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Lung cancer is the leading cause of cancer-related deaths worldwide, with non-
small cell lung cancer (NSCLC) accounting for themajority of these cases. Despite
advancements in targeted therapies, early detection remains a significant
challenge, highlighting the need for novel biomarkers. This study investigates
the role of PIWI-interacting RNAs (piRNAs) in lung cancer, specifically focusing on
their potential as oncofetal biomarkers in lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC), the twomost common histological subtypes of
NSCLC. We hypothesize that piRNAs exhibit oncofetal expression patterns and
may contribute to lung cancer development. Through bioinformatics analysis, we
identified distinct piRNA profiles in non-neoplastic, malignant, and fetal lung
tissues. Among these, 37 piRNAs in LUAD and 46 piRNAs in LUSC displayed
oncofetal expression, meaning they were present in tumor tissues but absent in
adjacent normal lung tissue. These oncofetal piRNAs showed significant
prognostic value in both LUAD and LUSC cohorts, with a specific signature of
eight oncofetal piRNAs predicting high-risk patients in LUAD. We validated the
robustness of this signature in a separate in-house cohort, which underscores its
potential as a prognostic biomarker. Our findings suggest that oncofetal piRNAs
could offer new diagnostic and therapeutic opportunities, particularly for early
detection.
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1 Introduction

Lung cancer remains one of the most commonly diagnosed cancers and the leading
cause of cancer-related mortality worldwide, making it a priority for research aimed at
identifying novel therapeutic targets and biomarkers (Siegel et al., 2024). Lung cancer is
broadly classified into two main histological types: small cell lung cancer (SCLC) and non-
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small cell lung cancer (NSCLC), with NSCLC accounting for
approximately 85% of cases. NSCLC is further divided into
adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and
large cell carcinoma (LCC), with LUAD and LUSC being the
predominant subtypes (Herbst et al., 2018). These subtypes differ
in their cell of origin: LUAD typically arises from distal glandular
cells in the alveoli, while LUSC originates from the proximal airway
epithelium (Cheung and Nguyen, 2015). Molecular advances have
identified key, targetable genomic alterations in NSCLC
(particularly LUAD), including EGFR, BRAF, and KRAS
mutations, and ALK translocations, leading to the development
of targeted therapies as well as diagnostic markers (Cancer
Genome Atlas Research Network, 2014; Chen et al., 2014; Du
et al., 2018; Herbst et al., 2018; Tan and Tan, 2022). However,
lung cancer is diagnosed predominantly at advanced stages and
these treatments are prone to resistance, resulting in poor survival
outcomes. Therefore, strengthening our understanding of the
molecular pathogenesis of lung cancer and identifying novel
molecules involved in tumorigenesis can drive the development
of effective treatments and biomarkers, ultimately improving patient
prognosis (Herbst et al., 2018; Cassim et al., 2019).

Increasing evidence supports that oncofetal reprogramming,
where tumor cells co-opt signaling pathways typically active only
during embryonic development, has significant implications for
cancer biology and potential therapeutic strategies (Sharma et al.,
2022; Cao et al., 2023). Oncofetal reprogramming has been observed
in various cancers where gene expression patterns resembling early
developmental stages of the corresponding organ have been
identified in tumor profiles (Coulouarn et al., 2005; Huang et al.,
2019; Hassan et al., 2009; Feng et al., 2014; Hu and Shivdasani,
2005). Some oncofetal molecules have entered clinical application as
early diagnostic markers, therapeutic targets, or prognostic
indicators for various tumors. For example, alpha-fetoprotein
(AFP) and carcinoembryonic antigen (CEA) serve as diagnostic
biomarkers for hepatocellular carcinoma (Mizejewski, 2002; Chen
et al., 2020), and colorectal cancer (Das et al., 2017; Feng et al., 2018),
respectively.

Small non-coding RNAs (sncRNAs) represent a diverse class of
RNA molecules that, despite lacking protein-coding potential, play
crucial roles in gene regulation (Fu, 2014). They include microRNAs
(miRNAs), transfer RNA-derived fragments (tRFs), small nucleolar
RNAs (snoRNAs), small nuclear RNAs (snRNAs), small interfering
RNAs (siRNAs), and PIWI-interacting RNAs (piRNAs) (Fu, 2014).
Our group previously demonstrated that miRNAs exhibit oncofetal
expression patterns in lung cancer (Cohn et al., 2021). Furthermore,
we showed that oncofetal miRNAs regulate NFIB, a transcription
factor essential for lung differentiation and maturation during
development (Becker-Santos et al., 2016).

While miRNAs have been extensively studied, piRNAs remain
largely unexplored in lung cancer, despite their abundance,
evolutionary conservation, and established roles in gene
regulation and development (Mei et al., 2013). Initially
characterized for their function in transposon regulation and
germline development (Halic and Moazed, 2009; Iwasaki et al.,
2015; Teixeira et al., 2017), piRNAs have shown expression in
multiple somatic tissues and cancers, where they may contribute
to tumorigenesis. A recent pan-cancer analysis revealed widespread
piRNA expression across normal and malignant tissues from

11 organ types, with distinct tissue-specific profiles, particularly
in the thyroid and prostate (Martinez et al., 2015). Certain piRNAs
have been associated with patient survival, suggesting their potential
as cancer biomarkers (Martinez et al., 2015). However, their
functional significance in lung cancer remains largely unknown,
and few piRNAs have been characterized to date, highlighting the
need for further investigation.

We sought to explore whether other ncRNA classes, such as
piRNAs, might also exhibit oncofetal characteristics and contribute
to lung cancer progression. In this study, we characterized the piRNA
landscape in LUAD and LUSC, focusing on their potential role as
oncofetal markers. Like miRNAs, we hypothesize that specific piRNAs
may display oncofetal expression patterns, potentially reflecting their
involvement in cancer development. We utilized a bioinformatics
framework previously applied to miRNA discovery to identify and
classify piRNAs based on their expression patterns in non-neoplastic,
malignant, and fetal lung tissues. Furthermore, we evaluated the
association of oncofetal piRNAs with patient survival and
established an oncofetal piRNA prognostic signature for LUAD.

2 Methods

2.1 Data collection

This study utilized four cohorts: The Cancer Genome Atlas
(TCGA) cohort, which included paired tumor and adjacent adult
non-neoplastic lung tissue (ANL) samples for LUAD and LUSC; a
fetal lung (FL) cohort comprising human fetal lung samples; and a
validation cohort from the British Columbia Cancer Agency
(BCCA) containing LUAD and paired ANL tissue samples. Small
RNA sequencing (small RNA-seq) data for paired samples (tumor
and ANL) in the TCGA LUAD (n = 46 pairs) and TCGA LUSC (n =
45 pairs) cohorts were downloaded as binary alignment map (BAM)
files from the TCGA data repository (The Cancer Genome Atlas
Research Network et al., 2013; National Cancer institute, 2019), and
processed to extract small RNA expression profiles. The FL cohort
consisted of small RNA-seq data for 25 human fetal lung samples,
obtained as described in (Cohn et al., 2021) and available in the
National Center for Biotechnology Information Gene Expression
Omnibus (GEO) repository under accession number GSE175462
(Edgar et al., 2002). The BCCA validation cohort comprised
58 paired LUAD and ANL samples obtained with informed
written consent from patients at Vancouver General Hospital,
with approval from the University of British Columbia/BC
Cancer Agency Research Ethics Board (H15-03060), as previously
described (Cohn et al., 2021). Small RNA-seq data for BCCA cohort
samples were downloaded from the GEO repository under accession
number GSE175462 (Edgar et al., 2002). All cohorts excluded
samples with fewer than five million reads from the analysis to
ensure data quality and reliability. The clinical characteristics of the
patients included in each cohort are summarized in Table 1.

2.2 Evaluation of piRNA expression

FASTQ files were obtained by converting BAM files using
SAMtools (v1.17) (Danecek et al., 2021) for all cohorts. Reads
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with a mean Phred score below 20 were discarded to ensure high-
quality data using Trimmomatic (v. 0.39) (Bolger et al., 2014). The
quality-filtered FASTQ files were processed using the online
platform miRMaster 2.0 (Fehlmann et al., 2017). Default
miRMaster 2.0 settings were applied, with the following
modifications: a custom protocol incorporating a 3′ adapter
sequence of ATCTCGTATGCCGTCTTCTGCTTGT, a minimum
read length of 15, a sliding window requiring a quality threshold of 1,
the STAR alignment algorithm, and a minimum read stack height of
5. Normalization was performed using reads per million (RPM). For
patients with duplicate or triplicate tumor samples, expression data
were averaged. Following miRMaster 2.0 processing, additional
manual expression filtering was performed. For each sample
group, piRNAs were considered ‘expressed’ if detected at ≥ 1
RPM in at least 10% of samples within each tissue type. piRNAs
that did not meet this criterion were classified as ‘undetected’.
Figures representing piRNA expression were generated using R
packages: ggplot2 (v. 3.5.1) for data visualization (Wickham,
2016), UpSetR (v. 1.4.0) for intersection analysis (Conway et al.,
2017), and pheatmap (v. 1.0.12) (Kolde, 2019). Hierarchical
clustering was performed using Euclidean distance (clustering_
distance_cols = “euclidean”) to measure dissimilarities between
samples and Ward’s method (clustering_method = “ward.D”) for
linkage. The resulting dendrogram was used for heatmap
representation.

2.3 Differential expression and classification
of oncofetal piRNAs

Differential expression was assessed using the Wilcoxon test for
each piRNA between two sample groups: tumor vs. ANL and FL vs.
ANL. We performed a Wilcoxon test for paired samples for tumor
vs. ANL comparisons, whereas, for FL vs. ANL, we used the test for
unpaired samples. All statistical analyses were conducted in R Studio
(v. 4.3.1) (RStudio Team, 2020) using the wilcox. test function from
the stats package (v. 4.4.1) part of R (R Core Team, 2013). The fold
change (FC) was calculated by dividing the mean expression of the

first group by that of the second group. The p-values were adjusted
using the Benjamini-Hochberg (BH) correction to control the false
discovery rate (Benjamini and Hochberg, 1995). piRNAs were
considered differentially expressed if they met the following
criteria: an adjusted p-value <0.05 and FC > 2. A piRNA was
classified as oncofetal if: (a) it was undetected in ANL samples,
meaning it did not meet our predefined criteria in ANL (as detailed
in section 2.2), and (b) it was overexpressed in both tumor and fetal
lung samples compared to ANL (BH p < 0.05 and FC > 2).

2.4 Construction and validation of oncofetal
piRNA prognostic model

Survival analyses were conducted using R Studio (v. 4.3.1)
(RStudio Team, 2020) to investigate the association between
oncofetal piRNA expression and patient outcomes. All tumor
samples from TCGA-LUAD (n = 378) and TCGA-LUSC (n =
470) with available survival information were included in this
analysis. Small RNA-seq data were downloaded and processed as
described in Sections 2.1 and 2.2. Clinical and survival data for these
cohorts were retrieved from the University of California Santa Cruz
(UCSC) Xena Browser (Goldman et al., 2020). Survival analysis was
also performed on the BCCA-LUAD cohort (n = 58). To assess the
prognostic relevance of individual piRNAs, we conducted a
univariate Cox proportional hazards regression analysis using the
coxph () function from the survival package in R (v. 3.6-4)
(Therneau and Grambsch, 2000; Therneau, 2024). The dependent
variable was overall survival (OS), defined by survival status and
time, while the independent variable was the expression level of each
piRNA. The hazard ratio (HR) and p-values were extracted from the
Cox model summary, and piRNAs with p < 0.05 were considered
significantly associated with OS. Following the univariate analysis, a
multivariate Cox proportional hazards regression model was
constructed to evaluate the combined prognostic value of
significant piRNAs. The coxph () function was used,
incorporating significant piRNAs as covariates. This model
estimated the combined effect of all selected piRNAs on survival.

TABLE 1 Demographic and clinical characteristics of patients in TCGA LUSC, TCGA LUAD, and BCCA LUAD cohorts.

Characteristics TCGA-LUSC (n = 45 pairs) TCGA-LUAD (n = 46 pairs) BCCA-LUAD (n = 58)

Median Age (range) years 68 (45–85) 67 (47–85) 70 (45–86)

Sex

Male 32 (71.11%) 20 (43.48%) 12 (20.69%)

Female 13 (28.89%) 26 (56.52%) 36 (62.07%)

Stage

IA 5 (11.11%) 10 (21.74%) 18 (31.03%)

IB 16 (35.56%) 9 (19.57%) 18 (31.03%)

II 1 (2.22%) 0 0

IIA 7 (15.56%) 8 (17.39%) 2 (3.45%)

IIB 5 (11.11%) 3 (6.52%) 11 (18.97%)

IIIA 3 (6.67%) 3 (6.52%) 4 (6.90%)

IIIB 0 1 (2.17%) 1 (1.72%)

IV 1 (2.22%) 0 1 (1.72%)

N/A 7 (15.56%) 12 (26.09%) 3 (5.2%)

N/A, not available.

Frontiers in Genetics frontiersin.org03

Pewarchuk et al. 10.3389/fgene.2025.1611805

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1611805


A risk score was calculated for each patient based on the regression
coefficients of the multivariate Cox model and the expression levels
of the piRNAs. The formula for the risk score is the sum of the

product of each piRNA’s expression level and its corresponding
regression coefficient. These risk scores were used to stratify patients
into two groups (high and low risk) based on the median risk score.

FIGURE 1
(A). Pie chart depicting the total number of piRNAs identified in lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and fetal lung
samples. piRNAs were considered “expressed” if they were detected at ≥1 reads per million (RPM) in at least 10% of samples within each tissue type. (B)
Stacked bar graph showing the number of piRNAs expressed in LUAD and LUSC, highlighting those exclusive to tumor samples, those exclusive to ANL
samples, and those expressed in both tissues. (C)Heatmapswith hierarchical clustering showing the expression of piRNAs exclusive to tumor in each
tumor type (LUAD and LUSC). The color scale ranges from blue (low expression) to red (high expression) based on RPM values. (D) Venn diagrams
showing the piRNAs exclusive and shared for tumor, fetal, and ANL samples.
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The survival probability of the two groups (high vs. low risk) was
compared using Kaplan-Meier survival curves. The survfit ()
function from the survival package was used to fit the survival
curves, and the log-rank test was performed to assess the statistical
significance between groups.

2.5 Evaluation of prognostic performance

To evaluate the prognostic accuracy of the risk score, a receiver
operating characteristic (ROC) curve was generated using the
survivalROC package (v. 1.0.3.1) (Heagerty and Saha-Chaudhuri,
2022). The time-dependent ROC analysis was performed at the
median OS time. The area under the curve (AUC) was calculated to
assess the model’s discriminative ability, where AUC = 0.5 indicates
no predictive power and AUC = 1.0 indicates perfect discrimination.
The concordance index (C-index) was calculated using the
concordance. index () function from the survcomp package (v.
1.54.0) (Haibe-Kains et al., 2008; Schröder et al., 2011) to assess
the model’s ability to rank patients based on risk scores correctly.
The C-index ranges from 0.5 (random prediction) to 1.0 (perfect
prediction). To ensure the robustness and stability of the C-index,
bootstrap resampling (1,000 iterations) was performed (Efron,
1982). In each iteration, a new dataset was generated by
randomly sampling (with replacement) from the original cohort,
and the C-index was recalculated. The distribution of bootstrap-
derived C-index values was visualized using a density plot, providing
insight into variability and confidence in the model’s performance.

3 Results

3.1 Comprehensive piRNA expression
profiling of human fetal lung tissue, LUSC,
and LUAD

To investigate piRNAs potentially involved in both lung
development and tumorigenesis, we characterized piRNA
expression profiles across human fetal lung tissue, LUAD, LUSC,
andmatched ANL tissues. piRNAs were considered expressed if they
had ≥1 RPM in at least 10% of samples within each tissue type (fetal,
ANL, and tumor). A total of 437 piRNAs were expressed in fetal lung
tissue, 435 in LUAD, and 406 in LUSC (Figure 1A; Supplementary
Tables S1–S3). Among the piRNAs identified as expressed, 70
(16.1%) in LUAD and 71 (17.5%) in LUSC were exclusively
expressed in tumor samples. Conversely, 29 piRNAs (6.67%) in
LUAD and 9 piRNAs (2.22%) in LUSC were uniquely expressed in
ANL tissues (Figure 1B). Hierarchical clustering analysis revealed
distinct piRNA expression patterns that stratified samples into two
clusters corresponding to tumor and ANL types, as demonstrated in
the LUAD and LUSC heatmaps (Figure 1C). Further analysis of the
tumor-exclusive piRNAs revealed that 31 piRNAs were shared
between LUAD and LUSC, while 39 piRNAs were specific to
LUAD and 40 were unique to LUSC (Supplementary Table S4).
This suggests that some piRNAs may be involved in subtype-specific
aspects of cancer biology. In contrast, shared piRNAs between
LUAD and LUSC may play critical roles in maintaining essential
characteristics of lung cancer. For each subtype of lung cancer, we

identified specific piRNAs that were expressed in fetal lung tissue but
undetected in ANL tissue (indicating they did not meet our
expression criteria as defined in the methodology). We found
44 piRNAs in LUAD and 53 in LUSC expressed in both tumor
and fetal samples, but undetected in ANL. These piRNAs, exhibiting
expression patterns reminiscent of fetal lung, could serve as potential
candidates for oncofetal reactivation (Figure 1D). For more details,
consult Supplementary Tables S5, 6.

3.2 Oncofetal piRNAs are reactivated
in cancer

To identify oncofetal piRNAs, we compared the piRNA
expression profiles of human fetal lung samples with those of
LUAD, LUSC, and patient-matched non-malignant lung tissue
(ANL) (Supplementary Figure S1). We identified 43 piRNAs
overexpressed in fetal lung compared to ANL and 38 in tumor
compared to ANL (Supplementary Table S7). Of these, 37 were
overexpressed in both fetal and tumor samples and were classified as
oncofetal piRNAs (Supplementary Table S8). Validation in the
BCCA-LUAD cohort confirmed 14 of these 37 oncofetal piRNAs
(Supplementary Table S9). In the TCGA-LUSC cohort, 48 piRNAs
were overexpressed in fetal lung compared to ANL and 51 in tumor
compared to ANL (Supplementary Table S10), leading to the
identification of 46 oncofetal piRNAs (Supplementary Table S11).
Six oncofetal piRNAs were consistently identified across all three
datasets (LUAD, LUSC, and fetal lung), including piR-58186, piR-
50725, piR-50446, piR-35175, piR-35174, and piR-30926. Figure 2
provides a detailed methodological overview and summarizes our
findings across all datasets. In Supplementary Figure S2, we present
heatmaps to illustrate the distinct expression patterns of oncofetal
piRNAs across each cohort.

3.3 Oncofetal piRNA prognostic signature
predicts high-risk patients in lung
adenocarcinoma

Oncofetal piRNAs identified in TCGA-LUAD and TCGA-
LUSC were used to construct a prognostic model for each
histological subtype. For TCGA-LUAD, univariate Cox regression
analysis was performed using 37 oncofetal piRNAs, of which eight
showed prognostic significance (p < 0.05): piR-41794, piR-44716,
piR-44715, piR-33687, piR-34804, piR-33686, piR-33519, and piR-
61135 (Supplementary Table S12). Kaplan-Meier (KM) survival
analysis stratified patients into high- and low-expression groups
based on the median expression level of each oncofetal piRNA to
assess survival differences. Among the eight prognostic oncofetal
piRNAs, three (piR-33687, piR-33686, and piR-61135) were
significantly associated with OS when patients were categorized
by high and low expression (Supplementary Figure S3). This
discrepancy may arise because Cox regression considers
continuous expression values and accounts for time-to-event
data, increasing sensitivity to prognostic associations. In contrast,
KM analysis relies on dichotomized expression groups, which can
reduce statistical power. To evaluate the combined prognostic value
of these eight oncofetal piRNAs identified in the univariate analysis,
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a multivariate Cox regression analysis was conducted, and a risk
score was established as described in the methodology
(Supplementary Table S13). Patients were divided into high- and
low-risk groups based on median risk score. KM analysis of the
oncofetal-piRNA prognostic signature showed a significant
difference in OS between high- and low-risk groups (p < 0.0001)
(Figure 3A). The AUC of the ROC curve was 0.65, demonstrating
moderate predictive performance (Figure 3A). The prognostic
model was further evaluated using the concordance index
(C-index), which measures the agreement between actual OS and
model predictions (where a C-index of 0.5 indicates no prognostic
value and values closer to 1 indicate better predictive accuracy). The
C-index for TCGA-LUAD was 0.63, suggesting moderate predictive
accuracy (Supplementary Figure S4A). To validate the model, we
applied the oncofetal piRNA prognostic signature to the BCCA
cohort. The signature successfully stratified patients into high- and
low-risk groups (p < 0.05) (Figure 3B). In BCCA-LUAD, the AUC
for survival prediction was 0.72, indicating better predictive
performance compared to TCGA-LUAD (Figure 3B). The
C-index in the validation cohort was 0.65 (Supplementary Figure
S4B). When stratifying by tumour stage, the prognostic signature
performed significantly in both early and advanced stage tumors
with marked separation in early-stage cancers (Supplementary

Figure S5). Furthermore, the piRNA-based model performed
comparably to the Tumour, Node, Metastasis (TNM) system,
which is a gold standard clinical prognostic marker for NSCLC
(Supplementary Figure S6) (Zens et al., 2021).

For TCGA-LUSC, univariate Cox regression analysis identified
five prognostic oncofetal piRNAs (p < 0.05): piR-34789, piR-55152,
piR-55151, piR-34342, and piR-33404 (Supplementary Table S12).
KM survival analysis stratified patients into high- and low-
expression groups based on the median expression level of each
oncofetal piRNA, and found two of these piRNAs (piR-55151 and
piR-55152) were significantly associated with OS (p < 0.05)
(Supplementary Figure S7). However, when evaluating the
combined prognostic signature in LUSC, the model could not
stratify patients into high- and low-risk groups (p > 0.05),
indicating that the signature did not have prognostic value in
this cohort.

4 Discussion

Among sncRNAs, piRNAs have garnered interest due to their
abundance, evolutionary conservation, and known roles in gene
regulation and development (Mei et al., 2013). However, their

FIGURE 2
This figure summarizes the methodology and key findings in identifying oncofetal piRNAs. First, for each cohort, only piRNAs in ANL samples
(i.e., those that did notmeet our predefined expression criteria, as detailed in themethodology) were selected for differential expression analysis using the
Wilcoxon test. Next, we identified piRNAs overexpressed in both fetal lung and tumor samples within each cohort. Only piRNAs consistently
overexpressed in both groups were classified as oncofetal piRNAs. The Venn diagram on the left highlights the 14 oncofetal piRNAs validated in the
BCCA-LUAD cohort for lung adenocarcinoma, while the Venn diagram on the right displays the six oncofetal piRNAs shared across all three cohorts.
BCCA, British Columbia Cancer Agency; LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Cell Carcinoma; TCGA, The Cancer Genome Atlas.
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functional significance in cancer biology, particularly in lung cancer,
remains limited. There have been a handful of piRNAs studied for
their association with lung cancers. For example, piR-651, piR-
52200, and piR-34971 have been shown to be upregulated in
NSCLC, with piR-651 linked to cancer progression (Li et al.,
2016), potentially through regulation of cell cycle control proteins
such as cyclin D1 and CDK4 (Li et al., 2016). Other piRNAs,
including piR-55490, piR-46545, and piR-35127, have been
downregulated in lung cancer and demonstrated tumor growth
suppression by modulating the AKT/mTOR pathway (Peng et al.,
2016; Reeves et al., 2017). Alterations in PIWI proteins, which are
central to piRNA biogenesis through slicer activity, may contribute
to the deregulated expression of piRNAs in cancer. Changes in
expression, such as overexpression (e.g., PIWIL1) or downregulation
(e.g., PIWIL2), has been identified in several cancers and are
associated with poor prognosis (Navarro et al., 2015; Zhang
et al., 2023). Possible mechanisms include disruption of piRNA
amplification, aberrant transcriptional silencing of tumor
suppressor genes (Zhang et al., 2023), as well as piRNA-
independent oncogenic function (Shi et al., 2020; Zhang et al., 2023).

Although piRNAs are implicated in germline tissue
maintenance and somatic tissues within various cancers, our
knowledge on their presence in fetal tissues is limited and the
overlap between these two domains has not been previously

explored until this study. piRNAs are expressed in embryos and
fetal germline tissues (Roovers et al., 2015) and the placenta
(Martinez et al., 2021a; 2021b), yet their role in somatic fetal
tissues, particularly lung tissue, has been understudied. The
expression of PIWI pathway proteins, including VASA and
PIWIL2, is not prominent in first-trimester embryos but becomes
evident in second-trimester fetal ovaries (Roovers et al., 2015). This
observation aligns with our findings of a strong piRNA population
in second-trimester fetal lung tissue, supporting the relevance of
piRNAs in both developmental and cancer contexts.

In adult lung tissues, we identified 435 piRNAs in LUAD and
406 piRNAs in LUSC, with the piRNA populations in these tissues
showing distinct expression patterns. Previous studies have reported
piRNA populations in various cancers, including liver, colorectal,
glioblastoma, and gastric cancers (Bartos et al., 2021; Riquelme et al.,
2021). While several piRNAs were unique to each lung cancer
subtype, 31 piRNAs were shared between them. These shared
piRNAs may be involved in maintaining general characteristics
in lung cancer such as genomic instability, epigenetic alterations,
and immune evasion (Herbst et al., 2018; Hendriks et al., 2024).

A key finding of this study is the identification of 37 piRNAs in
LUAD and 46 piRNAs in LUSC that exhibit oncofetal expression
patterns. Oncofetal reprogramming can contribute to characteristics
shared between tumorigenesis and fetal development including

FIGURE 3
Kaplan–Meier survival analysis of the 8-oncofetal piRNA prognostic signature in (A) TCGA-LUAD and (B) BCCA-LUAD. The red vertical linemarks the
five-year survival threshold. AUC, Area Under the Curve; BCCA, British Columbia Cancer Agency; LUAD, Lung Adenocarcinoma; TCGA, The Cancer
Genome Atlas.
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rapid cell division, cellular invasion, migration, and angiogenesis
(Ma et al., 2010). Pathways necessary in development such as Wnt,
Notch, Hedgehog or TGF-β signaling, are commonly affected (Cao
et al., 2023). The targets of the oncofetal miRNAs we previously
discovered in the LUAD cohort were enriched for Wnt and
Hedgehog pathways (Cohn et al., 2021). Similarities in their
function to miRNAs and previous identification in regulation of
pathways such as Wnt/β-catenin may indicate the possibility that
piRNAs are linked to development-associated pathways (Deng et al.,
2024). Although we did not investigate target prediction due to lack
of software availability, we found several oncofetal piRNAs
correlated with OS, with a signature of eight piRNAs in the
TCGA-LUAD cohort showing prognostic value. These piRNAs
were used to generate a risk score that could stratify patients into
high- and low-risk groups, with worse OS observed in the high-risk
group. This signature was validated in the BCCA-LUAD cohort,
showing significant stratification of patients into high- and low-risk
groups. The validation results were statistically significant, despite
the smaller sample size in the BCCA cohort (n = 58 vs. n = 378 in
TCGA). The relative scarcity of deaths in the BCCA cohort, with
most samples coming from early-stage lung cancer, did not prevent
the signature from demonstrating prognostic potential. These
findings suggest that the piRNA signature is a promising
predictor of patient outcomes, and further validation in larger
cohorts is warranted. In contrast, the LUSC prognostic model
failed validation likely due to the cancer’s high molecular and
immune heterogeneity, distinct cell-of-origin, fewer well-defined
driver mutations than LUAD, and limited availability of robust
biomarkers. Together, these factors reduce model generalizability
and reproducibility (Lu et al., 2020; Shen et al., 2025).

It is worth noting that piRNA IDs that are consecutive appear to
be similar sequences. For example, piR-55152 (chr 8:56,073,866-
56,073,905) and piR-55151 (chr 8:56,073,867-56,073,905) which
were identified as significant in the TCGA LUSC univariate Cox
analysis, and were both associated with OS individually, map to the
same locations and have the same sequence other than piR-55152,
which is one nucleotide longer than piR-55151. In this study we left
them as separate IDs to match the deposition in the RNACentral
database. However, functional validation via methods such as qRT-
PCR, piRNA mimic or inhibitor studies, luciferase reporter assays,
and localization staining, may provide more clarity on whether they
are distinct entities or redundant naming. Such approaches offer
orthogonal evidence supporting their biological relevance beyond
potential technical or computational biases such as algorithmic
assumptions, batch effects, reference database constraints, and
alignment challenges (Fehlmann et al., 2021).

Although sparse in the literature, some oncofetal piRNAs we
identified have been deposited in piRBase, the largest piRNA
database, with evidence of their expression in lung cell lines such
as H522 cells (a LUAD cell line), and in human bronchial epithelial
(HBE) cells (Mei et al., 2015; Wang et al., 2022). Among the piRNAs
identified in the TCGA-LUAD cohort, piR-34804 (piR-hsa-26940)
and piR-61135 (piR-hsa-25313) were detected in the H522 cell line,
with piR-34804 meeting the author’s expression cut-off of 20 reads
or more. In the LUSC cohort, piR-33404 (piR-hsa-23555) and piR-
34342 (piR-hsa-26492) also met the expression cut-off defined by
the authors in H522 cells. piR-34342 exhibited particularly high read
counts in H522 cells (227 reads) and was expressed in several other

NSCLC and HBE cell lines. Although these piRNAs were not central
to the authors findings, evidence of their presence in cell lines
warrants further studies to determine their functional roles and
significance in lung biology.

5 Conclusion

Our study provides novel insights into the role of piRNAs in
lung cancer, particularly oncofetal piRNAs uniquely expressed in
tumor tissues and associated with patient survival. These findings
suggest that piRNAs may serve as potential biomarkers for lung
cancer prognosis, with the possibility of further elucidating their
functional roles in tumorigenesis. Given the similarities between
fetal development and cancer, further investigation into piRNA
biogenesis and their regulation in tumor tissues may uncover
valuable therapeutic targets for lung cancer.
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