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Background:Multiple myeloma (MM) is an incurable plasma cell malignancy with
high heterogeneity. Current staging systems, including the International Staging
System (ISS) and Revised ISS (R-ISS), have limited prognostic accuracy. Given the
role of histone modifications in MM progression, we developed a histone
modification-related (HMR) prognostic model to improve MM risk stratification.
Methods: Gene expression and mutation data were downloaded from the Gene
Expression Omnibus database and the Cancer Genome Atlas. Prognostic HMR-
related geneswere identified through a combination of univariate Cox regression,
least absolute shrinkage and selection operator Cox regression, and random
survival forest analysis. The genes identifiedwere then used to construct the HMR
risk score model using multivariate Cox regression. The model was validated
using Kaplan-Meier survival, time-dependent receiver operating characteristic
curves analysis. A nomogram combining the HMR score with clinical features was
developed. Functional enrichment, immune infiltration, somatic mutation, and
drug sensitivity analysis were conducted to explore the biological relevance of
the model.
Results: Seven HMR genes with prognostic significancewere identified. The HMR
risk score stratified patients into high-risk and low-risk groups, with significant
survival differences. The model demonstrated favorable predictive performance,
and was shown to be an independent prognostic factor. The nomogram showed
good calibration and discriminative ability, offering a practical tool for individual
patient risk assessment. Functional analysis revealed that the HMR risk score is
associated with dysregulated cell cycle progression, proliferation, and
immunosuppression in MM, which may contribute to disease progression and
drug resistance. Moreover, drug sensitivity analysis indicated potential
associations between the HMR score and response to specific therapeutic
agents, highlighting its potential role in guiding personalized treatment.
Conclusion: We developed an HMR gene signature that has potential for
prognostic prediction and may help guide personalized treatment strategies
in MM.
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Introduction

Multiple myeloma (MM) is a malignant plasma cell disease that
accounts for about 10% of all hematological cancers, and is the
second most common hematologic cancer worldwide (Siegel et al.,
2022; Zhuge et al., 2025). Over the last 30 years, MM’s worldwide
incidence and mortality rates have more than doubled (Zhuge et al.,
2025). The clinical manifestations include renal impairment,
hypercalcemia, lytic bone lesions, and anemia (Kyle and
Rajkumar, 2008). Despite the continuous emergence of novel
therapeutic agents and due to the heterogeneity in pathogenesis,
the prognosis for MM patients remains poor (van de Donk et al.,
2021; Attal et al., 2017; Karimi et al., 2025). The widely used
International Staging System (ISS) is based on albumin (ALB)
and β2-microglobulin (B2M) (Girija Sivasankaran et al., 2025).
However, it lacks genetic and molecular markers, limiting its
accuracy in guiding individualized treatment and prognosis
assessment (Hagen et al., 2022). To further improve the
prognosis, it is crucial to identify and integrate additional
prognostic biomarkers to refine risk stratification, improve
outcome prediction, and optimize treatment selection.

Epigenetic modifications are reversible heritable changes in gene
expression that do not alter the DNA sequence. Epigenetic variations
are achieved through covalent chemical modifications of chromatin,
including DNA and histonemodifications, chromatin remodeling, and
non-coding RNAs (Nagano and Fraser, 2009; Chervona and Costa,
2012; Lee and Kim, 2022). Among these, histonemodifications, such as
methylation, acetylation, phosphorylation, adenylylation,
ubiquitination, and ADP-ribosylation occur at histone tails and play
a crucial role in regulating gene expression (Kouzarides, 2007). These
modifications regulate gene expression by altering chromatin structure
or influencing transcription factor binding to gene promoters (Li et al.,
2007). Histone modifications are closely associated with various
biological processes, including gene expression regulation, cell
differentiation and development, the cell cycle, tumorigenesis,
immune cell infiltration, and cancer prognosis (Chervona and
Costa, 2012; Ji et al., 2025; Sharma et al., 2010; Bi et al., 2020).

Histone modifications play a crucial role in regulating key gene
expression and influencing disease progression in MM (Ismail et al.,
2022). Abnormal expression of histone-modifying enzymes, such as
histone deacetylases (HDACs) and histone methyltransferases
(HMTs), disrupts transcriptional balance in MM cells, thereby
affecting cell proliferation, apoptosis, and drug resistance. Targeting
histone modifications has emerged as a promising therapeutic
strategy, with HDAC inhibitors and EZH2 (Enhancer of Zeste
Homolog 2) inhibitors showing significant potential in MM treatment
(Nylund et al., 2021; Pu et al., 2024). Among the genetic abnormalities in
MM, the t(4;14) translocation occurs in 15%–20% of patients, leading to
FGFR3 (fibroblast growth factor receptor 3) and MMSET (multiple
myeloma SET domain) overexpression. MMSET, a member of the NSD
(Nuclear receptor-binding SET domain) family, possesses a SET domain
responsible for histone methylation. Overexpression of MMSET in MM
cells leads to globally elevated H3K36 dimethylation, accompanied by a
significant reduction inH3K27methylation. Additionally,MMSETbinds
to the IRF4 (interferon regulatory factor 4) promoter and regulates its
expression, affecting cell growth, adhesion, and chromatin accessibility
(Xie et al., 2015; Martinez-Garcia et al., 2011). Polycomb repressive
complex 2 (PRC2) maintains the silent state of target genes such as HOX

genes through trimethylation of H3K27, contributing to development
and differentiation as well as tumorigenesis (Margueron and Reinberg,
2011). EZH2 is a core component of PRC2 that confers the HMT activity
(Chase and Cross, 2011). Overexpression of EZH2 is linked to MM
progression and poor prognosis (Pawlyn et al., 2017). EZH2 inhibitors
reduce global H3K27me3 level and trigger apoptosis in MM cells
(Hernando et al., 2016). HDAC inhibitors also impair MM cell
growth and survival. Preclinical studies have demonstrated that
HDAC inhibitors trigger apoptosis, as well as induce cell cycle arrest,
in MM cells (Maiso et al., 2006).

In this study, we developed a histone modification-related
(HMR) prognostic model comprising of seven genes to predict
clinical outcomes in MM. Our findings not only elucidate the
prognostic value of HMR genes but also establish a foundation
for future research on targeted therapies strategies in MM.

Materials and methods

Data collection

Gene expression and clinical data of GSE24080, GSE136337,
GSE136324, and GSE2658 were obtained from the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). The data
were preprocessedwith normalization using the R package “limma”. The
RNA sequence data and related somatic mutation data were acquired
from the MMRF-CoMMpass project on the Genomic Data Commons
Data Portal (https://portal.gdc.cancer.gov/). Patients with complete
survival data and an overall survival time greater than 1 month were
included in this study. Patients who did not meet these criteria or had
incomplete clinical data were excluded from the analysis.

Dataset GSE24080 was used as the training cohort for model
construction, while GSE136337, GSE2658, and MMRF-CoMMpass
were used as validation cohorts. The MMRF-CoMMpass dataset
provided somatic mutation data. GSE136324, which contains RNA
extracted from the whole bone marrow (WBM) of MM patients, was
used for immune infiltration analysis. Detailed information on all
datasets used in this study is provided in Supplementary Table S1.

This study strictly adheres to data usage regulations and
conducts secondary analysis based on publicly available data,
thus requiring no additional ethical approval.

Construction and validation of a HMR
prognostic risk model

HMR genes were extracted from the “GOMF_HISTONE_
MODIFYING_ACTIVITY” gene set in the Gene Set Enrichment
Analysis (GSEA) database (http://www.gsea-msigdb.org/gsea/
msigdb). After intersecting these genes with those detected in the
GSE24080, GSE136337, GSE136324, GSE2658, and MMRF-
CoMMpass, a total of 173 genes were selected for further analysis.

The GSE24080 dataset was used as the training cohort to create the
HMRprognostic riskmodel. Univariate Cox regression was performed
to identify genes related to prognosis (p value <0.01 and false discovery
rates (FDR)< 0.05). The candidate genes identifiedwere then subjected
to two complementary feature selection methods to enhance
robustness. First, Least Absolute Shrinkage and Selection Operator
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(LASSO) Cox regression was performed using the “glmnet” R package
(v 4.1-8) to minimize overfitting and select features with non-zero
coefficients. Ten-fold cross-validation was conducted to determine the
optimal lambda value, resulting in the selection of 13 genes. Second,
Random Survival Forest (RSF) analysis was carried out using the
randomForestSRC (v 3.3.3) R package with 10 trees (ntree = 10) and
one split per node (nsplit = 1). Variable importance was evaluated using
the minimal depth method, and the top-ranked genes were retained. The
intersection of genes identified by both LASSO and RSF methods yield
seven genes: SUZ12, KAT2A, AURKA, BUB1, UTY, SUV39H2, and
PCGF5. Pairwise Spearman correlation analysis was performed among
the seven candidate genes. To further evaluate multicollinearity, the
variance inflation factor (VIF) was calculated for each gene.

Subsequently, these genes were included in a multivariate Cox
proportional hazards regression model to construct the final
prognostic signature. A prognostic risk score was calculated for
each patient as a linear combination of expression levels weighted
by multivariate Cox coefficients: HMR score � ∑n

i�1βi × Exp i, where
βi is the coefficient of gene i, and Exp i denotes its normalized
expression level. The formula was applied using the “predict”
function in the “survival” package (v 3.8.3), with coefficients
derived from the training cohort.

The optimal cutoff value for stratifying patients into high-risk
and low-risk groups was determined using survminer R package (v
0.5.0), which identifies the threshold that best separates survival
outcomes based on the log-rank test. To ensure comparability across
datasets, the quantile corresponding to the optimal cutoff in the
training cohort was calculated and applied to the validation cohorts
to define high-risk and low-risk groups.

Finally, the prognostic value of the HMR risk score was
evaluated using Kaplan–Meier (KM) survival analysis and time-
dependent receiver operating characteristic (ROC) curves, using
“survminer”, “survival”, and “timeROC” R packages.

Establishment of predictive nomogram

Univariate and multivariate Cox regression analyses were
performed on the HMR risk score and clinical characteristics to
identify independent prognostic predictors. Variables with a
p-value <0.05 were selected for further analysis. A combined
model was constructed using the “rms” and “regplot” R packages
to generate a nomogram. The predictive performance of the model
was evaluated using calibration curves, the concordance index

FIGURE 1
Study design for HMR risk model development.
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FIGURE 2
Construction of HRM prognostic risk model. (A,B) LASSO Cox regression analysis for variable selection. (C) Venn diagram shows the intersection of
genes identified by LASSO regression and Random Forest analysis. (D) Forest plot of univariate Cox regression analysis in the GSE24080 training cohort.
(E) Forest plot ofmultivariate Cox regression analysis in the training cohort. (F) Kaplan–Meier survival curve of high-risk and low-risk in the training cohort.
(G) The distribution of risk scores and survival status of MM in the training cohort. (H) Heatmap of the HRM related genes in the training cohort.
(I) Time-dependent ROC analysis in the training cohort.
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(C-index), and time-dependent ROC curves (using the “timeROC”
package, v 0.4). The clinical benefit of the model was further assessed
by decision curve analysis (DCA) using the “ggDCA” package (v 1.2).

Furthermore, the Wilcoxon rank-sum test was used to evaluate
differences in HMR risk score across various clinical subgroups of
MM patients.

FIGURE 3
Validation of HRM prognostic risk model. (A) Kaplan–Meier survival curve of high-risk and low-risk in the GSE2658, GSE136337 andMMRF validation
cohort. (B) The distribution of risk scores and survival status of MM in the GSE2658, GSE136337 and MMRF validation cohort. (C) Heatmap of the HRM
related genes in the GSE2658, GSE136337 andMMRF validation cohort. (D) Time-dependent ROC analysis in the GSE2658, GSE136337 andMMRF cohort.
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Differential expression genes (DEGs) analysis
and pathway enrichment analysis

For GSE24080, DEGs between high-risk and low-risk groups were
identified using the “limma” package (v3.62.2), with thresholds of |

logFC| > 0.58 and adjusted p-value <0.05. For the MMRF-CoMMpass
cohort, DEGs was conducted using the “DESeq2” package (v1.46.0),
applying a threshold of |log2FoldChange | > 1 and adjusted
p-value <0.05. The identified DEGs were then subjected to Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

FIGURE 4
Establish and validation of predictive nomogram to evaluate clinical application. (A) Combined nomogram based on HRM risk score and clinical
features in training (GSE24080) and validation (GSE136337 and MMRF) cohorts. (B) Calibration plot of nomogram plot in training (GSE24080) and
validation (GSE136337 and MMRF) cohorts. (C) Time-dependent ROC curve in training (GSE24080) and validation (GSE136337 and MMRF) cohorts.
(D) DCA curve in training (GSE24080) and validation (GSE136337 and MMRF) cohorts.
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FIGURE 5
Differential expression and functional enrichment analysis based on HMR risk groups. (A,B) Volcano plot analysis of DEGs associated with HMR risk
score in GSE24080 and MMRF datasets. (C,D) Gene Ontology (GO) and KEGG pathway enrichment analysis of DEGs. GSEA enrichment of DEGs
associated with HMR risk score revealed a significant enrichment of gene set related to cell cycle (E,F) and proliferation (G,H) in the high-risk group.
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(KEGG) pathway analyses using the “clusterProfiler” package (v4.14.4).
To further validate the biological relevance, Gene Set Enrichment
Analysis (GSEA) was performed using the “fgsea” package (v1.32.2),
based on the preranked gene list ordered by the signal-to-noise ratio
derived from differential expression between high-risk and low-
risk groups.

Evaluation of immune infiltration
populations

We used a modified method described by Danziger et al. (2020)
to calculate the immune cell infiltration levels in the bone marrow.
Briefly, the whole bone marrow expression matrix was deconvoluted

FIGURE 6
Characteristics of somatic mutation between HMR high-risk and low-risk groups. (A) Kaplan-Meier survival curves comparing overall survival
between high and low TMB groups. (B) Boxplot comparing TMB levels between HMR high-risk and low-risk groups (left). Scatter plot and correlation
analysis demonstrating a positive correlation between TMB and risk score (right). (C,D) Oncoplot visualizing mutation landscape of prognostic genes
(KRAS, NRAS, TP53, and MYC) across risk groups. (E–H) Lollipop plots illustrating the distribution and frequency of mutations in KRAS, NRAS, TP53,
and MYC in HMR high-risk and low-risk groups.

Frontiers in Genetics frontiersin.org08

Lyu et al. 10.3389/fgene.2025.1613631

mailto:Image of FGENE_fgene-2025-1613631_wc_f6|tif
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1613631


to calculate the fraction of 27 different cell types in WBM, including
four types of plasma B cells. Then, the tumor immune
microenvironment specific gene expression matrix was calculated
according to the method described by Li et al. (2024).

Evaluation of somatic mutations

Samples from the MMRF-CoMMpass project were divided into
high-risk and low-risk groups as described above. The distribution
of gene mutations across different groups was then visualized using
the “maftools” R package (v 2.22.0).

Drug sensitivity prediction

Drug sensitivity differences between the low-risk and high-risk
groups were predicted using the “pRRophetic” R package (v 0.5)
(Geeleher et al., 2014a). The dataset within the “pRRophetic”
package is derived from the “cgp 2016” initiative, encompassing
gene expression matrices and drug treatment information (Geeleher
et al., 2014b). Wilcoxon test was used to identify drugs exhibiting
different sensitivity between groups (p < 0.05).

Statistical analysis

Statistical analysis was performed with R software 4.4.2.
Continuous variables were compared using the Student’s t-test or
Wilcoxon rank-sum test, depending on the normality test. Categorical
variables were analyzed using the Chi-square test or Fisher’s exact test.
Prognostic gene selection and model construction were performed
using univariate and multivariate Cox regression, LASSO Cox
regression, and RSF analysis. Survival differences were assessed by
KM survival analysis and log-rank tests. Model performance was

evaluated using time-dependent ROC curves and C-index. Clinical
usefulness was assessed by DCA. Correlation analyses were performed
using Spearman’s rank correlation test. A two-sided p-value <0.05 was
considered statistically significant.

Results

Patient selection and statistics

This study included a total of 2790 MM patients from five
datasets, with statistical details provided in Supplementary Table S1.
The GSE24080 dataset (n = 556) was used as the training cohort to
construct a HMR prognostic risk model. The GSE136337 (n = 424),
GSE2658 (n = 555), and MMRF-CoMMpass project (n = 853)
datasets were selected as validation cohorts. Somatic mutation
data were extracted from the MMRF-CoMMpass project dataset
(n = 804). The overall design and workflow of this study are
illustrated in (Figure 1). Additionally, the GSE136324 dataset
(n = 402) was used for immune infiltration analysis.

Development of an HMR prognostic
risk model

To construct a HMR risk score, we identified seven HMR genes
in the GSE24080 training cohort through univariate Cox regression,
LASSO Cox regression analysis, and random forest analysis, as
shown in (Figures 2A–C). Univariate Cox regression showed that
SUZ12, KAT2A, AURKA, BUB1, and SUV39H2 were associated
with poor prognosis (HR > 1, p < 0.05), indicating their potential
role as high-risk genes. In contrast, UTY and PCGF5 were associated
with favorable prognosis (HR < 1, p < 0.05), suggesting a protective
effect (Figure 2D). Consistently, KM survival analysis based on
median expression level further confirmed that high expression of

FIGURE 7
Immune infiltration and immune-related gene expression analysis between high-risk and low-risk groups. (A) Box plot showing the relative
abundance of immune cell types in HMR high-risk and low-risk groups. (B) Box plots show immune-related gene expression levels in HMR high-risk and
low-risk groups.

Frontiers in Genetics frontiersin.org09

Lyu et al. 10.3389/fgene.2025.1613631

mailto:Image of FGENE_fgene-2025-1613631_wc_f7|tif
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1613631


SUZ12, KAT2A, AURKA, BUB1, and SUV39H2 correlated with
worse prognosis, while high expression of UTY and
PCGF5 suggested better prognosis (Supplementary Figure S1A–G).

Prior to model construction, pairwise correlations among the
seven candidate genes were assessed using Spearman’s rank
correlation analysis. The correlation coefficients ranged
from −0.17 to 0.51 (Supplementary Figure S2A), indicating no
strong collinearity. To further evaluate multicollinearity, the
variance inflation factor (VIF) was calculated for each gene, all of
which were <5 (Supplementary Figure S2B), confirming the absence
of significant multicollinearity.

Multivariate Cox regression revealed that AURKA and UTY are
independent prognostic risk factors in MM patients (Figure 2E).
Based on the regression coefficient calculated by Multivariate Cox
regression (Supplementary Figure S2C), the HMR risk score was
calculated using the following formula: HMR risk score =

(0.2052429×SUZ12 expression) +(0.2399438×KAT2A expression)
+(0.3476679×AURKA expression) +(0.0905674×BUB1 expression)
−(0.2257278×UTY expression) +(0.2372008×SUV39H2
expression) −(0.2765753×PCGF5 expression). Using this formula,
we calculated the HMR risk score for each individual in both the
training and validation cohorts. Subsequently, patients in the
training dataset were stratified into high-risk and low-risk groups
based on the optimal cutoff value. For the validation dataset, the
corresponding quantile derived from the training dataset cutoff was
used to define the risk groups.

Validation of the HMR prognostic model

In the training dataset, KM survival analysis revealed that
patients in the high-risk group had worse overall survival

FIGURE 8
Prediction of drug sensitivity in HMR high-risk and low-risk groups. Boxplot comparing the drug IC50 levels between HMR high-risk and low-risk
groups (upper). Scatter plot and correlation analysis demonstrating a correlation between drug sensitivity and risk score (lower). (A–H) Vorinostat,
Bleomycin, Cytarabine, RO-3306, OSI-930, Sorafenib, Bortezomib and Lenalidomide.
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(Figure 2F). Risk distribution plot showed a higher proportion of
deceased patients and shorter survival time in the high-risk group,
further indicating a poorer prognosis (Figure 2G). The gene
expression heatmap showed that high-risk genes (SUZ12,
KAT2A, AURKA, BUB1, and SUV39H2) were upregulated in the
high-risk group. Conversely, low-risk genes (UTY and PCGF5)
exhibited higher expression in the low-risk group (Figure 2H).
To evaluate the predictive performance of the HMR risk score
model, we conducted a time-dependent ROC analysis. The area
under the curve (AUC) at 1-year, 2-year, and 3-year intervals was
0.708 (95% CI: 62.5%–78.98%), 0.717 (95% CI: 65.56%–77.88%),
and 0.739 (95% CI: 68.53%–79.19%), respectively (Figure 2I).

These findings were further validated in three independent
validation cohorts (GSE2658, GSE136337, and MMRF-CoMMpass).
Consistent with the training set, high-risk patients in these datasets had
significantly worse survival outcomes, as shown by KM curves
(Figure 3A), and exhibited similar patterns in risk distribution
(Figure 3B), gene expression (Figure 3C), and time-dependent ROC
performance (Figure 3D). Collectively, these results support the
robustness of the HMR prognostic model across multiple datasets.

HMR risk score is an independent prognostic
factor in MM

To explore the relationship between the HMR risk score and
clinical characteristics, we divided the patients in the
GSE24080 training cohort into different subgroups based on
clinical variables. The results of the Wilcoxon rank sum test
showed that the HMR risk score was significantly elevated in
female patients (P < 0.001), in those with higher levels of lactate
dehydrogenase (LDH) (P < 0.001), beta-2-microglobulin (B2M)
(P < 0.001), ISS stage (P < 0.001), those with cytogenetic
abnormalities (Cyto Abn) (P < 0.001), and those with lower
levels of albumin (ALB) (P < 0.05) (Supplementary Figure
S1H–N). These results indicated that the HMR risk score
correlated with adverse clinical parameters in MM.

Consistently, when comparing clinical characteristics between
the high-risk and low-risk groups stratified by the HMR score, the
high-risk group showed a significantly higher frequency of these
unfavorable features (Supplementary Table S2), further confirming
the close association between the HMR risk score and aggressive
disease phenotypes in MM.

Next, Univariate and multivariate Cox regression analyses were
performed to identify survival associated variables, including clinical
parameters such as age, gender, ISS stage, LDH, Cyto Abn and HMR
risk score in both training and validation cohort (Supplementary
Figure S3). Notably, the HMR score demonstrated a p-value
of <0.001 in both univariate and multivariate cox analyses across
all cohorts, highlighting its potential as a robust and independent
prognostic factor for MM patients.

Nomogram construction for the clinical
application of the HMR risk model

We further constructed a nomogram model that integrates
clinical features and the HMR risk score to provide a quantitative

tool for survival prediction (Figure 4A). Notably, the HMR risk score
played a major role in the nomogram model, reflecting its strong
prognostic value.

The nomogram demonstrated strong predictive performance in
both the training and validation cohorts, with C-index value of 0.728
(95% CI: 0.708-0.748) in the training cohort, 0.674 (95% CI: 0.653-
0.695) in the GSE136337 validation cohort and 0.756 (95% CI:
0.740-0.772) in MMRF-CoMMpass validation cohort, indicating
good discriminative ability (Figure 4B). Calibration curves
showed that the predicted survival probabilities at 1-year, 2-year,
and 3-year survival were highly consistent with the actual survival
rates in both cohorts, further confirming the reliability of the
model (Figure 4B).

In the 3-year AUC analysis, the nomogram achieved an AUC of
0.772 in the trainig cohort. The HMR risk score achieved an AUC of
0.740, outperforming LDH (0.669) and ISS stage (0.621), emphasizing
its superior prognostic relevance. Similarly, the nomogram achieved
an AUC of 0.724 and 0.759 in GSE136337 and MMRF-CoMMpas
validation cohort respectively (Figure 4C). Furthermore, Decision
curve analysis (DCA) demonstrated that the nomogram provided the
highest net benefit across different decision thresholds, with the HMR
risk score ranking second and consistently outperforming other
clinical variables in both training and validation datasets (Figure 4D).

Together, these findings indicate that the nomogram is a robust
and reliable tool for individualized survival prediction inMM patients
across both the training and validation cohorts. Notably, the HMR
risk score showed superior prognostic performance compared to
conventional clinical variables and contributed the most to the
nomogram model, underscoring its pivotal role in risk stratification.

GSEA enrichment analysis based on HMR
risk score

Differential expression analysis identified 269 DEGs (|logFC| >
0.58, adjusted p-value <0.05), including 216 upregulated
and 53 downregulated genes in GSE24080 dataset, and 663 DEGs
(|log2FoldChange| > 1, adjusted p-value <0.05), including
359 upregulated and 304 downregulated genes in MMRF-
CoMMpass dataset. Volcano plot visualization showed a distinct
separation between upregulated and downregulated genes (Figures
5A,B). Gene Ontology (GO) analysis revealed that the significantly
enriched biological processes (BP) were mainly involved in
chromosome segregation and nuclear division. In the cellular
component (CC) category, spindle and chromosomal region were
predominantly enriched. The molecular function (MF) category was
mainly associated with tubulin binding and microtubule binding.
KEGG pathway analysis identified significant enrichment in cell
cycle (Figure 5C,D). Consistently, GSEA demonstrated that gene
sets related to cell cycle and proliferation were significantly enriched
in the high-risk group (Figures 5E–H).

Association between HMR risk score and
tumor mutation burden (TMB)

To investigate the relationship between TMB and prognosis in
MM, we first performed KM survival analysis. The results showed
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that patients with high TMB had a worse overall survival compared
to those with low TMB (P = 0.032) (Figure 6A), suggesting that TMB
is an adverse prognostic factor.

We then assessed TMB distribution between HMR risk groups.
The high-risk group exhibited a significantly higher TMB than the
low-risk group (P = 7.6e-05), and a positive correlation was observed
between TMB and HMR risk score (R = 0.13, P = 0.00021)
(Figure 6B), indicating that genomic instability increases with
higher HMR risk scores.

To further characterize genetic alterations in high-risk patients,
we analyzed somatic mutations in key MM prognostic genes KRAS,
NRAS, TP53, and MYC. The oncoplot and lollipop plot showed
higher mutation frequencies of KRAS, NRAS, and TP53 in the high-
risk group, particularly for TP53, indicating its key role in MM
progression (Figures 6C–H).

Correlation between HMR risk score and
immune infiltration in bone marrow

The immune infiltration analysis revealed that the abundance of
neutrophils was significantly decreased in the high-risk group than
in low-risk group (Figure 7A). Consistently, gene expression analysis
showed that neutrophil-associated genes, including LTF, LCN2,
CTSG, ITGAM, CRISP3, CA2 and PADI2 were upregulated in
the low-risk group, while immune response and inflammation-
related genes such as CXCL9, CXCL10, LBP, MMP1, SOCS1,
TNFAIP1, and IL10RB were upregulated in high-risk
group (Figure 7B).

Prediction of chemotherapy sensitivity
based on the HMR risk model

To evaluate the sensitivity of high-risk and low-risk patients to
chemotherapeutic agents, we predicted the IC50 values of various
chemotherapy drugs and pathway inhibitors using the pRRophetic
algorithm. The analysis revealed that high-risk patients were more
sensitive to agents like vorinostat (a HDAC inhibitor), cytarabine (a
chemotherapy drug commonly used in the treatment of various
types of leukemia), RO-3306 (a small molecule CDK1 (Cyclin-
Dependent Kinase 1) inhibitor), bortezomib and lenalidomide
(targeted therapies used in the treatment MM). Conversely,
bleomycin (a chemotherapy drug primarily used in the treatment
of certain types of cancer), OSI-930, and sorafenib
(VEGFR2 inhibitors) showed higher IC50 values in high-risk
patients, suggesting that these patients may resistant to these
drugs (Figures 8A–F). These findings suggest that the HMR may
could serve as a valuable tool in guiding personalized treatment
decisions, helping to optimize chemotherapy drug selection
for patients.

Discussion

In this study, we developed and validated an HMR risk
prognostic model based on seven epigenetic regulators using five
independent datasets including 2790 MM patients. The HMR risk

score was significantly correlated with ISS stage, LDH levels, B2M,
ALB, and cytogenetic abnormalities. Multivariate Cox regression
analysis confirmed it as an independent prognostic factor for MM.
The model effectively stratified patients into high-risk and low-risk
groups, with the high-risk group exhibiting significantly worse
overall survival. Integration HMR score with clinical parameters
improved predictive accuracy and clinical decision benefit. These
findings underscore the critical role of epigenetic regulation in MM
progression and patient survival.

The seven genes comprising the HMR model (SUZ12, KAT2A,
AURKA, BUB1, SUV39H2, UTY, and PCGF5) are critically
involved in epigenetic modification, tumor progression,
supporting their prognostic value in MM. SUZ12, a core
component of the Polycomb repressive complex 2
(PRC2 complex), catalyzes H3K27 trimethylation (H3K27me3) to
silence gene expression. SUZ12-mediated H3K27me3 modification
inhibits HDAC1 expression, and modulate docetaxel resistance in
lung adenocarcinoma to (Jiang et al., 2022a). In T-cell acute
lymphoblastic leukemia (T-ALL), SUZ12 mutations activate
oncogenic signaling pathways, increasing sensitivity to
HDAC6 inhibitors (Broux et al., 2019). High SUZ12 and
H3K27me3 expression correlates with poor survival in soft tissue
sarcomas (Cho et al., 2018). KAT2A, a histone acetyltransferase,
promotes cell proliferation and invasion by acetylating H3K9 and
activating E2F1 in colorectal cancer (Han and Chen, 2022). It also
enhances resistance to hormone therapy in prostate cancer, further
supporting its role in oncogenesis (Lu et al., 2021). Aurora kinase A
(AURKA) phosphorylates NSD2 at S56, enhancing its
methyltransferase activity and promoting chemotherapy
resistance in t(4;14) MM patients (Jiang et al., 2022b). It interacts
with BRD4, and targeting both BRD4 and AURKA reduces tumor
growth (Xu et al., 2020). AURKA promotes the degradation of
tumor suppressor p53, further boosting cell proliferation and
oncogenic activity (Park et al., 2018). Furthermore, the AURKA
inhibitor AT9283 induced apoptosis and inhibited growth in MM
(Santo et al., 2011). BUB1 plays a key role in mitosis by enhancing its
kinase activity through TIP60-mediated acetylation, leading to H2A
T120 phosphorylation, ensuring accurate chromosome segregation.
Non-acetylated BUB1 mutations impair this process, leading to
genomic instability (Sun et al., 2024). Additionally,
BUB1 promotes GC cell proliferation and metastasis through
METTL3-mediated m6A methylation, highlighting its critical role
in both mitosis and cancer progression (Wang et al., 2024).
SUV39H2 mediates H3K9me3 modification, promoting tumor
progression (You et al., 2024), poor survival outcomes (Zheng
et al., 2018), and chemoresistance (Vougiouklakis et al., 2018;
Wang et al., 2019). UTY (Ubiquitous Transcribed Y), the
Y-chromosome paralog of UTX (KDM6A) encode lysine
demethylases (KDMs), that catalyzes H3K27me3 demethylation
in histone H3 (Black et al., 2012). KDM6A and UTY have
significant tumor suppressor activity in several types of cancer
(Gozdecka et al., 2018; Shi et al., 2021). PCGF5, a
PRC1 component, facilitates Xist-mediated gene silencing
through H2A ubiquitination and H3K27 methylation (Almeida
et al., 2017). PCGF5 is crucial for neural differentiation in mouse
ESCs. Its absence activates the SMAD2/TGF-β pathway, impairing
differentiation and weakening H2AK119ub1 and H3K27me3,
maintaining gene repression (Yao et al., 2018). Collectively, these
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genes modulate key histone modifications such as H3K27me3,
H3K9me3, H2AK119ub1, and H3K9ac, which play important
role in transcriptional regulation, DNA damage response, and
chromatin accessibility (Alzrigat et al., 2018). Their dysregulation
may disrupt normal gene expression, contributing to increased cell
proliferation, impaired apoptosis, and therapeutic resistance, which
are features associated with poor prognosis in MM.

Functional enrichment analysis revealed significant
upregulation of chromosomal segregation, cell cycle, and
proliferation pathways in the high-risk group. These processes
promote chromosomal instability (CIN), leading to intratumoral
heterogeneity and MM progression (Chen et al., 2025).
Furthermore, the high-risk group exhibited a higher TMB,
particularly with increased mutations in key oncogenic genes
such as KRAS, NRAS, TP53, and MYC. Mutations of the RAS/
mitogen-activated protein kinase (MAPK) pathway, including
NRAS, KRAS, or BRAF, are found in up to 50% of newly
diagnosed MM patients (Walker et al., 2015), and contribute to
proteasome inhibitor (PI) resistance (Shirazi et al., 2020).
TP53 mutation lead to decreased expression of p53 and
associated with poor outcomes and drug resistance in MM
(Jovanović et al., 2018). These findings suggest that epigenetic
dysregulation may promote genomic instability and disease
progression in MM.

Immune infiltration analysis showed reduced neutrophils in the
high-risk group, potentially impairing anti-tumor immunity (Chan
et al., 2023; Zhu et al., 2024). In parallel, gene expression profiling
showed that neutrophil-related genes, including LTF, LCN2, CTSG,
ITGAM, and PADI2, were consistently upregulated in the low-risk
group, suggesting an enrichment of neutrophil-mediated innate
immune activity in these patients. In contrast, the high-risk
group demonstrated elevated expression of inflammatory and
immunomodulatory genes, such as CXCL9, CXCL10, SOCS1,
and IL10RB. These immune signatures may help explain the
differential prognosis between groups and may guide
personalized immunotherapy approches based on HMR score.

Furthermore, drug sensitivity analysis highlighted the potential
of the HMR risk score to guide personalized treatment strategies.
High-risk patients exhibited increased sensitivity to HDAC
inhibitors (e.g., vorinostat), CDK1 inhibitors, proteasome
inhibitors (e.g., bortezomib), and immunomodulatory agents
(e.g., lenalidomide), while showing resistance to certain
chemotherapy drugs and kinase inhibitors. This highlights the
potential for personalized treatment strategies based on HMR
risk scores. A recent study showed that AZD1775, a
Wee1 inhibitor targeting the cell cycle checkpoint, synergizes
with the HDAC inhibitor Vorinostat to induce DNA damage and
apoptosis in leukemia cells, including p53-wild type and deficient
AML (Zhou et al., 2015). Targeting both epigenetic modifiers (e.g.,
HDAC inhibitors) and cell cycle regulators (e.g., CDK1 inhibitors)
may have synergistic effects in high-risk MM patients.

However, several limitations in this study should be
acknowledged. First, although the model was validated by three
independent datasets, further validation in prospective clinical
cohorts is needed. Second, while this study relied on
transcriptomic data, the lack of matched epigenomic datasets
limited our ability to link gene expression with chromatin
regulatory mechanisms. Integration of multi-omics data in future

studies will provide a more comprehensive understanding of the
model’s biological basis. Third, functional characterization of the
seven genes remains to be fully elucidated. Future studies employing
in vitro and in vivo experiments are needed to elucidate the
mechanistic role of these genes in MM pathogenesis and disease
progression.

Conclusion

In conclusion, our study developed and validated a novel HMR
risk signature for MM, which exhibited independent prognostic
value across multiple cohorts. Integration the HMR score with
clinical parameters improved predictive accuracy and clinical
decision benefit in both training and validation cohorts.
Additionally, the HMR score showed associations with genomic
instability, the tumor immune microenvironment, and drug
sensitivity, suggesting its potential relevance to MM biology.
These findings may contribute to a better understanding of MM
progression and offer insights that could inform personalized
therapeutic strategies.
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SUPPLEMENTARY FIGURE S1
(A–G) Kaplan-Meier (KM) curves compare survival rates between the high-
expression and low-expression groups, which were defined based on the
median expression level of AURKA, BUB1, KAT2A, PCGF5, SUV39H2,
SUZ12 and UTY. (H-N) Violin plots illustrating the relationship between HMR
risk score and age, gender, lactate dehydrogenase (LDH), β2-microglobulin
(B2M), albumin (ALB), cytogenetic abnormalities (Cyto Abn), and ISS stage.

SUPPLEMENTARY FIGURE S2
(A) Pairwise correlation analysis among the seven genes. (B) Bar plot showing
the variance inflation factor (VIF) values for each gene. (C) Bar plot showing
the coefficients for each gene obtained from multivariate Cox regression.

SUPPLEMENTARY FIGURE S3
(A) Univariate and (B) multivariate Cox regression analyses identifying
prognostic variables in both the training (GSE24080) and validation cohorts
(GSE136337 and MMRF-CoMMpass).
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Glossary
MM Multiple myeloma

HMR histone modification-related

GEO Gene Expression Omnibus

TCGA The Cancer Genome Atlas

LASSO least absolute shrinkage and selection operator

ISS International Staging System

HDACs histone deacetylases

HMTs histone methyltransferases

FGFR3 fibroblast growth factor receptor 3

MMSET multiple myeloma SET domain

NSD Nuclear receptor-binding SET domain

PRC2 Polycomb repressive complex 2

WBM whole bone marrow

KM Kaplan–Meier

ROC receiver operating characteristic

DCA decision curve analysis

H3K27me3 H3K27 trimethylation

T-ALL T-cell acute lymphoblastic leukemia

DEGs Differential expression genes

GO Gene Ontology

BP biological processes

CC cellular component

MF molecular function

TMB tumor mutation burden

KEGG Kyoto Encyclopedia of Genes and Genomes

GSEA Gene Set Enrichment Analysis

B2M β2-microglobulin

LDH lactate dehydrogenase

ALB albumin

HGB Hemoglobin

Cyto Abn cytogenetic abnormalities

CDK1 Cyclin-Dependent Kinase 1

AURKA Aurora kinase A

γ-H2AX phosphorylated H2AX

UTY Ubiquitous Transcribed Y

CIN chromosomal instability
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