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Amino acid transporters (AATs) allow the transport of amino acids and play
important roles in the various physiological processes and environmental
responses of plants. The lysine and histidine transporter (LHT) subfamily is an
important type of AAT. However, a genome-wide overview of the LHT gene
family has not been conducted in L. macranthoides Hand.-mazz. In this study,
11 LHT genes were identified in the Lonicera macranthoides genome. To further
understand the functions of LmLHT genes, the gene and protein characteristics,
transmembrane helices, evolutionary relationships, chromosomal distribution,
cis-acting elements of promoters, and expression patterns were systematically
analyzed. According to the results, LmLHT genes were divided into two groups
based on the phylogenetic analysis. Transmembrane helices of LmLHT proteins
ranged from seven to 16. Gene structure and conserved motif analysis revealed
that exon-intron structures and motifs were relatively conserved in the LmLHT
family. LmLHT genes were distributed on six of the nine chromosomes and had
the most collinear gene pairs with NtLHT genes. Additionally, phytohormones,
low-temperature, drought-inducibility, defense and stress related cis-acting
elements were enriched in the promoters of LmLHT genes. LmLHT genes
showed distinct or preferential expression patterns in various tissues, signifying
their potential roles in plant growth and development. We also found that some
LmLHT genes were responsive to cold and drought stresses, indicating their roles
in abiotic stress adaptation. Overall, our results provided comprehensive insight
into the LmLHT gene family and will be useful for future functional analyses.
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Introduction

Nitrogen (N) is the major nutrient factor for plant growth and development, and plants
can absorb and utilize inorganic and organic N in soil. Organic N includes amino acids,
peptides and proteins (Cai and Aharoni, 2022). Approximately 40% of organic N in soil
comprises peptides and proteins, and 45%–50% of soil organic N comprises amino acids
(Cao et al., 2016). The concentrations of total amino acids in soil may be as high as
150 μmol/L (Weigelt et al., 2005). Amino acids and their derivatives not only participate in
N fluxes both in poor and fertile soils, but also play an important role in the N cycle in plant
organs (Inselsbacher and Näsholm, 2012). For plants, amino acids are essential for the
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activities of enzymes and proteins. Moreover, amino acids are
important components of chlorophyll, polyamines,
phytohormones, creatinine and nucleotides (Dong et al., 2020;
Yahyaoui and Pérez-Frías, 2020). Therefore, these acids play
important roles in the entire life cycle of plants, including
regulating the defense response and N utilization efficiency,
affecting the quality and biomass, changing the root or shoot
morphology, and act as precursors of secondary metabolites
(Perchlik and Tegeder, 2017; Guo et al., 2020b; Guo et al., 2021).

Generally, proteins and peptides in organic N cannot be directly
absorbed by plant roots, while amino acids can be obtained by roots
and transported to shoots or leaves through xylem and phloem
(Näsholm et al., 2009; Tegeder and Masclaux-Daubresse, 2018). As
the level of amino acids in the soil is significantly lower than that of
root cells, membrane localized amino acid transporters (AATs) are
necessary for the uptake of amino acids from soil (Tegeder, 2014).
Currently, plant AATs are divided into three main families: the
amino acid/auxin permease (AAAP) family, the amino acid
polyamine and choline (APC) transporter family, and the usually
multiple amino acids move in and out transporter (UMAMIT)
family (Cao et al., 2024). The AAAP family contains eight
subfamilies: proline transporters (ProTs), amino acid permeases
(AAPs), auxin transporters (AUXs), lysine and histidine
transporters (LHTs), aromatic and neutral amino-acid
transporters (ANTs), γ-aminobutyric acid transporters (GATs),
amino acid transporter-like proteins (ATLs), and vesicular
aminergic-associated transporters (VATs) (Yang et al., 2020). The
APC family contains three subfamilies: cationic amino acid
transporters (CATs), L-type amino acid transporters (LATs), and
polyamine H+-symporters (PHSs) (Saha and Gupta, 2022; Du et al.,
2024). Among these families, AAP, LHT, and ProT are the most
studied AATs in plants (Fan et al., 2023).

AtAAP1 was the first identified amino acid transporter in plants
and mediates the transport of neutral and charged amino acids
(Perchlik et al., 2014). Overexpression of AtAAP1 significantly
increases the transport of chlorantraniliprole–alanine conjugate
(Ren et al., 2019). AtAAP2 functions in the long distance transfer
of amino acids, and the growth and development of leaves are
enhanced in the atapp2 mutant, which in turn increases seed yield
and oil content (Elashry et al., 2013). AtAAP3 is mainly expressed in
the roots and can transport basic amino acids, such as lysine,
histidine, and arginine (Okumoto et al., 2004). The root-knot
nematode (RKN) infestation levels and egg mass number in the
atapp3mutant were notably decreased, indicating that AtAAP3may
act as a positive regulator for plants against RKN invasion (Marella
et al., 2012). In total, 19OsAAP genes have been identified in the rice
genome. OsAAP1 is located in plasma and nuclear membranes, its
overexpression increases tiller numbers and fills grains, while the
osaap1 mutant presents the opposite phenotype (Ji et al., 2020).
Lysine and arginine can be transported by OsAAP3, overexpression
of OsAAP3 increases the accumulation of these amino acids, but
reduces the number of tillers and fills grains in transgenic plants
(Wei et al., 2021). OsAAP12 is located in the plasma membrane, the
number of tillers is decreased in OsAAP12 overexpression plants but
increased in osaap12 mutant lines (Jin et al., 2024).

AtLHT1 was the first identified transporter of the lysine and
histidine transporter family. AtLHT1 exhibits high expression in
roots, flowers, and siliques. Overexpression of AtLHT1 improves N

efficiency and promotes plant growth, whereas disruption of
AtLHT1 affects amino acid uptake and inhibits plant growth
(Hirner et al., 2006). In addition, AtLHT1 is associated with the
transport of 1-aminocyclopropane-1-carboxylic acid, an important
precursor of ethylene (Shin et al., 2015). AtLHT4 has strong
expression in anthers, which suggests that AtLHT4 may be
involved in anther and pollen development (Rabby et al., 2022).
There are six OsLHT genes (OsLHT1-OsLHT6) in the rice genome,
and the most studied member isOsLHT1. OsLHT1 is strictly located
in the plasma membrane and participates in the transport of
Asparagine (Guo et al., 2020b). Knockout of OsLHT1 decreases
the concentration of amino acid in xylem sap, and the translocation
of amino acid in the shoot is restricted, resulting in reduced plant
height, stem length, and grain yield (Guo et al., 2020a). Notably, loss
of function of OsLHT1 increases the expression of defense-
responsive genes and produces more salicylic acid and jasmonic
acid. Therefore, rice blast disease resistance is improved in OsLHT1
mutants (Guo et al., 2023). OsLHT5 was localized in the cytosol and
plasma membrane. The expression of OsLHT5 was downregulated
when treated with PEG and NaCl, which suggests that OsLHT5may
play a role in abiotic stress response in rice (Fan et al., 2023). There
were 23 NtLHT genes (NtLHT1-NtLHT23) in tobacco, and the
overexpression of NtLHT1 accelerated leaf senescence and
affected leaf morphology. Moreover, the expression of NtLHT1
was increased under abiotic stress, and the germination rate in
NtLHT1-overexpressing plants was significantly higher than in
ntlht1 mutants, which suggests that NtLHT1 may be involved in
abiotic stress tolerance in tobacco (Xing et al., 2024). NtLHT22 was
localized in the plasma membrane. The amino acid content was
significantly altered in NtLHT22-overexpressing plants and ntlht22
mutants, which implies that NtLHT22 participates in amino acid
homeostasis in tobacco (Li Z. et al., 2022).

Lonicera macranthoides Hand.-Mazz. is a species of the
Caprifoliaceae family, also known as “shanyinhua” or “mountain
honeysuckle” (Liu et al., 2024). It is widely planted in Southwestern
China, including Hunan Province, Guizhou Province, and
Chongqing City. The fresh and dried flower buds of Lonicera
macranthoides are used as important ingredients in traditional
Chinese medicine to treat and prevent fever, furuncles,
inflammation, and cardiovascular diseases (Pan et al., 2021). The
LHT gene family is important for plant growth, development, and
quality. In this study, we have systematically and comprehensively
identified the LHT gene family in L. macranthoides. The
physicochemical characteristics, phylogenetic evolutions, gene
architecture, chromosomal localization, gene collinearity, and cis-
acting elements in the LmLHT gene family were analyzed.
Additionally, the expression patterns of LmLHT genes in
different tissues and abiotic stresses were examined using
quantitative RT-PCR (qRT-PCR). Our research provides useful
insights for future functional analysis of LmLHT.

Materials and methods

Plant materials

L. macranthoides Hand.-mazz plants were cultured in a
greenhouse with a cycle of 16 h of light, 8 h of darkness,
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22°C–24 °C. Different tissues (root, stem, leaf, white flower, and
yellow flower) were collected at 6 months to analyze the expression
of LmLHT. For cold stress treatment, four-week-old seedlings were
exposed in a growth chamber at 4 °C for 5 h. For drought stress
treatment, four-week-old seedlings were not watered until the leaves
were completely wilted (Xie et al., 2021). The leaves of six sample
plants were mixed, frozen with liquid nitrogen and then stored
at −80 °C for future use.

Identification of LmLHT gene family

TheAtLHT genes retrieved from TAIR (http://www.arabidopsis.
org) were used as a query to search in the L. macranthoides genome
with an E-value cutoff ≤0.01 (Rhee et al., 2003; Yin et al., 2023).
Subsequently, the HiddenMarkov Model profile of the LHT domain
(PF01490) was obtained from the Pfam database, and the candidate
LmLHT protein sequences were confirmed on the Conserved
Domain Database (CDD) of the NCBI (https://www.ncbi.nlm.nih.
gov/cdd/) (Sonnhammer et al., 1997; Marchler-Bauer et al., 2015).
The identified LmLHT protein sequences were renamed according
to their chromosomal locations. Moreover, the basic information
and chemical parameters of the LmLHT proteins were analyzed with
the online tool ExPASy (http://web.expasy.org/protparam/).

Transmembrane, protein structure and
phylogenetic analysis

The transmembrane domain and protein structure of the
LmLHTs were analyzed with the online tool PROTTER (http://
wlab.ethz.ch/protter/start/) and PHYRE server v2.0 (http://www.
sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index), respectively. The
protein sequences of 11 LmLHTs, 6 OsLHTs, 10 AtLHTs, and
23 NtLHTs were aligned using ClustalX software (version 2.1).
Subsequently, a neighbor-joining (NJ) phylogenetic tree was built
using MEGA X software (version 10.1.8) with 2000 bootstraps.

Gene structure and conservedmotif analysis

The coding sequence and genomic sequence of each LmLHT
genes were submitted to the GSDS tool (http://gsds.cbi.pku.edu.cn)
to analyze the gene structure. The conserved motifs of the LmLHT
proteins were identified using the MEME tool (http://meme-suite.
org/tools/meme).

Chromosomal distribution and
collinearity analysis

The chromosomal distribution of the LmLHT genes was
mapped and annotated using the MG2C tool (http://mg2c.iask.
in/mg2c_v2.0/). Collinear gene pairs between L. macranthoides,
tobacco, rice, and Arabidopsis were investigated with the
MCScanX tool (Wang et al., 2012). Subsequently, the results were
drawn using Circos (Krzywinski et al., 2009).

Promoter analysis of LmLHT genes

The promoter sequences about 2,000 bp upstream of the start
site of the LmLHT genes were obtained from the L. macranthoides
genome (Yin et al., 2023), and the obtained sequences were
submitted to PlantCARE (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/) to analyze the cis-regulatory elements,
and the results were displayed using TBtools (Chen et al., 2020).

Total RNA isolation and qRT-PCR

Total RNA was isolated from frozen samples with a FastPure
Plant RNA Isolate Kit (Vazyme, Nanjing, China). The quality of
total RNA was detected using NanoDrop One (Thermo Scientific,
Waltham, MA, United States). The first strand cDNA was generated
from 1 μg of total RNA with a cDNA Synthesis Kit (Vazyme,
Nanjing, China). qRT-PCR was carried out using an ABI
QuantStudio 3 system with SYBR Green (TIANGEN, Beijing,
China), and PCR reactions were 95 °C for 5 min, followed by
40 cycles of 95 °C for 10 s and 56 °C for 30 s. The 18S rRNA
gene was adopted as the internal control, and the gene expression
level was analyzed using the 2−ΔΔCT method (Schmittgen and Livak,
2008; Chen et al., 2023). The primers used for qRT-PCR are
provided in Supplementary Table S1.

Results

Genome-wide identification and basic
information analysis of LmLHT

In this study, Arabidopsis LHT proteins retrieved from TAIR
were used to identify candidate LHT genes in L.macranthoides. As a
result, 11 LHT genes were identified in the L. macranthoides
genome. To facilitate further research, we renamed the LmLHT
genes from LmLHT1 to LmLHT11 in the order of their physical
chromosome locations. The genomic and coding sequences of the
LmLHTs varied from 2,151 to 4,336 bp and 1,317 to 2,355 bp,
respectively. The protein length of the LmLHTs varied from 438 aa
to 784 aa (Table 1). Their deduced molecular weight varied from
48.7 to 87.6 kDa, and their isoelectric point varied from 8.10 to 9.41.
Themajor amino acids in the LmLHT proteins were leucine, glycine,
and alanine, and most LmLHT proteins (except LmLHT8) were
stable (instability index <40). The GRAVY values indicated that all
of the LmLHT proteins were hydrophobic (GRAVY index >0).
Furthermore, most of the proteins were localized in the plasma
membrane (Table 2).

We also analyzed the transmembrane regions of the LmLHT
proteins with the online tool PROTTER. These proteins contained
7 to 16 transmembrane domains, and most of them (91%) varied
from 7 to 11 (Supplementary Figure S1). Protein structure analysis
indicated that the LmLHT proteins were composed of α helices, β
turns, random coils, and extended strands and had similar
structures. Among these structures, α helices were the most
abundant, while β turns were uncommon
(Supplementary Figure S2).
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Evolutionary relationship of LHT genes in
Lonicera macranthoides, tobacco, rice, and
arabidopsis

To explore the evolutionary relationships of the LHT gene
family in L. macranthoides, tobacco, rice, and Arabidopsis, a
phylogenetic tree was constructed with the neighbor-joining
method for 11 LHT proteins from L. macranthoides, 23 LHT
proteins from tobacco, 6 LHT proteins from rice, and 10 LHT
proteins from Arabidopsis. As shown in Figure 1, the LHT proteins
were classified into two subfamilies, which was consistent with the
results of a previous study (Wang et al., 2019). Subfamily Ⅰ contained
8 LmLHT members (LmLHT2/5/6/7/8/9/10/11), 13 NtLHT
members (NtLHT3/5/6/7/11/12/13/15/16/17/18/22/23), 2 OsLHT
members (OsLHT3/5), and 4 AtLHT members (AtLHT2/5/7/10).
Subfamily II contained 3 LmLHT members (LmLHT1/3/4),

10 NtLHT members (NtLHT1/2/4/8/9/10/14/19/20/21), 4 OsLHT
members (OsLHT1/2/4/6), and 6 AtLHT members (AtLHT1/3/4/6/
8/9). These results indicated that subfamily I contained more
LmLHT members than subfamily II, and the members in the
same subfamily may have closer evolutionary relationships.

Gene structure and motif analysis of LmLHT
family members

To better understand the evolution of LmLHT family members,
a neighbor-joining tree was reconstructed between the LmLHT
genes. The LmLHT genes were divided into two subfamilies;
these results are consistent with previous research on tobacco (Li
Z. et al., 2022). The gene structure and protein motifs could also
provide evolutionary information. Gene structure analysis showed

TABLE 1 Detailed information of LmLHT gene families.

Genes Gene id Chromosome no. Start site End site Gene length (bp) CDS (bp) ORF (aa)

LmLHT1 Lm3A1018T66 3 101,852,641 101,855,300 2,659 1,317 438

LmLHT2 Lm4C13T3 4 1,357,298 1,359,827 2,529 1,398 465

LmLHT3 Lm4A13T57 4 1,375,452 1,379,014 3,562 1,581 526

LmLHT4 Lm4A48T72 4 4,875,748 4,878,985 3,237 1,545 514

LmLHT5 Lm4A229T23 4 22,931,372 22,935,516 4,144 1,581 526

LmLHT6 Lm4A778T44 5 77,785,785 77,790,357 4,572 1,548 515

LmLHT7 Lm5A173T67 5 17,380,183 17,382,762 2,624 1,378 525

LmLHT8 Lm6A821T68 6 82,127,086 82,129,237 2,151 1,398 465

LmLHT9 Lm7C606G10 7 60,684,948 60,689,284 4,336 2,355 784

LmLHT10 Lm9C327T7 9 32,780,094 32,784,397 4,303 1,359 452

LmLHT11 Lm9A403T65 9 40,305,252 40,308,513 3,261 1,380 459

TABLE 2 Amino acid composition and physiochemical characteristics of LmLHT proteins.

Proteins MW pI Major amino acid% Instability index GRAVY Localization predicted

LmLHT1 48.7 8.95 A (8.9), V (8.7), G (8.4) 35.28 0.429 chlo, plas

LmLHT2 51.5 8.98 L (8.8), G (8.6), I (8.0) 37.22 0.240 cyto, chlo, plas

LmLHT3 57.9 9.22 L (13.1), A (8.2), G (8.2) 35.78 0.518 plas, vacu

LmLHT4 56.8 9.37 L (11.9), S (9.1), F (8.0) 32.01 0.479 plas, cyto

LmLHT5 57.8 9.16 L (11.6), A (8.7), G (8.2) 37.00 0.525 plas, vacu

LmLHT6 56.7 9.41 L (12.4), S (9.9), G (8.3) 35.51 0.522 cyto, chlo, plas

LmLHT7 57.3 9.20 L (12.0), A (9.0), G (8.2) 31.14 0.554 plas, vacu

LmLHT8 52.3 8.10 L (10.8), I (8.2), S (8.0) 43.81 0.401 plas

LmLHT9 87.6 8.66 V (11.6), L (8.7), A (7.5) 29.15 0.557 plas, cyto

LmLHT10 49.9 8.87 L (12.2), G (9.1), I (8.4) 31.84 0.540 plas

LmLHT11 50.4 9.08 L (13.5), G (9.8), I (8.5) 27.75 0.648 plas

MW: molecular weight (kDa), pI: isoelectric point, GRAVY: grand average of hydropathicity, V: val, I: ile, A: ala, G: gly, S: ser, L: Leu. F: Phe. Plas: plasma membrane, Vacu: vacuoles, Cyto:

cytoplasm, Chlo: chloroplast.
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that all of the LmLHT genes had five exons and four introns, with the
exception of LmLHT1, which had eight exons and seven introns.
Furthermore, we performed a conserved motif analysis of the
LmLHT proteins with MEME. It was observed that LmLHT3/4/
5/6/7 contained 14 motifs, excluding motif 15, which we found to
exist only in LmLHT8/9/10/11. In addition, LmLHT2 only had nine
conserved motifs, which is less than the other LmLHT members,
implying that some motifs were lost or degenerated during the
process of evolution. It is worth noting that although LmLHT1 has
the largest number of exons, it does not contain the largest number
of conservedmotifs. Therefore, the increased exons in LmLHT1may

act as regulatory exons rather than encoding protein motifs
(Figure 2; Supplementary Figure S3). These results suggested that
the conserved motifs in LmLHT family members may have
undergone loss or gain during evolution.

Chromosomal distribution and collinear
analysis of LmLHT genes

The localization of the LmLHT genes on chromosomes was
identified, and it was found that they were randomly distributed on

FIGURE 1
Phylogenetic analysis of LHT proteins in Lonicera macranthoides, tobacco, rice and Arabidopsis. The tree divides 11 LHT proteins from Lonicera
macranthoides, 23 LHT proteins from tobacco, 6 LHT proteins from rice, and 10 LHT proteins from Arabidopsis into two subgroups. Black, red, blue, and
green colors represent Lonicera macranthoides, tobacco, rice and Arabidopsis, respectively.
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six out of nine chromosomes. Chromosome 4 contained four
LmLHT genes, and chromosomes 5 and 9 contained two LmLHT
genes. Only a single LmLHT gene was distributed on each of
chromosomes 3, 6, and 7 (Figure 3).

Previous studies indicated that tandem, segmental,
transposition, and whole genome duplication play an
important role in gene duplication events (Zhang et al., 2020;
Li H. et al., 2022). As shown in Figure 4, two genes (LmLHT3 and
LmLHT4) were tandemly duplicated on chromosome 4, and one
gene pairs (LmLHT8 and LmLHT9) was likely segmentally

duplicated. These results suggested that tandem and segmental
duplication play a crucial role in the expansion of the LmLHT
gene family. To further investigate the evolutionary relationship
between LHT genes, we conducted a collinearity analysis for L.
macranthoides, tobacco, rice, and Arabidopsis. Collinear gene
pairs between 12 of the LmLHT genes with LHT genes in tobacco
were identified, followed by 6 LmLHT gene pairs with
Arabidopsis, and 2 LmLHT gene pairs with rice. In addition,
most collinear relationships between these species were one-to-
one matches (Figure 4).

FIGURE 2
Evolutionary relationship, gene structure and motif analysis of LmLHT family members. (A) The phylogenetic tree was built from LmLHT proteins.
The LmLHT protein sequences were divided into two subfamilies: green and yellow colors indicate subfamily Ⅰ and subfamily Ⅱ, respectively. (B)
Exon–intron organization of LmLHT genes. Brown boxes represent exons, and block lines represent introns. (C) Conserved motifs of LmLHT proteins.
The motifs are displayed in different colored boxes.

FIGURE 3
Chromosomal locations of LmLHT family members.
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Cis-acting element analysis of LmLHT genes

To better understand the regulatory mechanisms of the
LmLHT genes, 2,000 bp upstream sequences of these genes
were used for cis-acting element analysis. The cis-acting
elements in LmLHT promoters were diverse. As shown in
Figure 5, light-responsive elements were the most abundant
cis-acting elements in LmLHT promoters, indicating that these
elements had indispensable roles. Cis-acting elements involved in

anaerobic induction were identified in most LmLHT promoters.
Moreover, most of the LmLHT promoters contained stress (e.g.,
low temperature and drought inducibility)-response elements.
Apart from these, cis-acting elements involved in hormone
response, such as abscisic acid, auxin, MeJA, salicylic acid,
and gibberellin, were also distributed in the promoters of the
LmLHT genes. These results suggested that the LmLHT genes
may exhibit different regulation features and perform different
functions in various biological processes.

FIGURE 4
Collinearity analysis of LHT family members between Lonicera macranthoides (Lm), tobacco (Nt), rice (Os), and Arabidopsis (At). The yellow lines
represent the collinear gene pairs between Lonicera macranthoides and tobacco, the red lines represent the collinear gene pairs between Lonicera
macranthoides and Arabidopsis, the green lines represent the collinear gene pairs between Loniceramacranthoides and rice, and the blue lines represent
the duplicated LmLHT genes.
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Expression patterns of LmLHT genes in
different tissues

To explore the expression patterns of the LmLHT genes, five
tissues were selected for analysis: leaf (L), root (R), stem (S), white
flower (WF), and yellow flower (YF). As shown in Figure 6, nearly
half of the LmLHT genes, namely, LmLHT1, LmLHT2, LmLHT4,
LmLHT7, and LmLHT9, were highly expressed in the root, white
flower, and yellow flower, implying that these genes may function
primarily there. In particular, the expression of LmLHT2 in the
white flower and yellow flower was significantly higher than in the
other tissues, implying that it may be involved in flower
development. LmLHT11 was expressed in all the tested tissues,
showing constitutive expression patterns. Furthermore, LmLHT3
was highly expressed in the root, while LmLHT6 and LmLHT10were
highly expressed in the leaf. Interestingly, LmLHT8 showed low
expression in the white flower and yellow flower, LmLHT5 showed
no expression in the yellow flower, and LmLHT6 showed no
expression in the white flower and the yellow flower. In general,
most of the LmLHT genes were preferentially expressed in vegetative
tissues (root and leaf) rather than in the reproductive organ (flower).

Expression patterns of LmLHT genes in
response to cold and drought stresses

Abiotic stresses often adversely affect the growth and
development of plants, and previous studies have shown that

LHT genes are responsive to various abiotic stresses (Fan et al.,
2023). In this study, the expression patterns of LmLHT genes were
investigated in response to cold and drought stresses. We found that
the expression level of most of the LmLHT genes presented
noticeable changes under cold or drought treatments (Figure 7).
Under cold stress, the expression level of LmLHT1 and LmLHT11
was upregulated, while the expression level of LmLHT3 and
LmLHT8 were significantly downregulated. After drought
treatment, the expression level of seven genes (LmLHT1/
LmLHT2/LmLHT4/LmLHT5/LmLHT7/LmLHT9/LmLHT11) was
upregulated. By contrast, the expression of LmLHT3 was
downregulated. These results indicated that different LmLHT
genes may have distinctive roles in response to cold and
drought stresses.

Discussion

N, including organic N and inorganic N, is a core factor in
determining plant yield and quality. In most plants, N is exchanged
and transported primarily in the form of amino acids. For this
reason, amino acids have multiple functions in plant growth and
development and are involved in various biological processes. These
functions include regulating N metabolism and protein synthesis,
altering root and shoot architecture, and acting as signal molecules
to defend against biotic and abiotic stresses (Dong et al., 2024).
AATs mediate the transport of amino acids from soil and the
translocation to different tissues in plants. The AAAP

FIGURE 5
Cis-acting element analysis in the promoter region of LmLHT genes. The numbers and colors in the box represent different elements.
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superfamily is an important part of AATs, and the LHT subfamily is
widely studied and functionally characterized by AAAP (Wang
et al., 2019). Based on the whole genome sequencing and
bioinformatics analysis, LHTs were identified in many species,
including Arabidopsis (10 genes), rice (6 genes), tobacco
(23 genes), and maize (15 genes) (Li Z. et al., 2022; Rabby et al.,
2022), while the members and functions of LHTs are much less
known in medicinal plants.

L. macranthoides is a famous traditional medicinal plant that is
widely cultivated in Southwestern China. It has been reported that L.
macranthoides plays a unique role in defending against animal and
human viruses, such as the H1N1 flu virus, SARS coronavirus, and
COVID-19. L.macranthoides contains a variety of biologically active
compounds, including chlorogenic acid, phenolic acids, flavonoids,
and organic acids (Tang et al., 2021). Increasing evidence suggests
that amino acids and their derivatives possess antioxidant capacity,

and the content of amino acids may provide an important
contribution to the pharmacological effects of L. macranthoides
(Long et al., 2024). The homeostasis and metabolism of amino acids
are closely associated with AATs. However, AATs have yet to be
isolated and characterized in L. macranthoides. In this study, we
conducted a comprehensive identification and classification of the
LHT subfamily of AATs in L. macranthoides.

We identified 11 LHT genes in the L. macranthoides genome,
more than the number previously found in rice and Arabidopsis
but less than that in tobacco and maize. The difference in the
number of LmLHTs compared to other plants may be related to
genome size, gene duplication, polyploidization events, and
evolutionary history (Chen et al., 2025). Physiochemical
properties, such as molecular weight, isoelectric point, amino
acid composition, instability index, GRAVY index, and
predicted subcellular localization were similar in LmLHT

FIGURE 6
Expression levels of LmLHT in selected tissues. L: leaf, R: root, S: stem,WF: white flower, YF: yellow flower. Expression levels of LmLHT in leaves were
set to one. Data are mean ± SD (n = 3).
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proteins (Table 2), which suggested that LmLHT proteins were
relatively conserved during evolution. However, there are also
some subtle differences. For example, the number of
transmembrane helices in LmLHT proteins varied greatly
(Supplementary Figure S1). Phylogenetic analysis of LHT
proteins from L. macranthoides, tobacco, rice, and
Arabidopsis indicated that these family members were
categorized into two subgroups, and subgroup I possesses
more LHT proteins than subgroup II (Figure 1), which is
consistent with previous studies on tobacco regarding the
LHT family (Li Z. et al., 2022). We also found that the
distribution of OsLHTs and AtLHTs in the subgroups differs
from previous studies, which may be attributed to the differences
in bootstrap parameters (Wang et al., 2019). The exon–intron

organization in most LmLHT family members was similar
(Figure 2B), while the number of motifs in the LmLHT family
members were ranged from 9 to 14 (Figure 2C). Therefore, these
results imply that the number and type of motifs in LmLHT
family members may be closely related with function
conservation and diversification.

Gene family expansion is a common event during plant
evolution, which in turn increases the gene copies for plants.
Therefore, the diversity and quantity of gene families were more
complex through gene duplication (Hong et al., 2024). Gene
duplication events are well documented in legumes (Chen et al.,
2025), grapes (Guo et al., 2025), Arabidopsis (Cheng et al., 2016), etc.
Chromosome localization analysis showed that chromosome
4 contained more LmLHT genes (Figure 3), and this distribution

FIGURE 7
Expression levels of LmLHT under cold and drought stresses, seedlings under normal conditions were used as controls. Data are mean ± SD (n = 3).
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pattern may be related to gene duplication. Moreover, we found that
tandem and segmental duplication events occurred in the L.
macranthoides genome. In addition, 12 gene pairs between L.
macranthoides and tobacco, and 6 gene pairs between L.
macranthoides and Arabidopsis were observed in the multi-
collinearity analysis, while only 2 gene pairs were observed in L.
macranthoides and rice (Figure 4). Thus, we speculated that the
collinearity gene pairs between L. macranthoides and other plant
species were mainly established after the differentiation of
monocotyledonous and dicotyledonous plants.

Cis-acting elements are the non-coding DNA sequences
identified in the promoter of genes, the types and number of cis-
acting elements are closely related to gene function (Li et al., 2021).
Promoter analysis of the LmLHT genes revealed that the most
abundant cis-acting elements were associated with light response,
suggesting that the expression of these genes might be regulated by
light stimuli. Phytohormones play multiple roles in various
biological processes and signal transduction, and cis-acting
elements involved in various phytohormone responses were
found in the LmLHT genes. At the same time, biotic and abiotic
stress-related cis-acting elements also exist in the promoter of the
LmLHT genes (Figure 5). Therefore, the abundant of cis-acting
elements in the LmLHT genes promotor may contribute
significantly to their functional diversity.

The expression patterns of genes in different plant tissues are
helpful for their functional characterization. We analyzed the
expression levels of the LmLHT genes in different parts and
organs. More than half of the LmLHT genes showed high
expression levels in the root. LmLHT6/LmLHT10 are highly
expressed in the leaf and LmLHT2/LmLHT11 exhibited
constitutive expression in the tested tissues. In addition, the
expression level of LmLHT5/LmLHT6/LmLHT8 in the flower is
lower than in other tissues (Figure 6). These findings indicated that
different LmLHT genes may have identical or reverse functions
during growth and development. The expression of AATs in plants
could be significantly influenced by abiotic stresses (Tian et al.,
2020). In the present study, we found that four and eight LmLHT
genes responded to cold and drought stresses, respectively. Cis-
acting elements related to cold stress response were not detected in
the promoters of LmLHT3/LmLHT9, and a drought-inducibility
element was not identified in the promoter of LmLHT11. However,
the expression of LmLHT9 and LmLHT11 was increased under cold
and drought treatments. In addition, the expression of LmLHT3 was
decreased with cold and drought stresses (Figure 7). These results
indicate that the expression of LmLHT3/LmLHT9/LmLHT11 under
cold or drought stresses may not been directly related to the cis-
acting elements on their promoters. Instead, it may be indirectly
influenced by transcription factors or epigenetic regulation. Previous
studies indicated that overexpression of the light-responsive
transcript factor SlBBX20 increased the expression of low-
temperature responsive genes in tomato (Ma et al., 2025). The
bHLH transcript factor MYC2 is a core regulator of the JA signal
pathway, which participates in repeat dehydration stress in
Arabidopsis (Liu et al., 2016). The exogenous application of ABA
altered DNA methylation and stress-related gene expression in
grape, thereby affecting fruit ripening (Li et al., 2024). Therefore,
the complex expression patterns of the LmLHT genes indicate that L.

macranthoides might have developed specialized regulatory
mechanisms to adapt to environmental stresses.

Conclusion

In summary, a systematic study was performed to identify and
characterize the LHT family genes in L.macranthoides. The LmLHT
genes were studied in terms of their physicochemical characteristics,
evolutionary relationships, gene structure, conserved motif,
chromosomal locations, collinearity, and cis-acting elements,
which provide insights into the evolutionary history of this
family in L. macranthoides. The expression patterns of LmLHT
genes in different tissues and under cold and drought stresses were
complex, suggesting that LmLHT genes play important roles in
various biological processes. Overall, this study not only provides
useful information for a comprehensive understanding of LmLHT
genes, but also lays a solid foundation for the further application of
these genes.
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