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Schizophrenia is a complex neuropsychiatric disorder closely associated with
genetic factors. Copy number variations (CNVs) play a key role in the genetic
etiology of schizophrenia, with the distal 1q21.1 microdeletion identified as a rare
CNV that serves as a significant genetic risk factor for the disorder. This
microdeletion is found in 0.2%–0.6% of individuals with schizophrenia and is
associated with an eightfold increased risk of developing the condition. The distal
1q21.1 region contains several schizophrenia risk genes, including PRKAB2, BCL9,
CHD1L, GJA5, and GJA8. This review focuses on the roles of these five genes in
brain function and explores their potential pathophysiological mechanisms in
schizophrenia. By synthesizing current evidence, this review aims to deepen the
understanding of schizophrenia by outlining its genetic architecture and
molecular mechanisms, thereby providing a comprehensive framework for
exploring disease pathogenesis.
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1 Introduction

Schizophrenia is a severe mental disorder characterized primarily by hallucinations,
delusions, cognitive impairments, and disorganized speech and behavior (Birnbaum and
Weinberger, 2017). It is a multifactorial disease with a high hereditary component, with an
estimated heritability of approximately 80% (Legge et al., 2021). Schizophrenia not only
affects the diagnosed individual but also presents significant challenges to families and
society, affecting about 1% of the global population (Birnbaum and Weinberger, 2017;
Smeland and Andreassen, 2022). Despite extensive studies, its pathogenesis remains
unclear. However, recent advances in genetic research have highlighted the crucial role
of genetic factors in the risk of schizophrenia. In the 1980s (Sherrington et al., 1988), first
suggested a potential link between schizophrenia and a specific chromosome (chromosome
5) through familial linkage studies. The advent of genome-wide association studies (GWAS)
by the early 21st century marked significant progress, enabling the identification of
numerous susceptibility loci associated with the disorder (O’Donovan et al., 2008;
Iyegbe and O’Reilly, 2022; Biological insights from 108 schizophrenia, 2014). These
findings underscore that schizophrenia, better conceptualized as a syndrome or a
spectrum rather than a single disease entity, is associated with multiple genetic loci,
reflecting its biological and clinical heterogeneity.
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In recent years, emerging evidence has highlighted that CNVs
contribute to the increased risk of schizophrenia (Rare
chromosomal deletions and duplications, 2008; Bergen et al.,
2019). Numerous epidemiological studies have determined that
CNVs are closely associated with the genetic etiology of
schizophrenia (Mollon et al., 2023; Rees et al., 2011; Rees et al.,
2016). Among the known genetic alterations in schizophrenia,
CNVs are one of the most common pathogenic changes.
Marshall et al. (2017) conducted a genome-wide study with
41,321 participants, including 21,094 schizophrenia cases and
20,227 controls. The study identified a significant increase in
CNV burden in schizophrenia, particularly at the 1q21.1 region
(OR = 1.11, P = 5.7 × 10−15), even after excluding previously
identified risk loci. The 1q21.1 region harbors several genes
involved in synaptic function and neurodevelopment. The
increased CNV burden in this region may disrupt the normal
function of these genes, affecting neurodevelopment and synaptic
function, thereby elevating the risk of schizophrenia. Among rare
CNVs, the distal 1q21.1 microdeletion has been identified as a
significant genetic risk factor for schizophrenia, occurring in
0.2%–0.6% of schizophrenia cases (Marshall et al., 2017; Levinson
et al., 2011; Guo et al., 1993). Furthermore, individuals with
1q21.1 microdeletions have an eightfold increased risk of
schizophrenia, further highlighting the significant association
between distal deletions at 1q21.1 and schizophrenia (Rare
chromosomal deletions and duplications, 2008; Stefansson et al.,
2008). This review summarizes the evidence linking the distal
1q21.1 microdeletion to schizophrenia and outlines the
mechanisms of action of five genes (PRKAB2, CHD1L, GJA5,
GJA8, BCL9) in the nervous system and their potential
relationship with schizophrenia.

2 Chromosomal structure and genetic
mechanisms of the 1q21.1

Chromosomal region 1q21.1 is a structurally complex genomic
locus, characterized by abundance of low-copy repeats, which makes
it highly prone to non-allelic homologous recombination (Malhotra
and Sebat, 2012). This susceptibility leads to recurrent chromosomal
deletions and duplications. The region harbors four primary

segmental duplication clusters, termed breakpoints (BP1-BP4),
which can be classified into two distinct regions: the proximal
(BP2-BP3) and distal (BP3-BP4) regions (Brunetti-Pierri et al.,
2008; Rosenfeld et al., 2012). The distal 1q21.1 microdeletion
refers to a deletion of approximately 0.8 Mb between BP3 and
BP4 (located at approximately 147.1–147.9 Mb, hg38). This region
contains at least seven unique protein-coding genes, including
PRKAB2, CHD1L, FMO5, BCL9, ACP6, GJA5, and GJA8
(Edwards et al., 2021) (Figure 1). According to data from the UK
Biobank (https://www.ukbiobank.ac.uk), the prevalence of distal
1q21.1 microdeletions in general population is approximately 0.
027% (Kendall et al., 2017). Among individuals with developmental
delay, intellectual disability, and/or congenital malformations, the
detection rate of distal 1q21.1 microdeletions is approximately 0.2%
(Guo et al., 1993). This microdeletion is usually inherited in an
autosomal dominant manner, with inheritance possible from either
parent. Carriers may exhibit either normal or abnormal phenotypes.
Additionally, approximately 18%–35% of cases are de novo (Guo
et al., 1993). The clinical presentation of 1q21.1 distal microdeletions
shows considerable variability, with incomplete penetrance
(Edwards et al., 2021; Upadhyai et al., 2020). Affected individuals
may be asymptomatic or may present with a range of
neurodevelopmental disorders, including developmental delay,
autism spectrum disorder (ASD), schizophrenia, and attention-
deficit hyperactivity disorder (Rare chromosomal deletions and
duplications, 2008; Guo et al., 1993; Mefford et al., 2008; Busè
et al., 2017; Bucan et al., 2009; Gudmundsson et al., 2019; Bernier
et al., 2016). Furthermore, this microdeletion has been associated
with other features such as cataracts, microcephaly, congenital heart
defects, ocular anomalies, seizures, and renal abnormalities (Guo
et al., 1993; Brunetti-Pierri et al., 2008; Mefford et al., 2008; Busè
et al., 2017; Bernier et al., 2016; Christiansen et al., 2004; Costain
et al., 2016; Weber et al., 2011).

3 Impact of distal 1q21.1 microdeletion
on brain structural development

Sønderby et al. (2021) conducted a large-scale neuroimaging
meta-analysis, revealing dose-dependent effects on brain structures
in carriers of distal 1q21.1 microdeletions, which were accompanied

FIGURE 1
Chromosomal structure of the 1q21.1-1q21.2 region (hg38), with blue boxes representing the three breakpoint regions (BP2, BP3, and BP4), and
orange boxes indicating the Proximal and Distal regions. Genes within the Proximal and Distal regions are annotated below, with schizophrenia-
associated risk genes in the Distal region highlighted in red.
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by cognitive deficits. The study demonstrated that distal
1q21.1 microdeletions exert a positive dose-dependent effect on
intracranial volume and total cortical surface area, particularly in the
frontal and cingulate cortices, while negatively affecting the caudate
nucleus and hippocampus volume. These findings link distal
1q21.1 microdeletions to structural brain changes, suggesting that
this genetic variation may increase the risk of neuropsychiatric
disorders by affecting structural changes during brain
development. Szecówka et al. (2023) further demonstrated that
individuals at high risk for schizophrenia exhibited reduced
subcortical volumes, including the hippocampus and thalamus,
supporting the hypothesis that volumetric changes in brain
structures are associated with psychiatric disorder risk. Notably,
alterations in key brain regions, particularly the hippocampus, may
play a crucial role in schizophrenia pathogenesis. The hippocampus,
a critical region for memory and emotional regulation, has been
shown to exhibit significant structural changes in individuals with
schizophrenia, including reduced hippocampal volume, which is
associated with cognitive deficits and emotional dysregulation
(Peterson et al., 2023; Sasabayashi et al., 2021; Wegrzyn et al.,
2022). Consistent with previous study, van (van Erp et al., 2016)
reported significant reductions in subcortical structure volumes in
patients carrying schizophrenia-associated CNVs, including
1q21.1 microdeletions/microduplications and 22q11.2 deletion
syndrome, compared to CNV carriers without schizophrenia.
These findings suggest that distal 1q21.1 microdeletions not only
disrupt normal brain development but also contribute to abnormal
volumetric changes in specific brain regions, further emphasizing
the role of distal 1q21.1 microdeletions in the risk of
neuropsychiatric disorders. Additionally, Boen et al. (2024)
identified region-specific effects beyond overall brain
measurement differences in distal 1q21.1 microdeletions.
Collectively, these findings indicate that distal
1q21.1 microdeletions contribute to schizophrenia by altering
early brain structure development, thereby supporting the
hypothesis that the distal 1q21.1 microdeletion is significant
genetic risk factors for schizophrenia.

Induced pluripotent stem cell (iPSC) models have been utilized
to examine the impact of distal 1q21.1 microdeletions on neuronal
proliferation, differentiation, maturation, and synaptic function,
revealing disruptions in early neurodevelopment, potentially
associated with an increase in lower-layer cortical neurons. These
findings were corroborated in mouse models carrying the
1q21.1 deletion (Chapman et al., 2022). In particular, (Nielsen
et al., 2017) demonstrated that distal 1q21.1 microdeletions
contribute to schizophrenia pathophysiology by affecting
dopaminergic signaling in the Df (h1q21)/+ mouse model. The
Df (h1q21)/+ mice exhibited several schizophrenia-like behaviors,
including hyperactivity in response to amphetamine, impaired
prepulse inhibition (PPI), and altered dopamine receptor
sensitivity, which are consistent with the positive symptoms seen
in human schizophrenia. Further, Gordon et al. (2021) found a
general downregulation of mitochondrial-related gene expression in
neurons from 1q21.1 microdeletion mice, consistent with
transcriptomic alterations observed in postmortem brains of
individuals with schizophrenia and ASD, suggesting neuronal
energy dysfunction plays a crucial role in schizophrenia
pathogenesis. Overall, the results from iPSC models, murine

models, and transcriptomic analyses highlight the critical role of
distal 1q21.1 microdeletions in disrupting neuronal development,
synaptic function, and energy metabolism, contributing to the
pathophysiology of neurodevelopmental disorders involving
schizophrenia. These findings further support distal
1q21.1 microdeletions as genetic risk factors for schizophrenia
and related neurodevelopmental conditions.

4 Risk genes within distal 1q21.1 region
involving in schizophrenia

4.1 PRKAB2

PRKAB2 (OMIM: 602741) encodes the β2 subunit of the AMP-
activated protein kinase (AMPK) complex, a highly conserved
heterotrimeric kinase critical for cellular energy metabolism and
acting as an essential energy sensor within cells (Ronnett et al., 2009;
Hardie et al., 2012; Hardie, 2007; Zhou et al., 2022). Specifically, in
the nervous system, AMPK regulates energy metabolism, provides
neuroprotection, modulates neuronal conduction, and participates
in neural development, all of which are vital for maintaining normal
neuronal function (Brunetti-Pierri et al., 2008; Muraleedharan and
Dasgupta, 2022; Bobela et al., 2017; Shah et al., 2017; Yang et al.,
2022; Belforte et al., 2021). Moreover, the functional significance of
AMPK in the central nervous system is further supported by its
suppressive effect on the mTOR signaling pathway, a key regulatory
axis involved in synaptic plasticity, learning processes, and memory
formation (Harvard et al., 2011; Wang and Jia, 2023). AMPK
regulates glucose metabolism in the brain by modulating glucose
uptake, glycolysis, and glycogen metabolism, thereby maintaining
energy homeostasis and proper neuronal function (Muraleedharan
and Dasgupta, 2022; Dienel, 2019; Muraleedharan et al., 2020).
Bioenergetic dysfunction, including aberrant insulin signaling and
impaired glucose homeostasis, has been implicated in schizophrenia
pathophysiology, contributing to core clinical symptoms (Henkel
et al., 2022; Bryll et al., 2020; Agarwal et al., 2020). In this context,
evidence shows that a single copy deletion of PRKAB2 reduces the
expression of AMPK-β2, thereby impairing AMPK activation.
Conversely, duplication of PRKAB2 does not adversely affect
AMPK activity (Harvard et al., 2011). Further, Nagy et al. (2018)
have demonstrated that a deficiency of PRKAB2 and AMPK
complex activity in the nervous system of a fruit fly model leads
to decreased learning ability and severe sleep disturbances. These
findings are particularly relevant because cognitive impairments and
changes in sleep patterns are common symptoms of schizophrenia.
Thus, PRKAB2 may increase the risk of developing this condition.
Furthermore, deficiency in AMPK can shorten lifespan and cause
abnormalities in neuronal dendritic structures, a phenotype also
associated with schizophrenia (Nagy et al., 2018). Interestingly, Ng
et al. (2012) discovered that activation of AMPK effectively alleviates
dopaminergic signaling deficits and mitochondrial dysfunction in
Drosophila models of Parkinson’s disease. However, this protective
effect is lost when AMPK is inactivated. In a comprehensive
approach, (Wagh et al., 2021) through integrated analysis of
various studies, identified 227 differentially expressed genes
(DEGs) between schizophrenia patients and controls,
demonstrating that PRKAB2 significantly appears among these
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DEGs, showing genetic and epigenetic changes associated with
schizophrenia. Additionally, it indicates that polymorphisms in
PRKAB2 are associated with weight gain in patients with
schizophrenia or affective disorders treated with antipsychotic
drugs (chlorpromazine or olanzapine) (Souza et al., 2012). Based
on these findings, PRKAB2 plays a pivotal role in energy metabolism
and the maintenance of normal function within the nervous system.
Its genetic deficiency may impair AMPK activation, thereby
disrupting cerebral energy metabolism and ultimately
contributing to cognitive deficits and sleep disturbances, which
are common symptoms associated with schizophrenia. Therefore,
the haploinsufficiency of PRKAB2may be closely linked to the onset
and progression of schizophrenia.

4.2 BCL9

BCL9 (OMIM: 602597), located at 1q21.1, is a schizophrenia
susceptibility gene that encodes a nuclear retention factor for β-
catenin. It plays a crucial role in the Wnt signaling pathway, a key
regulatory mechanism in neural development that modulates the
proliferation, migration, and differentiation of neural stem cells.
Additionally, this pathway is essential for maintaining
neuroplasticity and promoting neurogenesis (de la Roche et al.,
2008; Yoon and Mao, 2021; Adachi et al., 2004; Hoseth et al., 2018;
Kuwabara et al., 2009; Zechner et al., 2003). Wnt signaling is
activated during neural development and is crucial for synaptic
plasticity in the adult brain (Jensen et al., 2012; He et al., 2018). The
neurodevelopmental hypothesis of schizophrenia implicates
disturbances in this pathway in the pathogenesis of schizophrenia
(Inestrosa et al., 2012; Panaccione et al., 2013; Okerlund and
Cheyette, 2011). A GWAS covering the Han Chinese population,
including 5,772 controls and 4,187 schizophrenia patients, revealed
multiple single nucleotide polymorphisms (SNPs) located in the
BCL9 gene that are significantly associated with schizophrenia (Li
et al., 2011). Additionally, another GWAS analyzing data from
1,774 European and American schizophrenia patients and
2,726 controls identified three SNPs in the BCL9 strongly linked
to negative symptoms of schizophrenia. Among these,
rs583583 showed the most significant association, further
suggesting a potential role of BCL9 in schizophrenia susceptibility
(Xu et al., 2013). However, a study conducted by Kimura et al. (2015)
examined the association between the rs583583 polymorphism and
the manifestation of negative symptoms in Japanese individuals
diagnosed with schizophrenia. Their results indicate that BCL9 is
unlikely to harbor a common genetic variant that contributes to the
increased risk of schizophrenia in the Japanese population.
Additional GWAS and meta-analyses provide further evidence
supporting these findings, suggesting that BCL9 is implicated in
the negative symptoms of schizophrenia and designating it as one of
the most prominent high-risk candidate genes for the disorder.
Notably, other components of Wnt signaling have also been found
to be associated with schizophrenia and other mental illnesses,
further emphasizing the pathway’s significant role in
schizophrenia (Yoon and Mao, 2021). Disruptions during early
neurodevelopment have been closely associated with the
underlying pathological mechanisms of schizophrenia (Birnbaum
and Weinberger, 2017; Cheng et al., 2022; Ahmad et al., 2018;

Weinberger, 2017). Wnt proteins are essential components of
critical signaling pathways that regulate fetal brain development,
contributing to angiogenesis, neurogenesis, cell survival, synaptic
development, and neuronal extension, thereby playing
indispensable roles in these processes. β-catenin, a key
component of the classical Wnt pathway, whose mutations have
been identified as a common cause of intellectual disability,
highlights its importance in the development of the neural
system (Yoon and Mao, 2021). Schizophrenia is also marked by
aberrant mRNA expression of Wnt-related genes, weakening typical
β-catenin-dependent signaling and enhancing atypical Wnt
signaling. Schizophrenia features abnormal expression of Wnt-
related genes and abnormal levels of plasma proteins, suggesting
that drugs targeting the Wnt pathway may play a role in the
treatment of severe mental disorders (Hoseth et al., 2018;
Freyberg et al., 2010). BCL9 has emerged as a key genetic
contributor to schizophrenia susceptibility through its regulation
of the Wnt pathway. Moreover, specific SNPs within the BCL9 gene
have been significantly associated with the negative symptoms of
schizophrenia, further supporting its potential as a risk
candidate gene.

4.3 CHD1L

CHD1L (OMIM: 613039) (Chromodomain helicase/ATPase
DNA binding protein 1-like gene) encodes the CHD1L protein, a
multifunctional factor involved in chromatin remodeling processes
essential for DNA replication, transcription regulation, repair, and
recombination. In addition, it exerts a crucial role in various cellular
biological processes, including cell differentiation and development
(Xiong et al., 2021; Wang et al., 2021; Jiang et al., 2015; Ahel et al.,
2009). CHD1L exhibits the highest expression in the brain, where it
is pivotal for nervous system development (Brockschmidt et al.,
2012). A study on human embryonic stem cells (hESC)
demonstrated that the overexpression of CHD1L upregulates the
expression of ectodermal genes, particularly the key regulatory gene
PAX6, which is critical for neural development. Such upregulation
promotes the differentiation of hESCs into neuroepithelia.
Conversely, the knockout of CHD1L significantly impairs this
differentiation process (Dou et al., 2017). Neuroepithelial cells, as
progenitor cells in the early nervous system, differentiate into
various types of neurons and glial cells, forming the complex
structure of the brain and nervous system (Merkle and Alvarez-
Buylla, 2006; Eze et al., 2021). Pahlevan et al. (2024) reported that
knockdown of CHD1L in human iPSC-derived neurons, along with
its knockout in zebrafish, disrupt normal neuronal development and
impair neural function. The importance of CHD1L in early nervous
system development is further underscored by findings suggesting
its central role in normal neuronal differentiation and function.
Furthermore, studies indicate that disturbances in neuronal
differentiation could be linked to the development of
schizophrenia (Notaras et al., 2022; Robicsek et al., 2013;
Robicsek et al., 2018). CHD1L participates in DNA damage
response through interactions with multiple repair-associated
factors, thereby promoting genomic stability and supporting the
fidelity of DNA repair pathways (Xiong et al., 2021; Wang et al.,
2021; Bulut-Karslioglu et al., 2021). Moreover, studies suggest that
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polymorphisms in DNA repair genes are potential etiological factors
for mental disorders, and impaired DNA repair functions may
increase the risk of schizophrenia (Odemis et al., 2016; Yang
et al., 2017; Benes, 2011). Currently, the hypothesis that genetic
damage to DNA and/or repair genes is linked to the pathogenesis of
schizophrenia is supported by gradually accumulating evidence.
However, the causal relationship between DNA damage/repair
and schizophrenia remains controversial, highlighting that our
current understanding of DNA damage and repair mechanisms
in these disorders is still evolving (Markkanen et al., 2016). The
relationship between CHD1L and schizophrenia likely involves its
role in both neuronal differentiation and DNA repair. While the
precise causal connection between CHD1L and schizophrenia
remains unclear, growing evidence suggests that genetic
variations or functional alterations in CHD1L may contribute to
the pathogenesis of schizophrenia by impairing neurodevelopment
and compromising genomic stability, thereby elevating the risk of
the disorder.

4.4 GJA5, GJA8

The connexins (Cxs) encoded by GJA5 (OMIM: 121013) and
GJA8 (OMIM: 600897) are a class of transmembrane proteins that
are essential components of gap junctions, essential for intercellular
communication. The Cx40 protein encoded by GJA5 is primarily
expressed in the cardiac conduction system and atria, where it
facilitates electrical coupling of atrial myocytes. Similarly, the
Cx50 protein, encoded by GJA8, is mainly expressed in the lens
epithelium, where it plays a crucial role in maintaining the
transparency of the human lens (Bai, 2014; Ceroni et al., 2019;
Brodie et al., 2019; Dong et al., 2024). In addition, GJA5 and GJA8
are also expressed in the nervous system, where Cx40 and
Cx50 participate in neuronal gap junctions, regulating neuronal
excitability and synaptic plasticity in the central nervous system.
Connexin-mediated gap junctions facilitate electrotonic coupling
within chemically homogeneous GABAergic networks, allowing
rapid ion exchange and promoting synchronized neuronal firing,
thereby contributing to fast and spatially distributed inhibition of
neural excitability (Lapato and Tiwari-Woodruff, 2018; Decrock
et al., 2015; Rash et al., 2001). Moreover, the loss of astroglia gap
junction functionality may lead to severe cognitive impairments in
patients with schizophrenia (Mitterauer, 2009; Mitterauer, 2011).
Importantly, GJA5 and GJA8 are considered candidate genes for
schizophrenia, largely due to their involvement in neural signaling
and their location within the 1q21 chromosomal region, which is
consistently linked to the disorder. Studies using cumulative scoring
have found that GJA5 and GJA8 are genes frequently disrupted by
CNVs in schizophrenia. Integrating accumulated priority data with
known schizophrenia susceptibility genes, further analysis has
identified GJA8 as a promising candidate gene for schizophrenia,
supported by two independent pieces of evidence (from CNVs and
genetic association or linkage studies) (Luo et al., 2014). In a paired
case-control sample from Toronto, Canada, the Cx50 rs989192-
rs4950495 haplotype was found to be associated with schizophrenia,
a finding that was replicated in a Portuguese family study. Finally,
analyses of alleles, genotypes, and haplotypes have not found an
association between Cx40 and schizophrenia, highlighting that it is

Cx50, not Cx40, that may play a role in the genetic susceptibility to
schizophrenia (Ni et al., 2007). Overall, the exact mechanisms by
which GJA5 and GJA8 contribute to schizophrenia remain unclear.
However, based on existing evidence, it is hypothesized that these
genes, which encode Cxs, play a critical role in intercellular
communication and membrane junctions. Haploinsufficiency of
GJA5 and GJA8 may disrupt gap junction assembly or electrical
coupling, thereby affecting the transmission of information across
neural circuits. This disruption of neural communication could
contribute to the pathogenesis of schizophrenia by impairing the
function of various neural networks.

5 Concluding remarks and future
perspectives

Schizophrenia is a complex and multifactorial neurodevelopmental
disorder, involving genetic factors. The distal 1q21.1 microdeletion is a
major genetic risk factor for schizophrenia, with studies showing an
eightfold increased risk in affected individuals. This review discusses the
potential roles of genes within the 1q21.1 region, particularly PRKAB2,
BCL9, CHD1L, and GJA5/GJA8, and their possible molecular
mechanisms in the pathogenesis of schizophrenia. Supplementary
Table S3 summarizes the identified risk genes and their biological
roles in disease-related alterations.

The pathogenesis of schizophrenia may involve the synergistic
action of multiple genes, such as PRKAB2, BCL9, CHD1L, GJA5, and
GJA8. For example, mutations in PRKAB2 may disrupt neuronal
energy metabolism, leading to imbalances in neurotransmitter
synthesis and release, which could underlie many of the
neurochemical disturbances observed in schizophrenia. Mutations
in BCL9 may impair the Wnt signaling pathway, which is crucial for
neuronal differentiation and the formation of neural networks.
Mutations in CHD1L could interfere with chromatin remodeling
during early neurodevelopment, impacting the expression of key
genes necessary for neuronal differentiation. Moreover, as the
nervous system matures, mutations in GJA5 and GJA8 could
disrupt the connectivity and synchronization of neuronal signals,
further impairing the function of neural circuits. The combined effects
of these genetic alterations can ultimately lead to dysfunction in
critical brain regions such as the cortex and hippocampus, which are
involved in cognitive functions, perception, and memory. This results
in the hallmark symptoms of schizophrenia, including cognitive
impairments, hallucinations, delusions, and negative symptoms.
Thus, we suppose that the integrated effects of these genetic
variations form a complex network of pathogenic mechanisms that
contribute to the broad clinical spectrum of schizophrenia.

Despite significant progress in current research, identifying
consistent genetic markers remains challenging due to clinical
heterogeneity and genetic diversity of schizophrenia. While
CNVs, such as the 1q21.1 microdeletion, are implicated in
schizophrenia, the precise mechanisms through which these
genetic alterations contribute to the spectrum of symptoms are
still unclear. Additionally, the interaction between genetic and
environmental factors requires further exploration. Future
research should focus on integrating multi-omics approaches,
including genomics, transcriptomics, and proteomics, to better
understand the molecular pathways involved in schizophrenia.
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Moreover, advanced animal models and iPSC technologies offer
promising avenues for further investigation into the relationship
between 1q21.1 and schizophrenia pathogenesis.
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