weighted of 0.85, and
F1_macro of 0.84. Ablation studies further verified the significant
contributions of the GAT and MOVCDN modules and
demonstrated the clear advantages of multi-omics data
integration over single-omics approaches.

Moreover, the MOLUNGNmodel successfully identified critical
biomarkers frommulti-modal omics datasets closely associated with
distinct stages of lung cancer progression. These biomarkers, such as
RHOV, hsa-miR-30e-5p, and RICH2, have demonstrated significant
regulatory roles in the mechanisms underlying lung
adenocarcinoma and squamous cell carcinoma. Additionally, the
identified stage-specific biomarkers were systematically integrated

into the “Traditional Chinese Medicine-Target-Disease” network
model, providing an enriched biological data framework and
valuable methodological references for exploring the
comprehensive biological mechanisms of traditional Chinese
medicine in lung cancer therapy.

Future research will further extend the MOLUNGN model by
incorporating additional multimodal clinical data types, including
patient behavioral information and medical imaging, aiming to
construct an even more comprehensive analytical framework for
understanding disease mechanisms, enhancing predictive accuracy,
and advancing personalized medicine.
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