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Introduction: Sweet sorghum is a C4 tropical grass species that has gained
importance quickly as a major bioenergy crop.

Methods: This genome-wide association study (GWAS) utilized a sweet sorghum
panel (SSP) of 183 diverse sweet sorghum accessions genotyped by 14,819 high-
quality single-nucleotide polymorphism (SNP) markers to identify novel genetic
loci that are associated with major agronomic traits and sugars (Brix units, %).

Results: Population stratification revealed a clear separation of the accessions
based on geographical origins. The initial 50% linkage disequilibrium (LD) decay
was approximately 5 kb, and the background level was approximately 80 kb,
similar to that of the previously reported sorghum association panel (SAP),
indicating the panel’s effectiveness and reliability for GWAS. This study
identified 21 significant quantitative trait nucleotides (QTNs) for the studied
traits using the three (compressed)-variance component multi-locus random-
SNP-effect mixed linear model (3VmrMLM), which were colocalized with
previously reported quantitative trait loci (QTLs). The phenotypic variance (R2)
explained by these QTNs ranged from 5.11% to 13.86%.

Discussion: Additionally, haplotype analysis revealed significant phenotypic
differences between haplotypes for four candidate genes, namely,
Sobic.006G128200 (a threonine-specific protein kinase gene) for days to
flowering, Sobic.001G387600 (an ethylene-insensitive gene) for Brix,
Sobic.003G069950 (a protein kinase domain gene), and Sobic.003G214400
(an amino acid transporter gene) for fresh biomass.
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1 Introduction

Sorghum [Sorghum bicolor (L.) Moench] is garnering substantial
interest globally due to its versatility in providing food, feed/forage,
and fuel, and it can primarily be grouped as grain, forage, and sweet
sorghum (Shukla et al., 2017). Sorghum is an energy-dense C4 grass
that is well-suited to the hot, semi-arid tropical environments and
typically thrives well inmoderately warm climates; thus, it is cultivated
in many countries, including regions in Asia, Africa, Oceania, and the
Americas. Grain sorghum serves as a staple food for people in the
semiarid tropical regions of Africa and Asia, but it is used as livestock
feed in the United States (Nasidi et al., 2019). Forage sorghum biomass
is primarily used as livestock feed. Sweet sorghum has high sugar
content in the stem (McCormick et al., 2018). The global production
of sorghumwas estimated to be 62 million metric tons (USDA, 2024).
Globally, maize or corn (Zea mays L.) and sugarcane (Saccharum
officinarum L.) are found to be major producers of bioethanol.
Historically, sweet sorghum has been used to produce small
quantities of syrup. In recent years, there has been increasing
interest in its potential as a biofuel and bioenergy crop
(Stamenkovic et al., 2020). In regions where sugarcane is widely
cultivated, integration and addition of sweet sorghum production
could potentially extend the sugar harvest period by 3–4 months
(Burks et al., 2013; Rao et al., 2009; Rao et al., 2013).

Sweet sorghum is recognized as one of the most efficient sources
of plant-based bioethanol produced from its sugary stalks. It is
considered a promising bioenergy crop suitable for cultivation in
both tropical and temperate zones and is a notable candidate for
biofuel production in the United States. Compared to other bioenergy
or sugar crops such as corn, sugarcane, and sugar beet (Beta vulgaris
L.), sweet sorghum requires less water (e.g., one-third of the water
needed for sugarcane and half of that for corn) and lower inputs for
crop management (Almodares and Hadi, 2009). Additionally, it is
relatively more tolerant to drought and salinity and produces lower
greenhouse gas emissions on a life-cycle basis (Mathur et al., 2017;
Kanbar et al., 2021). Its drought resilience, water-use efficiency, high
temperature tolerance, and low input demands enable its cultivation
on marginal annual cropland that is otherwise unsuitable for growing
other food crops (Anami et al., 2015; Ramalingam et al., 2021). The
juice extracted from sweet sorghum stalks can be fermented and
distilled to produce bioethanol, a fuel with clean-burning properties
and a high-octane rating.

Several attempts have been made to extensively market sweet
sorghumglobally. Sweetfuel is a consortium comprising partners from
academia and industry across Europe, Brazil, India, Mexico, and
South Africa with the goal to enhance yields in temperate, semi-arid,
and subtropical regions through genetic improvements and better
agricultural practices (Janssen et al., 2010). The potential for the swift
genetic improvement in sugar yield in sweet sorghum is contingent
upon a better understanding of the genetic structure of its constituent
traits, Brix value (concentration of sugars), and juice volume. Bi-
parental mapping populations have traditionally been employed to
identify genomic regions associated with important traits in major
crops (Pascual et al., 2016; Karnatam et al., 2023a). Quantitative trait
loci (QTLs) influencing Brix have been identified on chromosomes 1,
2, 3, 4, 5, and 7 in various sorghum lines by linkage mapping using bi-
parental populations (Lekgari, 2010; Shiringani et al., 2010; Guan
et al., 2011; Felderhoff et al., 2012). However, success in bi-parental

linkage mapping is often constrained by limited allelic diversity and
low genomic resolution, which hampers the identification of
candidate genes responsible for multiple traits (Boyles et al., 2016;
Karnatam et al., 2023b). Genome-wide association studies (GWAS)
can overcome those weaknesses (Sharma et al., 2023). Using GWAS,
Luo et al. (2020) identified three candidate genes associated with Brix;
and Burks et al. (2013) mapped QTL for sugar yield and juice volume
on chromosome 6, where the Dry midrib (D) locus, a good predictor
of sugar yield, was located.

The advent of high-throughput genotyping through next-
generation sequencing (NGS) has led to the increased use of
diverse association mapping panels for gene discovery. These
panels are favored because they can address the significant
limitations inherent in bi-parental populations. Moreover, the
majority of the GWAS panels have relied heavily on germplasm
derived from the sorghum conversion program, which may limit their
relevance for breeding programs targeting bioenergy traits (Cuevas
et al., 2017). A comprehensive understanding of allelic variation and
its phenotypic effects is essential for developing superior cultivars with
enhanced Brix and biomass yield. Additionally, the integration of
haplotype analysis with GWAS can offer insights into the functional
relevance of allelic combinations at key loci, thus further informing
breeding strategies. This study addresses these gaps by assembling a
diverse sweet sorghum panel having broad genetic and phenotypic
variation. We employed a three (compressed) variance component
multi-locus random-SNP-effect mixed-linear model (3VmrMLM),
which has demonstrated superior power and accuracy in detecting
quantitative trait nucleotides (QTNs), QTN-by-environment
interactions (QEIs), and QTN-by-QTN interactions (QQIs) than
other models (Li et al., 2022). Our hypothesis was that this diverse
panel would enable the identification of novel QTNs and candidate
genes associated with Brix and other agronomic traits, along with
superior haplotypes through integrated haplo-pheno analysis. The
specific objectives were as follows: (1) analyze allelic diversity and
population structure; (2) perform GWAS for agronomic traits and
Brix using 3VmrMLM; and (3) identify elite haplotypes through
haplotype analysis of candidate genes.

2 Materials and methods

2.1 Materials

Diverse germplasms of 183 sweet sorghum accessions
(Supplementary Table S1) collected from approximately
35 countries were acquired from the United States Department of
Agriculture (USDA)—Germplasm Resource Information Network
(GRIN). The study materials are hereinafter referred to as the sweet
sorghum panel (SSP). All the accessions were grown in the field in the
summer of 2019 and 2021 at the Directorate of Farms, University of
Agriculture, Faisalabad, Pakistan (latitude 31.44′N, longitude 73.07′ E).

2.2 Phenotyping for agronomic and sugar-
related traits

Field morphological characterization of the SSP was carried out
in two row plots for 2 years (2019 and 2021) using a randomized
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complete block design (RCBD) with three replications. Three
uniform plants in each replication were tagged for the traits’
measurements. Agronomic traits such as days to 50% flowering
(DF) were measured when 50% of the plants in each plot bloomed,
days to maturity (DM) were recorded at physiological maturity
before harvesting, and plant height (PH) (cm) was measured from
the base of the plant to the panicle tip. Stem thickness (ST) (mm)
was measured at the third internode, and the number of leaves/plant
(NL) was counted at the peak vegetative stage. Fresh biomass (FB)
(g) was recorded as above-ground weight per plant at harvest. Dry
biomass (DB) (g) was measured after air-drying for 2 weeks after
harvesting. Brix (Bx) (%) was measured after extracting juice from
the stem at 75 days after planting using a handheld refractometer.
Standard agronomic practices were followed throughout the
cropping period. Descriptive statistics (mean, standard deviation,
and coefficient of variation) and frequency distribution were
performed using Minitab 21 to understand the phenotypic
variability of the germplasm collection for the traits evaluated
(Allen, 2019). The heritability was estimated using the metan
package in R, where a mixed-linear model was fitted using
the gamem() function, with genotypes as the fixed effect and
replication and year as the random effects (Olivoto and Lúcio,
2020). Analysis of variance was performed using the general
linear model module in R, considering variations in genotypes,
year, and replication (de Mendiburu and de Mendiburu,
2017). The mean value for the traits was calculated considering
both the years evaluated and was used for performing GWAS in
further analysis.

2.3 Genotyping-by-sequencing (GBS) library
preparation and sequencing

SSP was grown in controlled environmental conditions in the
Department of Agronomy at Kansas State University, Manhattan,
Kansas. Leaf tissues (2 cm) were collected in 96-deep-well plates at
22 days after planting, freeze-dried immediately, and ground into a
fine powder for DNA isolation. Genomic DNA was isolated using
the modified CTAB method (Hussain et al., 2022). DNA was
quantified in a FLUOstar Omega microplate reader (BMG
Labtech, Germany) using a Quant-iT™ PicoGreen dsDNA assay
kit (Thermo Fisher Scientific, Waltham, MA, United States). The
genomic DNA of the sorghum samples was normalized, and 200 ng
per sample was used for genotyping-by-sequencing (GBS) library
construction. The GBS libraries of 183 samples from the SSP were
prepared using the standard protocol (Poland et al., 2012). In brief,
normalized DNA was fragmented using PstI and MspI restriction
enzymes (New England BioLabs, Ipswich, MA, United States) and
ligated with barcoded adapters using a T4 DNA ligase (New England
BioLabs, Ipswich, MA, United States). The barcoded DNA
fragments were pooled, purified using a GenCatch PCR
extraction kit (Epoch Life Science, Sugarland, TX, United States),
and amplified. The PCR products were purified, and 200–300-bp
amplicons were size-selected in a 2% E-gel SizeSelect II agarose gel
(Thermo Fisher Scientific). The size-selected fragments were
quantified in a Bio-Rad Cfx384 real-time PCR machine (Bio-Rad
Laboratories, Hercules, CA, United States) using a KAPA library
quantification kit (Roche Diagnostics, Indianapolis, IN,

United States). Equimolar pools of the libraries were sequenced
in a NextSeq 2000 sequencer using a P2 100 cycle kit (Illumina, San
Diego, CA, United States) in the USDA Central Small Grain
Genotyping Laboratory, Kansas State University, Manhattan,
Kansas, United States.

2.4 SNP calling and data imputation

SNPs were called using the GBS discovery pipeline v2.0 in Trait
Analysis by Association, Evolution, and Linkage (TASSEL) v5
(Bradbury et al., 2007) by aligning the sequence reads with the
sorghum reference genome BTx623 (McCormick et al., 2018).
Filtering using TASSEL v5 retained SNPs with ≤20% missing
data, ≥0.05 minor allele frequency (MAF), and ≤0.05 maximum
heterozygous proportions. Furthermore, the filtered SNPs were
imputed for missing data using BEAGLE v5.0 (Browning et al.,
2018). The density of the filtered SNPs in the sorghum genome was
visualized using a CM plot using the R package (Yin et al., 2021).

2.5 Genetic structure and linkage
disequilibrium measurement

By using 14,819 robust SNPs and principal component analysis
(PCA), the population structure of the SSP was inferred. PCA for the
SSP was aligned with the sorghum association panel (SAP) (Hu
et al., 2019). A model-based maximum likelihood approach
implemented by ADMIXTURE v1.23 was performed for inferring
the population structure of the SSP (Alexander et al., 2009). Linkage
disequilibrium (LD) decay was calculated and plotted usingMaxDist
500 kb and 0.05 MAF (Zhang et al., 2019). PCA and LD decay
analyses were described in detail in Ramalingam et al. (2023).

2.6 Genome-wide association study

Phenotypic data were integrated against the genotypic data of
14,819 SNPs to perform GWAS for identifying QTNs linked with all
the traits evaluated. The 3VmrMLM model was used to perform
GWAS on all nine traits using an R package (Li et al., 2022). This
GWAS model simultaneously accounts for marker effects,
population structure, and kinship, thereby improving the
detection power and reducing false positives (Li et al., 2022).
3VmrMLM outputs results as the logarithm of the odds (LODs),
which are derived based on the likelihood ratio test (LRT). Unlike
traditional –log(p), which represents the p-value from standard
hypothesis testing, LOD scores reflect the strength of evidence
for marker trait association directly, thus providing accurate
association strength within the mixed-linear model structure. In
this study, QTNs with LOD ≥3 were declared significant. Significant
QTNs from all traits were compared against known QTL for the
related traits, and candidate genes within/closer to significant SNPs
(~50 kb) were searched using the Sorghum QTL Atlas (Mace et al.,
2019) and Phytozome v13 (Goodstein et al., 2012). Haplotype
analysis was performed for all the identified candidate genes,
considering the SNPs retained (≥0.05 MAF and ≤0.05 maximum
heterozygous proportions) in this study. All synonymous and non-
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synonymous SNPs were considered for haplotype analysis.
Haplotypes were constructed using Haploview 4.2 (Barrett et al.,
2005), employing the default block definition parameters with an LD
threshold of r2. Haplotype frequencies were calculated and visualized
in Haploview. The number of SNPs within the candidate genes
ranged from two to seven. Differences in phenotypic performance
across haplotypes for the candidate genes were tested using
ANOVA, followed by Duncan analysis performed using Minitab
(Allen, 2019). Functional annotation and pathway enrichment
analysis of the candidate genes identified from GWAS were
performed using ShinyGO v0.82 (http://bioinformatics.sdstate.
edu/go/). The Sorghum bicolor genome was used as the reference,
and pathway enrichment was conducted based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) databases. Enrichment analysis was used to
identify key biological pathways and processes that are
overrepresented among the candidate genes, with statistical
significance evaluated by false discovery rate (FDR)-adjusted
p-values. Furthermore, candidate genes involved in significant
KEGG pathways were indicated.

3 Results

3.1 Population structure and linkage
disequilibrium

A total of 14,819 high-quality SNPs exhibited wide regional
diversity and were distributed in all ten chromosomes of the
sorghum genome (Supplementary Figure S1). PCA of the SSP
with SAP showed a cumulative variance of 39.1% using the first
two PCs (21.1% and 18%), indicating a wide genetic diversity of the
panel (Figure 1A). LD among the filtered SNPs (r2) used in the panel
rapidly declined with increasing physical distance on the genome,
with the initial 50% decay declining by ~ 5 Kb and decay to the
background level (r2 < 0.1) within ~ 80 Kb (Figure 1B).
ADMIXTURE analysis using K from 2 to 10 with tenfold cross-
validation (CV) showed the minimum CV error at K = 8 (Figures
1C, D); therefore, the panel has eight subpopulation groups in this
study. Distinct separation was observed among 183 accessions, with
geographical origins having ancestry proportion≥0.8 assigned to
each subpopulation.

FIGURE 1
Principal component analysis (PCA), population stratification, and LD decay of the SSP (n = 183). (a) Principal component analysis of the SSP (n = 183)
plotted on the PCA axis individually and PCA axes built with SAP (n = 401) showing wide diversity and distinct grouping based on the geographical origins.
(b) LD decay of the SSP and SAP, indicating decay to the background level (r2 < 0.1) within ~ 80 kb. (c) Population stratification using the model-based
maximum likelihood approach at K = 8 showed a distinct separation between geographical origins. Green (K1), Europe; orange (K2), Middle East;
blue (K3), North Africa; pink (K4), South Africa; light green (K5), South Asia; yellow (K6), United States; brown (K7), East and North Africa; gray (K8), East and
South Africa. (d) Cross-validation (CV) error for population stratification indicated that the optimal number of subpopulations (K) for grouping the
183 sweet sorghum panel was K = 8.
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3.2 Phenotypic diversity

The SSP exhibited normal frequency distribution and wide
phenotypic variation for the studied traits (Supplementary Figure
S2). Analysis of variance was performed to assess the significance of
genotype, year, replication, and genotype and environment
interaction effects for all the evaluated traits (Table 1). Significant
genotypic effects indicated in ANOVA support the presence of genetic
variability in the germplasm, justifying the use of these evaluated traits
for GWAS. Descriptive statistics revealed considerable phenotypic
variation across the SSP (Supplementary Table S2). All the traits
showed moderate-to-high broad-sense heritability (0.45–0.94), with
the lowest for PH and the highest for DF (Supplementary Table S2).
The moderate-to-high heritability facilitated the identification of
potential QTNs for these traits through GWAS.

3.3 Genome-wide association study

The 3VmrMLM model detected 21 QTNs associated with
different traits that we evaluated, and they were localized within,
or in proximity to, one of the 19 candidate genes (Tables 2, 3;
Supplementary Table S3; Supplementary Figure S3). The number of
QTNs detected for each trait ranged from two to five, with
phenotypic variance (R2—R-squared) ranging from 5.11 to 13.86.
For four significant QTNs detected for DF, S06_49330184 was in a
putative candidate gene; Sobic.006G128200 had R2 = 6.45 (Figure 2);
whereas a candidate gene for DF was not found in proximity to S10_
47190193. Among the five significant stem thickness-related QTNs,
S10_53386896 was within Sobic.010G192200 with R2 = 6.16. Two of
three significant Bx QTNs were localized within candidate genes
Sobic.001G387600 and Sobic.002G295800.

Between two significant QTNs for NL, S04_56429277 was in
proximity to Sobic.004G214500, a candidate gene related to leaf
number. Among five significant FB QTNs, three were colocalized
with the putative genes related to biomass, and S03_54843288, with
the highest R2, was localized within the gene Sobic.003G214400. For
DB, two significant QTNs were located in proximity to candidate
genes related to biomass, and one of them, S09_1695932, with a
higher R2 value (13.86), was in close proximity to Sobic.009G018450.

3.4 Candidate gene haplotype analysis

Haplotype analysis performed on 19 candidate genes with their
associated SNPs found that four candidate genes showed significant
phenotypic differences (p < 0.05) between the haplotypes (Figure 3).
Sobic.006G128200 had two SNPs that formed three haplotypes,
which showed clear differences in flowering time.
Sobic.001G387600 had seven SNPs forming four haplotypes
linked to differences in Brix. For FB, Sobic.003G069950 had four
SNPs making three haplotypes, and Sobic.003G214400 had three
SNPs forming four haplotypes, all showing differences in trait values
(Supplementary Tables S4, 5).

3.5 Gene enrichment and pathway analysis
of candidate genes

Functional enrichment analysis of the candidate genes identified
from GWAS revealed six significantly enriched pathways (Table 4).
Enriched pathways included zeatin biosynthesis (FDR = 1.2E-04),
MAPK signaling pathway-plant (FDR = 7.5E-10), and
plant–pathogen interaction (FDR = 8.2E-09). Additionally,
pathways involved in amino sugar and nucleotide sugar
metabolism, plant hormone signal transduction, and biosynthesis
of nucleotide sugars were significantly overrepresented. These
pathways were characterized by high fold enrichment values
ranging from 2.5 to 5.4, indicating a strong association of the
candidate genes with metabolic and signaling processes,
potentially influencing agronomic traits and Brix content.

4 Discussion

Compared to other grasses, sorghum is notable for its
adaptability, versatility, superior water-use efficiency (Prasad

TABLE 1 Analysis of variance indicating significant genetic variability in the germplasms for the traits evaluated.

Source PH NL DF DM FB DB BX ST

Genotypes 6,323* 14.93* 1,430.8* 323* 40,289* 2,878* 39.3* 83.62*

Environment 273 2.55 421.1* 5,430* 178,404 19,096 321.3 141.38

Replication 37 1.67 2.1 2.5 42,473 29,305 18.5 0.63

G X E 222 7.39 18.2* 20* 11,092 3,966 4.2 2.09

Error 35 1.33 0.3 0.1 11,953 3,978 0.6 0.72

*indicate significance at p ≤ 0.01.

PH, plant height; NL, number of leaves/plant; DF, days to flowering; FB, fresh biomass; DB, dry biomass; Bx, Brix content; ST, stem thickness.

TABLE 2 Number of QTNs detected in the traits evaluated in this study.

Trait Number of QTNs

Days to flowering 4

Stem thickness 5

Brix content 3

Number of leaves/plant 2

Fresh biomass 5

Dry biomass 2
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et al., 2007; Prasad et al., 2021), and temperature tolerance (Prasad
et al., 2017). The crop is grown annually, exhibiting rapid growth
and excellent climate adaptability (Reddy et al., 2007). It has
potential for use in biofuel production due to its high content of
fermentable sugars and biomass (Stamenkovic et al., 2020). Brix
value, which measures the sugar concentration (%) in the plant’s
juice, is a critical trait for sweet sorghum, particularly for bioethanol
production. High Brix values indicate a higher concentration of
fermentable sugars and higher ethanol yields (Wu et al., 2010). Plant
height, directly related to biomass yield, is another critical trait in
sweet sorghum (Prasanth et al., 2021). The selection of
superior sweet sorghum accessions based on key traits such as
Brix value and plant height is crucial for improving biofuel
yield and overall crop performance (Mathur et al., 2017). We
found a significant positive correlation between plant height and
FB (data not presented), which is in agreement with the findings by

Yamazaki et al. (2020). For example, five potential accessions,
namely, PI 152630, PI 167352, PI 152880, PI 157033, and PI
170802, showed the highest Brix (13%–16%) with the average
plant height of 266 cm (medium tall), and the other five
accessions (PI 641807, PI 152683, PI 566819, PI 152961, and PI
180348) with the low Brix (5%–8%) only had the average plant
height of 181 cm (medium) (Supplementary Table S1). Accessions
from these two groups of extreme genotypes can be used to develop
bi-parental mapping populations by crossing accessions between the
groups to validate the GWAS-based candidate genes identified in
this study.

The high level of genomic similarity between sweet and grain
sorghum has been shown in previous studies. Cooper et al. (2019)
identified this genomic similarity using the reference genome
BTx623, an early-maturing and short-grain sorghum line, against
“Rio,” a sweet sorghum line. Rio is genotypically more similar to

TABLE 3 Key candidate genes identified in proximity to the significant quantitative trait nucleotides (QTNs).

Trait QTN Chromosome Position P-value R2 Candidate
gene

Annotation Base
pairs
away

Days to
flowering

S04_9611322 4 9611322 4.61E-06 9.33 Sobic.004G102700 BES1/BZR1 homolog protein, putative,
expressed

20,873

S06_49330184 6 49330184 0.000314 6.45 Sobic.006G128200 Threonine-specific protein kinase 0

S09_10767169 9 10767169 4.79E-05 7.50 Sobic.009G080000 SQUAMOSA PROMOTER-BINDING-
LIKE PROTEIN 14-RELATED

23,015

S10_47190193 10 47190193 1.54E-05 6.10 NA NA NA

Stem
thickness

S03_14723140 3 14723140 2.88E-10 5.11 Sobic.003G144400 Homeodomain-like 21,212

S03_23932008 3 23932008 2.25E-11 8.75 Sobic.003G165800 UDP-N-acetylglucosamine--N-
acetylmuramyl-pyrophosphoryl-
undecaprenol N-acetylglucosamine
transferase, putative, expressed

261,094

S04_62493744 4 62493744 1.72E-06 5.48 Sobic.004G283201 AP2 domain 5,707

S06_52891675 6 52891675 4.21E-05 6.34 Sobic.006G173000 Transporter, major facilitator family 3,203

S10_53386896 10 53386896 0.000131 6.16 Sobic.010G192200 Two-component response regulator
ARR-B family

0

Brix
content

S01_67476108 1 67476108 2.49E-05 8.92 Sobic.001G387600 Ethylene-insensitive 3 0

S02_67296984 2 67296984 5.35E-13 7.97 Sobic.002G295800 Protein kinase domain 0

S07_5383507 7 5383507 0.000409 6.72 Sobic.007G053100 Amino acid permease family protein 9,810

Number of
leaves/plant

S04_56429277 4 56429277 4.85E-06 8.06 Sobic.004G214500 DNA repair protein RAD18 1,036

S08_53828669 8 53828669 1.71E-06 6.03 NA NA NA

Fresh
biomass

S02_58995294 2 58995294 1.14E-05 5.53 Sobic.002G200100 Zinc finger, C2HC5-type 0

S03_5989832 3 5989832 5.99E-10 7.05 Sobic.003G069950 Protein kinase domain 0

S03_54843288 3 54843288 2.09E-07 10.19 Sobic.003G214400 Amino acid transporter 0

S07_53586588 7 53586588 1.32E-05 7.04 Sobic.007G125400 Chitinase 51,877

S09_11063229 9 11063229 3.59E-13 8.97 Sobic.009G080400 GLUCOSYL/GLUCURONOSYL
TRANSFERASES

2,162

Dry
biomass

S02_61546596 2 61546596 2.57E-17 7.91 Sobic.002G224100 Phosphate carrier protein, mitochondrial
precursor

6,023

S09_1695932 9 1695932 6.27E-08 13.86 Sobic.009G018450 Threonine-specific protein kinase 246
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FIGURE 2
Significant quantitative trait nucleotides (QTNs) mapped by genome-wide association studies (GWAS) for all the traits evaluated on the sweet
sorghumpanel (SSP) using the 3VmrMLMmodel. Yellow bars areQTN positions in the chromosomes (1–10). The putative candidate genes are listed at the
top, and the dashed lines show the relative positions of QTNs with the candidate genes.

FIGURE 3
Haplotype analysis revealed four candidate genes with significant phenotypic differences among their respective haplotypes.
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BTx623 than to some other sweet sorghum accessions, but they
show significant phenotypic differences. In this study, a total of
14,819 filtered high-quality SNPs were used for PCA, and the results
indicated a well-scattered distribution of the sweet sorghum
accessions along with the SAP (Figure 1A). It clearly indicated
that the selected 183 sweet sorghum accessions used in this study
covered a greater genetic diversity and, hence, can be used as the SSP
for future genomic studies.

Sorghum has been categorized into five major races: bicolor,
caudatum, durra, guinea, and kafir, and the categories are primarily
based on panicle and grain characteristics and their regions of origin
in Africa and India (Harlan and deWet, 1972). Since sweet sorghum
has not been selected for panicle or grain traits, and its origins
provide limited insights, its relationship to the major sorghum races
defined based on the traditional classification remains inconsistent.
This study utilized a sweet sorghum collection of diverse origins
(race details unknown) and revealed population stratification into
eight distinct groups using a model-based maximum likelihood
approach (Figure 1C). These groups corresponded closely to
geographical origins, reflecting the natural genetic structure of
the germplasm. For example, K1 (green) predominantly included
accessions from Europe, K2 (orange) from the Middle East,
K3 mainly from North Africa, K4 primarily from South Africa,
K5 largely from South Asia, K6 from the USA and Middle East,
K7 from North and East Africa, and K8 mainly from South and East
Africa. Furthermore, the LD decay pattern in our study population
resembled that of the SAP, suggesting comparable genome-wide
linkage patterns. While the 14,819 filtered SNPs do not directly
confirm complete genomic coverage (Supplementary Figure S1), our
study supports the notion that the filtered SNPs are robust and
appropriate for GWAS analysis. Collectively, these observations
support the reliability of the SNP dataset and the potential utility
for sweet sorghum breeding and genomic applications.

The GWAS captures the additive genetic variance, thereby
elucidating the genetic basis of complex traits (Caballero et al.,
2015). Consequently, heritability serves as a crucial parameter in
predicting the power of gene mapping in GWAS to some extent.
Heritability (H2) reflects the proportion of phenotypic variation due
to genetic factors and not just the total variation observed. While
plant height and number of leaves show high phenotypic variability,
much of this variation is likely due to environmental effects, leading

to lower H2. In contrast, biomass traits have lower total variability
but a higher proportion of genetic variance, resulting in higher
heritability in this study. The GWAS on 183 sweet sorghum
accessions was performed to identify the genetic loci controlling
Brix and other agronomic traits. Several statistical models can be
used for GWAS, but only a few have been demonstrated to have high
accuracy and power in mapping loci (Wang and Zhang, 2021). The
traits such as plant height and days to maturity showed bimodal
distributions, and significant QTNs were not detected for these
traits, which may be due to limited genetic background effects (Han
et al., 2021) (Supplementary Table S3; Figure 2). 3VmrMLM
provides a multilocus framework that improves detection power
while reducing false positives, making it more suitable for dissecting
complex traits in our SSP. The 3VmrMLM model has proven to be
effective in detecting all types of loci by encompassing QEIs and
QQIs (Li et al., 2022; Ramalingam et al., 2023; Mohanavel et al.,
2025). This model can estimate their effects almost without bias,
maintaining high accuracy and power with a low false-positive rate.
In this model, QTNs were represented by pink dots (Supplementary
Figure S3), and they have strong and independent effects on the
traits studied. While some SNPs may appear statistically significant
on their own, they are not retained as significant QTNs in
3VmrMLM as they did not provide additional explanatory power
when considered alongside QTNs. This multi-locus approach
ensured that only the most robust associations were selected in
this study. In this investigation, the majority of the QTNs were
found to co-localize with previously reported QTLs, thereby
validating some of these loci and candidate genes using a diverse
sweet sorghum germplasm collection and advanced GWAS models,
including 3VmrMLM. Additionally, the integration of haplotype
analysis provided further insights into allelic variation at key
candidate genes and its impact on agronomic traits, such as
biomass and Brix. This approach enhances our understanding of
the genetic architecture underlying these traits and offers valuable
information for sorghum breeding programs aimed at improving
the yield and sugar content.

The flanking sequences of the identified QTNs were searched
against the sorghum QTL atlas database, which identified
19 candidate genes associated with the different traits evaluated.
The functional relevance of these candidate genes was further
explored through haplotype analysis. Days to flowering was

TABLE 4 KEGG pathways associated with the candidate genes identified for agronomic traits and Brix content.

Enrichment FDR Fold enrichment Pathway Candidate genes involved in the
pathway

0.000122135 5.388943489 Path:sbi00908, zeatin biosynthesis Sobic.002G200100, Sobic.002G224100, and
Sobic.009G018450

7.5012E-10 4.704633205 Path:sbi04016, MAPK signaling pathway-plant Sobic.007G125400 and Sobic.002G224100

8.22332E-09 3.42711492 Path:sbi04626, plant–pathogen interaction Sobic.004G102700, Sobic.009G080000,
Sobic.006G128200, and Sobic.004G214500

1.06618E-05 3.010965251 Path:sbi00520, amino sugar and nucleotide sugar
metabolism

Sobic.009G080400, Sobic.002G295800, and
Sobic.007G053100

1.06618E-05 2.599928876 Path:sbi04075, plant hormone signal transduction Sobic.009G018450, Sobic.004G214500,
Sobic.006G128200, and Sobic.002G295800

0.023790134 2.49832246 Path:sbi01250, biosynthesis of nucleotide sugars Sobic.001G387600, Sobic.002G295800, and
Sobic.007G053100
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associated with S06_49330184. S06_49330184 is a significant QTN
within Sobic.006G128200, which is a threonine-specific protein
kinase. This putative candidate gene showed phenotypic
difference in flowering between different haplotypes formed.
Similarly, the significant QTN S10_53386896, which is associated
with stem thickness, was localized within Sobic.010G192200,
encoding a two-component response regulator of the ARR-B
family. These regulators are key components of cytokinin
signaling, which influences shoot development and vascular
differentiation in plants (Xie et al., 2018). The proximity of this
gene to the QTN, along with its functional annotation, highlights its
potential role in modulating stem thickness, which is a critical trait
for biomass and structural integrity.

Sugar yield-related traits, such as juice volume and Brix, are
affected by genotypic, environmental, and genotype-by-
environment effects and are quantitatively inherited (Shiringani
et al., 2010). GWAS for Brix identified three candidate genes,
including S01_67476108, located approximately 1.2 Mb from
SbSUT1, a well-characterized sugar transporter in sorghum
(Milne et al., 2017). In addition to the proximity of the gene
with a known function, this QTN is localized within
Sobic.001G387600 encoding ethylene-insensitive 3. Different
haplotypes of this gene showed significant differences in Brix,
with Hap1 (AGGATAA) identified as the superior haplotype
associated with a higher mean for Brix (Supplementary Tables
S4, 5). Other candidate genes detected for Brix include
Sobic.002G295800 and Sobic.007G053100, and they are localized
within the reported QTLs, QSUGY2.2 and QBRIX7.1, respectively
(Shiringani et al., 2010).

QTNs were detected for the number of leaves/plants, FB,
and DB, among which S03_5989832 and S03_54843288 were
localized within the candidate genes Sobic.003G069950
and Sobic.003G214400, respectively. Sobic.003G069950 encodes
a protein kinase domain-containing protein, which is
homologous to kinases in rice known to regulate biomass
accumulation (Liu et al., 2015). Sobic.003G214400 encodes an
amino acid transporter implicated in plant growth regulation in
rice (Ji et al., 2020) and colocalizes with QFBMS3.4, a previously
reported QTL for biomass in sorghum (Shiringani and Friedt,
2011). Furthermore, haplotype analysis of these genes indicated
significant phenotypic differences in FB. Sobic.003G069950
exhibited three haplotypes with significant differences in FB,
among which Hap2 (AATT) was identified as the superior
haplotype, showing the highest mean biomass of 929.5 g.
Similarly, in Sobic.003G214400, Hap2 with the AAG allelic
combination showed greater mean biomass, indicating its
superiority (Supplementary Tables S4, 5). These identified
superior haplotypes hold potential for use in sorghum
breeding programs upon further validation.

Pathway enrichment analysis revealed that amino sugar and
nucleotide sugar metabolism were significantly enriched among
the candidate genes identified from GWAS (Supplementary Figure
S4). This pathway plays a crucial role in the biosynthesis and
interconversion of nucleotide sugars, which are essential
precursors for polysaccharides and glycoproteins (Ginsburg,
2009). Specifically, genes involved in the conversion of glucose-
6-phosphate and fructose-6-phosphate into UDP-glucose and
UDP-galactose may influence the accumulation of soluble

sugars within the stem, which is reflected in Brix
measurements. Enriched pathways such as amino sugar and
nucleotide sugar metabolism not only indicate a direct
biochemical link to the Brix content but also suggest a potential
regulatory role in sugar partitioning and accumulation
(Ginsburg, 2009).

Although the candidate genes showed phenotypic differences
between the haplotypes via haplotype analysis, their importance
and value need to be confirmed through linkage mapping and
differential gene expression. In this study, other important sugar-
related traits, including juice, sugar, and ethanol yield;
concentrations of sucrose, glucose, and fructose; and the total
soluble sugar content suggested by Ekefre et al. (2017) were not
included, as phenotyping of these traits with a large number of
germplasms is cumbersome and challenging. These kinds of
limitations can be overcome by a follow-up detailed evaluation
in future studies of these traits by using a narrow set of selected SSP
germplasms. In summary, this study provides an SSP for mapping
the complex agronomic traits of economic importance, which are
under polygenic inheritance. Furthermore, the significant QTNs
and candidate genes identified in this study can be utilized for trait
introgression or stacking through marker-assisted backcrossing
into elite sorghum parental lines after validation. Creating bi-
parental mapping populations by crossing elite sorghum lines with
accessions of extreme performance from the panel possessing
agronomic and Brix alleles will facilitate the mapping of
genomic regions for validation in future studies. Other
validation studies to consider in future studies include RNA
sequencing, qRT-PCR validation, and Kompetitive Allele-
Specific PCR (KASP) marker development.
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