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Introduction: High-throughput sequencing methods revealed disease-causing
and susceptibility genes underlying glomerulonephritis (GN). Genetic disorders
mimicking GN may be diagnosed in this way. The aim of this study was to perform
whole-exome sequencing (WES) in a cohort of sporadic pediatric patients
diagnosed with primary or secondary GN.

Method: Thirty-one patients with GN and 50 nephrologically and
immunologically healthy pediatric patients (control group - CG) were
genetically analyzed. Allele frequencies were compared with the GnomAD
database. WES was performed in the laboratory 3billion in South Korea.
Results: Among 10 patients with primary GN, two patients were positive on WES
(20%). One had a likely pathogenic heterozygous variant in the COL4A3 gene
associated with Alport syndrome, and one had a heterozygous novel variant of
uncertain significance in the CD46 gene associated with atypical hemolytic
uremic syndrome (aHUS). In two of 14 patients with systemic lupus
erythematosus (SLE) and GN, a heterozygous pathogenic variant (c.841_849 +
19del) in the C2 gene was detected. We found no significant variants in seven
patients with Henoch-Schénlein purpura (HSP) and GN.

Conclusion: WES helped us detect hereditary diseases that have a clinical
presentation like GN, including Alport syndrome and possible aHUS. Finding
susceptibility genes in GN helped us understand disease pathophysiology.

KEYWORDS

glomerulonephritis, whole-exome sequencing, Alport syndrome, atypical hemolytic
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1 Introduction

Glomerulonephritis (GN) is a heterogeneous group of inflammatory diseases that affect
renal glomeruli (Rodriguez-Iturbe et al., 2016). Primary GNs affect only the kidneys and are
divided into several main subtypes: immunoglobulin A nephropathy (IgAN), membranous
nephropathy (MN), minimal change disease (MCD), focal segmental glomerulosclerosis
(FSGS), membranoproliferative GN (MPGN), and rare forms such as steroid-sensitive
nephrotic syndrome (SSNS) and anti-glomerular basement membrane (anti-GBM) disease.
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In secondary GNs, kidneys are damaged due to the presence of
another systemic disease, most commonly systemic lupus
erythematosus (SLE) and Henoch-Schoenlein purpura (HSP)
(Rodriguez-Tturbe et al, 2016; Floege and Amann, 2016;
Floege, 2013).

High-throughput sequencing methods, such as genome-wide
association studies (GWAS), whole-exome sequencing (WES), and
whole-genome sequencing (WGS), revealed disease-causing and
susceptibility genes underlying primary and secondary GN.
These methods have contributed to the understanding of genetic
background and pathogenetic mechanisms of these complex
diseases, which subsequently leads to the development of
noninvasive genetic screening, new diagnostic methods, and drug
interventions (Floege and Amann, 2016; Wu et al,, 2022). IgA
nephropathy is associated mostly with the genes encoding
proteins of the immune system (Floege, 2013; Wu et al., 2022;
Jiyun et al., 2012; Yang et al.,, 2012). In MN, the podocyte gene
PLA2RI1 is also of interest (Wu et al.,, 2022; Stanescu et al.,, 2011;
Yoshikawa and Asaba, 2020), while FSGS is mostly related to the
structural genes of the kidney cells (Wu et al, 2022). HLA
polymorphisms are genetic factors associated with lupus nephritis
(LN) and HSP nephritis (Huang et al., 2023; Lopez-Mejias et al.,
2015; Jiang et al., 2017; Koskela et al., 2021). Genes important for
interferon signaling are also associated with LN (Huang et al., 2023).

In addition, some genetic disorders may mimic GNs. Those
disorders must be recognized to treat these patients adequately, to
understand disease prognosis, and to give genetic advice. Among
these disorders are Alport syndrome, congenital nephrotic
syndromes, atypical hemolytic uremic syndrome (aHUS), etc.
(Rahimzadeh et al., 2023; Hao et al., 2020).

The aim of this study was to investigate the genetic backgrounds
of a cohort of consecutive sporadic pediatric patients diagnosed with
primary or secondary glomerulonephritis using whole-exome
sequencing analysis. The results may have important implications
for understanding the genetic epidemiology of GN in Serbia and the
whole region.

2 Methods
2.1 Patients

This research is a cross-sectional study approved by the Ethics
Committee of the Faculty of Medicine, University of Belgrade (No.
1322/V1I-48 from July 29, 2020). The research was conducted at the
Institute for Mother and Child Healthcare of Serbia “Dr. Vukan
Cupic” from March 1, 2021, to August 1, 2021. Written informed
consent has been obtained from all patients or their parents/
caregivers if the patient was younger than 15 years.

Patients with primary and secondary GNs due to SLE and HSP
were consecutively collected from the inpatient and outpatient
units of the institute. Diagnosis was based on the clinical
and, in most
with
glomerular disease (including several children with diabetes
children  with
inflammatory drug use); patients with a positive family history

presentation, laboratory results, cases,

histopathology findings. Patients non-inflammatory

mellitus and several non-steroidal  anti-

of kidney disease or proven genetic kidney diseases; and those who
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have GN but with the presence of another significant disease
unrelated to GN were excluded.

A total of 43 patients were collected, of which two were excluded
due to parents’ refusal to allow their child to participate in the study.
Two additional patients were excluded due to the presence of anti-
neutrophilic cytoplasmic autoantibody (ANCA) vasculitis with GN.
Eight patients had other autoimmune diseases (SLE and HSP) and
were suspected of having GN but were not found to have any kidney
involvement, so they were excluded. Finally, 31 patients had GN and
were further genetically analyzed.

Patients’ whole blood was sampled for WES. Detailed data on
the sociodemographic and clinical characteristics of GN patients
were collected. We used the GnomAD data to compare allele
frequencies between our cohort and a large cohort of the general
population. We have already had a cohort of 50 nephrologically and
immunologically healthy pediatric patients undergoing WES
because of the isolated foot deformities. We considered that this
cohort may be important as a control group because it included
patients from Serbia. Like our GN group, all patients were children
(which is not the case with the GnomAD database), and all patients
were tested in the same laboratory (3billion) using the same
methodology and data interpretation. Thus, this cohort served as
a control group (CG). They were analyzed for the presence of the
variants detected in the GN cohort. Out of 50 CG patients tested, 31
(62%) were males, while 19 (38%) were females. The average age of
these patients was 8.8 + 4.3 years.

2.2 Molecular genetic analysis

WES was performed at the reference laboratory for genetic
testing, 3billion, Inc., Seoul, South Korea, using the xGen Exome
Research Panel v2 supplemented with the xGen Human mtDNA
Panel for Mitochondrial DNA and the xGen Custom Hyb Panel v1
(Integrated DNA Technologies, Coralville, United States) on the
NovaSeq 6000 platform
United States). The analysis and interpretation of the obtained
data consisted of the alignment to the GRCh37/hgl9 human
reference genome and variant calling, which were done using

Illumina (MMumina, San Diego,

open-source bioinformatic tools. Annotation, filtering, and
classification of variants were done with the in-house software
EVIDENCE (Seo et al,, 2020). The frequency of certain variants
in other populations and globally was assessed using the gnomAD
project (http://gnomad.broadinstitute.org/) (Karczewski et al,
2020). Data on the pathogenicity of a given variant and its
association with a certain disease were retrieved from databases
such as OMIM (www.omim.org), ClinVar, and UniProt (Hamosh
et al.,, 2005; Landrum et al., 2020). Prediction of the functional effect
of each variant and the degree of evolutionary conservation was
evaluated using in silico prediction software (listed in Table 2). The
pathogenicity of each variant was assessed according to the
American College of Medical Genetics and the Association for
Molecular Pathology (ACMG/AMP) recommendations (Richards
et al,, 2015). The clinical phenotype of each patient was translated
into the corresponding human phenotype ontology (HPO) terms
(https://hpo.jax.org/) (Kohler et al., 2021) and used to calculate
similarity to each of approximately 7,000 rare genetic diseases
(Greene et al, 2016; Kohler et al., 2009). Each patient’s
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TABLE 1 Sociodemographic and clinical features of investigated patients.
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Feature All Primary GN SLE and GN HSP and GN
N 31 10 14 7
Gender (% males) 51.6% 80.0% 21.4% 71.4%
Age at onset (years, median (IQR)) 11 (5-14) 9.5 (4-13) 13 (11-15.5) 5 (4-7)
Age at sampling (years, median (IQR)) 15 (8-17) 15 (10-16) 17 (15-18) 7 (4-8)
Disease duration (months, median (IQR)) 28 (13-53) 39 (30-78) 22.5 (11-61) 4 (2-22)
Therapy (%)

None 6.4% 20.0% 0.0% 0.0%

CS 29.0% 30.0% 7.1% 71.4%

CS and IS 54.8% 30.0% 85.7% 28.6%

CS, IS, and mab 9.7% 20.0% 7.1% 0.0%
Number of GN relapses 1 (0-3) 2 (0.5-4.5) 1(1-2) 0 (0-2.5)

CS, corticosteroids; GN, glomerulonephritis; HSP, Henoch-Schoenlein purpura; IQR, interquartile range; IS, immunosuppressants; mab, monoclonal antibodies; SLE, systemic lupus

erythematosus.
Results are presented as proportions or medians (interquartile range).

symptoms were compared to every known symptom of the
given disease.

Finally, the EVIDENCE software selected as priority variants
classified as pathogenic, likely pathogenic, and variants of
(VUS) to ACMG/AMP
recommendations. They are categorized into a three-level

uncertain  significance according
system based on the Bayesian score (Tavtigian et al., 2018). The
first degree is variants with a score over 0.9, the second degree with
a score over 0.499, and the third with a score over 0.1. All rare
variants detected in genes associated with specific diseases were
further considered to be characterized by medical geneticists.
Variants in genes with a lower similarity score with the
symptoms of a given patient were manually evaluated. In
addition, rare variants that were not in the genes associated
with the symptoms given for a particular patient were analyzed.

All high-priority variants detected in the GN cohort were
screened in the CG group to estimate variant frequency in this
population. A BaseSpace Variant Interpreter (Illumina, San Diego,
United States) was used for this purpose.

2.3 Statistics

Descriptive statistics methods were used: proportion, median,
and interquartile range.

3 Results

Sociodemographic and clinical data of the investigated cohort
are presented in Table 1. The study comprised 10 patients with
primary glomerulonephritis (five with IgAN, two with SSNS, one
with FSGS, one with MGN, and one with anti-GBM disease),
14 patients with LN, and seven with HSP nephritis.

Among 10 patients with primary glomerulonephritis, two
patients had positive findings on WES (20%). Detailed variant
analysis is presented in Table 2.
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We detected one likely pathogenic heterozygous in-frame
variant (c.3546_3548dup, p. (Gly1183dup)) in the COL4A3 gene
in one patient that was absent in our CG. Variants in COL4A3 are
associated with autosomal dominant Alport syndrome type 3A
(OMIM:104200), autosomal recessive Alport syndrome type 3B
(OMIM:620536), and autosomal dominant familial benign
hematuria type 2 (OMIM:620320). A c.3546_3548dup variant has
been previously described in patients with autosomal dominant
Alport syndrome (Groopman et al., 2019). In our patient, symptoms
started at the age of six with microhematuria. At that time, the
histopathology of the kidney was inconclusive. At the age of 9, he
developed proteinuria, and at the age of 10, he developed bilateral
sensorineural hearing impairment for high frequencies, which is all
consistent with the diagnosis of Alport syndrome. His mother had
the same mutation and was asymptomatic.

A heterozygous stop-loss novel variant of uncertain significance
(c.1122G>C, p. (Ter374TyrextTer23)) was identified in the CD46
gene in one patient with primary GN. Variants in CD46 are
associated with susceptibility to atypical hemolytic uremic
syndrome (aHUS) type 2 (OMIM:612922), which can be
inherited in an autosomal dominant or recessive manner. The
patient’s symptoms started at age 18, with hemoptysis, seizures,
microhematuria, and anemia. He was later positive for anti-GBM
antibodies, having a diagnosis of Goodpasture syndrome. He was
treated with corticosteroids and cyclophosphamide, with a
positive response.

In two of 14 patients with LN, a heterozygous pathogenic variant
(c.841_849 + 19del, p.?) was detected in the C2 gene. Their disease
onset was earlier than in other patients with lupus nephritis (10 years
vs 13.5 years). Their response to steroid and immunosuppressive
therapy was good. This variant was also detected in a heterozygous
state in one case from our CG. This patient had no symptoms or
signs of any autoimmune disease. Variants in C2 are associated with
autosomal recessive C2 deficiency (OMIM:217000). A c.841_849 +
19del variant has been previously described in homozygous and
compound heterozygous states in patients with complement
C2 deficiency (Morup et al,, 2022; Kars et al.,, 2021; Stranneheim
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TABLE 2 GN cases with high-priority variants identified by WES.

Gene Patient  Clinical Nucleotide  Protein Variation type, Clinical GnomAD Cohort of Theoretical Inheritance/  Reference/ Disease
no. diagnosis  change change molecular significance  exome v4// 50 healthy  predictions zygosity novel (OMIM)
consequence, (ACMG gnomAD pediatric variant
variant categories) genomes controls
location Z
COL4A3 G034 Primary GN NM_000091.5:c. p- (Gly1183dup) Duplication, in-frame, LP (PS1, PM1,PM2, = 0.00000205//0.00000657  Not found NA AD/heterozygous ClinVarlD:438655; = Alport
3546_3548dup exon PS4:Supporting, PMID:30586318 syndrome
PM4:Supporting) type 3A
(OMIM:
104200)
CD46 G026 Primary GN NM_172358.3:c. p- (Ter374Tyrext*23) | SNV, stop-loss, exon VUS (PM4, Not found//not found Not found EIGEN PC: benign | AD/AR/ novel Atypical
1122G>C PM2, BP4) strong; FATHMM- | heterozygous hemolytic
MKL: benign uremic
strong; DANN: syndrome
benign moderate; type 2 (aHUS)
MutationTaster: (OMIM:
uncertain; EIGEN: 612922)
benign moderate
Cc2 G032, G027 = Two with SLE = NM_000063.6: p? Deletion, splice P (PVSI, PS3, PP1,  0.0046 heterozygotes/ One control-0.02 NA AR/heterozygous ClinVar ID:50,634; ~ C2 deficiency
and GN c.841_849 + 19del junction loss, intron PP5, BS2) 0.000008 homozygotes// PMID:35874679; (OMIM:
0.00608 heterozygotes/ 34426522; 217000)
0.000032 homozygotes 33726816,
31980526;
31440263;
29619023;
27943079;
26590091;
26038300;
25454804;
11115162;

9616367; 8645999;
7901282; 1577763

AD, autosomal dominant; AR, autosomal recessive; BP, benign supporting; BS, benign strong; LP, likely pathogenic; NA, not available; P, pathogenic; PM, moderate evidence of pathogenicity; PP, supporting evidence of pathogenicity; PS, strong evidence of
pathogenicity; PVS, very strong evidence of pathogenicity; SNV, single nucleotide variant; VUS, variant of uncertain significance.
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et al., 2021; Hou et al., 2020). It involves the deletion of a 5'donor
splice site and is subsequently predicted to alter proteins.

We found no significant variants on WES in seven patients with
HSP and GN.

4 Discussion

Genetic analysis in pediatric patients with GN may be important
for several reasons. In the first place, hereditary diseases that have a
clinical picture like GN and require specific monitoring and
treatment, such as aHUS and Alport syndrome, can be detected.
Second, finding susceptibility genes in GN may help understand
disease pathophysiology and offer new therapies to patients.

Two of our 10 patients with primary GN had a genetic diagnosis
of another disease. One likely pathogenic heterozygous in-frame
variant (c.3546_3548dup) was identified in the COL4A3 gene in our
patient, primarily diagnosed with IgA nephropathy that was not
confirmed by histopathology. Variants in COL4A3 are associated
with autosomal dominant Alport syndrome type 3A (OMIM:
104200), autosomal recessive Alport syndrome type 3B (OMIM:
620536), and autosomal dominant familial benign hematuria type 2
(OMIM:620320). Our patient eventually developed the full
presentation of Alport syndrome. A ¢.3546_3548dup variant has
been previously described in a heterozygous state in patients with
Alport syndrome (Groopman et al., 2019). This variant is present
at a frequency of 0.00000205 and 0.00000657 in gnomAD exomes
and genomes, respectively, and was not found in our 50 pediatric
controls. The patient’s mother had the same mutation and was
asymptomatic. It is possible that the hypomorphic allele,
modifying variants in some other genes, or the presence of a
deep intronic variant in the second allele not visible by WES may
explain the phenotype in our patient. The coexistence of Alport
syndrome and Fabry disease in a patient with IgA nephropathy has
been reported (Hao et al., 2020). As stated by Rahimzadeh and
colleagues in their case report, a high rate of Alport misdiagnoses
has been seen due to the rarity of this disease, particularly in cases
without extrarenal manifestations (Rahimzadeh et al., 2023). In
this case, genetic findings provide new clinical insight, have the
potential to initiate multidisciplinary care, and may influence the
choice of therapy (Groopman et al, 2019; Canetta and
Radhakrishnan, 2015).

We have detected one heterozygous stop-loss novel variant of
uncertain significance (c.1122G>C) in the CD46 (MCP) gene in one
patient with primary GN-anti-GBM disease. The described variant
is absent from gnomAD and our 50 CG cohort, which suggests its
pathogenicity, but we were not able to perform segregation analysis
in the family because parents did not want to give their blood
samples. Also, we were not able to conduct functional analysis due to
technical reasons. Thus, we cannot claim that this variant is
pathogenic. Variants in CD46 are associated with susceptibility to
aHUS type 2 (OMIM:612922), which can be inherited in an
autosomal dominant or recessive manner. Genetic variants in
CD46 have been previously associated with other diseases such as
SLE, systemic sclerosis, miscarriage, and glomerulonephritis (Jonsen
et al.,, 2011; Mohlin et al., 2013; Scambi et al., 2015; Servais et al.,
2007). A previous study analyzing 248 patients with different

biopsy-proven glomerulopathy discovered that six patients
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developed aHUS (Manenti et al., 2013). However, reports of an
association of CD46 variants and anti-GBM disease have not yet
been described, to our knowledge. Variants in aHUS are
predominantly heterozygous; however, rare homozygous variants
were associated with earlier onset and more severe symptoms
(Caprioli et al.,, 2006). One study found that approximately 10%
of patients with aHUS (11 patients of 120) have variants in MCP, of
which five were heterozygous variants that resulted in reduced levels
of MCP. Furthermore, incomplete penetrance was noticed in those
patients, suggesting that MCP is rather a predisposing factor than a
direct cause (Esparza-Gordillo et al., 2006; Fremeaux-Bacchi
et al., 2006).

A heterozygous pathogenic variant (c.841_849 + 19del) has been
detected in the C2 gene in two patients with LN, as well as in one of
our 50 patients from the CG group. Variants in C2 are associated
with autosomal recessive C2 deficiency (OMIM:217000) (Mgrup
et al., 2022; Kars et al., 2021; Stranneheim et al., 2021; Hou et al.,
2020). Our variant has been found with a frequency of 0.0046 in
gnomAD exomes, and 0.000008 were homozygotes, while in
gnomAD genomes, it was found with a frequency of 0.00608,
and 0.000032 were homozygotes. A higher frequency was
estimated in our CG cohort, where it was detected in 2% of
individuals. Patients with heterozygous c.841_849 + 19del have
been described in the literature. One was a girl with SLE and
significant nephritis within 2 years after onset who underwent
renal transplantation, and the second was a boy with active
arthritis (Sparchez et al, 2015). Furthermore, a patient with
symptoms that started in her twenties was described as having a
heterozygous c.841_849 + 19del variant with a pathogen-specific
immunodeficiency (Morup et al., 2022).

The main limitation of the study is the small number of patients
and a heterogeneous cohort of different GNs. It is also notable that
the number of patients with primary GN was only 10. Thus, the
positive result rate of WES of 20% may be exaggerated due to a
selection bias. However, our aim was to provide additional
population  that s
underrepresented in the literature and to give the first insight

information =~ about a  pediatric
into the specific genetic background of this condition in the
Balkans.

identified variants, especially the novel variant in the C2 gene,

We understand that further functional studies of

will be of interest, but we were not able to perform them.

5 Conclusion

In this study, we have analyzed WES data of 31 sporadic
pediatric patients with GN. We detected one likely pathogenic
heterozygous in-frame variant in the COL4A3 gene associated
with Alport syndrome in one patient originally diagnosed with
primary GN. A heterozygous stop-loss novel variant of
uncertain significance was found in the CD46 gene associated
with aHUS in a patient with primary GN. A heterozygous
pathogenic variant (c.841_849 + 19del, p.?) in the C2 gene
was found in two patients with SLE and GN. This analysis
helped us detect hereditary diseases that have a clinical picture
similar to GN. Finding susceptibility genes in various GNs may
help understand disease pathophysiology and offer new
therapies to patients.
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