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Background: Neutrophil extracellular traps (NETs) represent a novel form of
inflammatory cell death in neutrophils. Recent studies suggest that NETs can
promote cancer progression and metastasis through various mechanisms. This
study focuses on identifying prognostic NETs signatures and therapeutic targets
for oral squamous cell carcinoma (OSCC).

Materials and Methods: We performed non-negative matrix factorization (NMF)
analysis on 89 previously reported NET-related genes within the TCGA cohort.
Subsequent analysis of subtype feature genes was conducted using the weighted
gene co-expression network analysis (WGCNA). Six machine learning algorithms
were employed for model training, with the best model selected based on 1-year,
3-year, and 5-year AUC values. A NETs signature was developed to predict overall
survival in OSCC patients. Multi-omics validation was carried out, and stable
knockout OSCC cell lines for key genes were established to assess the biological
functions of LINC0O0937 in vitro.

Results: Five NETs-related clusters were identified in OSCC patients, with the
C5 subtype showing the most favorable prognosis. The WGCNA network
revealed 443 characteristic genes. The Enet algorithm exhibited optimal
performance in providing a predictive NETs signature. Multi-omics analysis
indicated that NETs signaling is linked to an immunosuppressive
microenvironment and can predict the efficacy of immunotherapy. In vitro
experiments confirmed that knocking down LINC00937 led to inhibited
tumor growth.

Conclusion: This study highlights the emerging role of NETs in OSCC, presenting
a prognostic NETs feature and identifying LINC0O0937 as a significant factor in
OSCC. These findings contribute to risk stratification and the discovery of new
therapeutic targets for OSCC patients.

neutrophil extracellular traps, oral squamous cell carcinoma, LINC00937, prognostic
model, non-negative matrix factorization, machine learning
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Introduction

Clinically, oral squamous cell carcinoma (OSCC) is the most
common malignant tumor among head and neck cancers, with high
incidence and mortality (Yoshimura et al, 2021). The primary
treatment modalities for OSCC include surgery, radiotherapy,
and chemotherapy (Yoshida et al, 2020). However, the 5-year
overall survival (OS) for OSCC has not significantly improved,
remaining at approximately 45%-50% (Lu et al., 2023; Wu et al,,
2022). Due to the unique location of OSCC, issues such as
recurrence, metastasis, and chemotherapeutic drug resistance
continue to pose significant challenges. Consequently, the
identification of new prognostic biomarkers and valuable
therapeutic targets for OSCC has been a primary focus of
research. The immune cells in OSCC and the immune responses
within the tumor microenvironment (TME) have garnered
significant attention from researchers (Xiong et al., 2022). As
critical members of the TME, neutrophils are functionally closely
associated with the progression of OSCC (Xu et al, 2021; Bai
et al., 2022).

Neutrophils within the TME are considered crucial pathogenic
factors contributing to tumor progression (Cui et al., 2021; Quail
et al., 2022). In particular, neutrophil extracellular traps (NETSs)
produced by neutrophils have been identified as a novel pro-
tumorigenic mechanism in various cancers (Branzk et al,
2014). NETs are web-like structures composed of DNA,
histones, and granules released from activated neutrophils
(Fuchs et al.,, 2007). Previous studies have shown that NETs
levels in the peripheral blood of healthy individuals are lower
compared to those in cancer patients (Rayes et al., 2019; Jin et al,,
2019). Additionally, in vitro studies have demonstrated that co-
culturing neutrophils with breast cancer and lung cancer tumor
cells can induce NETs formation (Masucci et al., 2020; Wu et al.,
2020; Park et al., 2016).

Recent studies have indicated that NETs play a tumor-
suppressive role within the TME (Han et al., 2024). On one
hand, NETs can repel cytotoxic
immunosuppressive cells. On the other hand, NETs can serve

cells and attract
as a physical barrier, preventing antibody-dependent cellular
cytotoxicity (ADCC) (Teijeira et al., 2021). Notably, NETs can
express PD-L1, leading to the exhaustion of CD8" T cells within
the TME. Anti-NET therapies might enhance immune cell-
mediated tumor cell killing and synergize with immune
checkpoint inhibitors (ICIs) (Kaltenmeier et al., 2021; Wang
et al,, 2021). Therefore, combining anti-NET treatments with
ICIs could potentially reduce the incidence of ICI resistance and
offer a new therapeutic strategy for cancer treatment.

Currently, a novel anticancer strategy involves inhibiting the
formation of NETs or promoting the degradation of NETs within
tumors (Papayannopoulos et al., 2010). Unfortunately, drugs
targeting NETs have not yet been developed, thus failing to
improve the prognosis of cancer patients (Lewis et al, 2015).
Targeted therapies that modulate neutrophil recruitment and
NET formation in preclinical models suggest new therapeutic
strategies, specifically targeting the upstream mediators of NET
formation in tumors (Tang et al., 2020). Therefore, exploring the
upstream mediators of NET's is becoming an essential component of
targeted therapy.
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Given the immunosuppressive functions of NETs within the
tumor microenvironment and their potential role in promoting
resistance to immune checkpoint inhibitors, targeting NETs has
emerged as a promising therapeutic strategy in several cancers.
However, in OSCC, the clinical relevance and therapeutic
implications of NETs remain poorly understood. In this study,
we developed a prognostic NETs biomarker for patients with
OSCC using machine learning approaches. Among the genes
comprising this NETs signature, LINC00937 was identified as a
key feature gene due to its prognostic relevance and elevated
expression in  tumor tissues.  Functional  experiments
demonstrated that LINC00937 promotes proliferation, migration,
and invasion of OSCC cells, suggesting a strong oncogenic role.
Although direct evidence linking LINC00937 to NET formation is
lacking, we speculate that it may be involved in NET-associated
regulatory processes. Overall, our findings not only provide a robust
prognostic tool but also highlight LINC00937 as a potential
therapeutic target, contributing to a deeper understanding of
NET biology in OSCC and informing future immunotherapy

strategies.

Materials and methods
Data download and processing

In this study, all data were obtained from publicly available
online sources. Gene expression data and clinical data for OSCC
were downloaded from the TCGA database (https://portal.gdc.
cancer.gov/), including 314 RNA-seq datasets and 314 clinical
datasets. Additionally, OSCC gene expression data were
downloaded from the GEO database (https://www.ncbinlm.nih.
gov/geo/), including GSE31056 (n = 96) (Reis et al, 2011),
GSE41613 (n = 97) (Lohavani et al,, 2013), GSE42743 (n = 103)
(Zhao et al., 2022), and GSE85446 (n = 66) (van Hooff et al., 2012).

The data obtained from GEO was corrected and normalized
R package (v 3.50.1), followed by
log2 transformation. Batch effects between datasets were then

using  the “limma”
removed using the R package “ComBat”. For the data obtained
from TCGA, gene ID annotation was performed using the Ensemble
database. In cases where genes had duplicate names, only the gene
with the highest expression level was retained. RNA-seq expression
data downloaded from TCGA was provided in transcripts per
million (TPM), and gene expression levels were normalized using
log2 (TPM+1).

Non negative matrix factorization clustering
based on NETs related genes

In previous studies, a total of 89 NETs-related genes were
identified (Wang et al, 2020; Zhang et al,, 2022). Non-negative
matrix factorization (NMF) was employed to perform clustering
analysis on the TCGA cohort based on the expression levels of these
NETs-related genes. Since the number of clusters (k) in NMF must
be manually specified, we tested a range of k-values from 3 to 8. This
range was selected based on prior studies involving molecular
subtype identification in cancer, where 3 to 8 subtypes are
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FIGURE 1

NMF analysis using NETs-related genes. (A) Relationship between NMF class coefficients and number of subtypes; (B) Heatmap illustrating the
distribution of NETs expression in tumor samples across NETs subtypes; (C) Kaplan-Meier curves showing OS of patients in different NETs subtypes; (D)
Differences in hallmark enrichment scores among NETSs subtypes; (E) Differences in CIBERSORT-related immune cell abundance among NETSs subtypes;
(F) Differences in Stromal Score among NETSs subtypes; (G) Differences in Immune Score among NETs subtypes; (H) Differences in ESTIMATE Score
among NETs subtypes; (I) Differences in Tumor Purity among NETs subtypes.

commonly observed and considered biologically meaningful. For
each k-value within this range, NMF was run with 50 iterations to
ensure stability of clustering results. We then evaluated clustering
quality using the product of the cophenetic correlation coefficient
and the dispersion coefficient—two commonly used metrics
reflecting cluster robustness and separation. The k-value that
yielded the highest product of these two metrics was selected as
the optimal number of clusters. Finally, NMF was performed with
500 iterations using the optimal k to identify stable NETs-related
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subtypes in OSCC. All procedures were conducted using the R
package “nmf”.

Enrichment analysis and single sample gene
set enrichment analysis
The R package “clusterProfiler” (v 4.2.2) was used for

performing Gene Ontology (GO) enrichment analysis and

frontiersin.org


mailto:Image of FGENE_fgene-2025-1616868_wc_f1|tif
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1616868

Wang et al. 10.3389/fgene.2025.1616868

TABLE 1 Clinical characteristics of OSCC patients in the NETs subtype.

Characteristic C1 (n=90) C2 (n = 59) n = 48) C4 (n = 57) C5(n =
Gender: <0.001
Female 24 (26.7%) 29 (49.2%) 21 (43.8%) 8 (14.0%) 17 (28.3%)
Male 66 (73.3%) 30 (50.8%) 27 (56.2%) 49 (86.0%) 43 (71.7%)
Age 58.9 (13.1) 65.0 (11.2) 63.3 (12.9) 59.8 (13.7) 62.0 (13.0) 0.039
Tissue:
Base of tongue 6 (6.67%) 5 (8.47%) 6 (12.5%) 5 (8.77%) 1 (1.67%)
Buccal Mucosa 5 (5.56%) 5 (8.47%) 2 (4.17%) 4 (7.02%) 6 (10.0%)
Floor of mouth 24 (26.7%) 11 (18.6%) 7 (14.6%) 9 (15.8%) 9 (15.0%)
Hard Palate 1 (1.11%) 1 (1.69%) 3 (6.25%) 0 (0.00%) 2 (3.33%)
Lip 0 (0.00%) 0 (0.00%) 1 (2.08%) 2 (3.51%) 0 (0.00%)
Oral Cavity 18 (20.0%) 16 (27.1%) 9 (18.8%) 13 (22.8%) 16 (26.7%)
Oral Tongue 36 (40.0%) 21 (35.6%) 20 (41.7%) 24 (42.1%) 26 (43.3%)
Grade:
Gl 21 (23.9%) 6 (10.2%) 11 (22.9%) 3 (5.26%) 8 (13.3%)
G2 55 (62.5%) 34 (57.6%) 28 (58.3%) 37 (64.9%) 37 (61.7%)
G3 11 (12.5%) 18 (30.5%) 8 (16.7%) 12 (21.1%) 15 (25.0%)
G4 0 (0.00%) 0 (0.00%) 0 (0.00%) 2 (3.51%) 0 (0.00%)
GX 1 (1.14%) 1 (1.69%) 1 (2.08%) 3 (5.26%) 0 (0.00%)
HPV status: 0.011
Negative 11 (91.7%) 8 (100%) 6 (60.0%) 10 (71.4%) 17 (100%)
Positive 1 (8.33%) 0 (0.00%) 4 (40.0%) 4 (28.6%) 0 (0.00%)
Smoking: 0.698
No 44 (48.9%) 31 (52.5%) 23 (47.9%) 23 (40.4%) 26 (43.3%)
Yes 46 (51.1%) 28 (47.5%) 25 (52.1%) 34 (59.6%) 34 (56.7%)
Alcohol: 0.071
No 33 (37.9%) 25 (42.4%) 17 (36.2%) 12 (22.6%) 14 (23.3%)
Yes 54 (62.1%) 34 (57.6%) 30 (63.8%) 41 (77.4%) 46 (76.7%)
Stage:
I 1 (1.11%) 3 (5.08%) 3 (6.25%) 3 (5.26%) 2 (3.33%)
I 24 (26.7%) 22 (37.3%) 11 (22.9%) 15 (26.3%) 9 (15.0%)
11 17 (18.9%) 9 (15.3%) 16 (33.3%) 18 (31.6%) 11 (18.3%)
v 48 (53.3%) 25 (42.4%) 18 (37.5%) 21 (36.8%) 38 (63.3%)
T.stage:
Tl 4 (4.44%) 4 (6.78%) 4 (8.33%) 6 (10.5%) 3 (5.00%)
T2 31 (34.4%) 24 (40.7%) 17 (35.4%) 19 (33.3%) 14 (23.3%)
T3 25 (27.8%) 13 (22.0%) 11 (22.9%) 15 (26.3%) 17 (28.3%)
T4 28 (31.1%) 17 (28.8%) 14 (29.2%) 15 (26.3%) 26 (43.3%)
X 2 (2.22%) 1 (1.69%) 2 (4.17%) 2 (3.51%) 0 (0.00%)
N.stage:
NO 40 (44.4%) 34 (57.6%) 24 (50.0%) 31 (54.4%) 29 (48.3%)
N1 16 (17.8%) 11 (18.6%) 12 (25.0%) 9 (15.8%) 9 (15.0%)
N2 29 (32.2%) 12 (20.3%) 8 (16.7%) 14 (24.6%) 21 (35.0%)
N3 1 (1.11%) 1 (1.69%) 0 (0.00%) 0 (0.00%) 1 (1.67%)
NX 4 (4.44%) 1 (1.69%) 4 (8.33%) 3 (5.26%) 0 (0.00%)
M.stage: 0.714
Mo 83 (92.2%) 58 (98.3%) 46 (95.8%) 53 (93.0%) 58 (96.7%)
M1 2 (2.22%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
MX 5 (5.56%) 1 (1.69%) 2 (4.17%) 4 (7.02%) 2 (3.33%)
KEGG pathway enrichment analysis to predict the biological Hallmark and immune cell infiltration gene sets were collected

functions of genes. Enrichment analysis results with a  from the MSigDB database (https://www.gsea-msigdb.org/gsea/
p-value <0.05 were considered statistically significant. index.jsp). Gene Set Variation Analysis (GSVA) using the “gsva”
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Identification of NETs-related prognostic genes using WGCNA and machine learning. (A) Scale-free topology fit index (left) and mean connectivity
(right) for various soft-thresholding powers in WGCNA. Power = 8 was selected to ensure approximate scale-free topology (R? = 0.9); (B) Dendrogram of
gene clustering based on topological overlap matrix. Different modules are represented by distinct colors; (C) Heatmap showing the correlation between
each module eigengene and NETs molecular subtypes; (D) Scatter plot showing the correlation between module membership and gene
significance for the red module (cor = 0.65, p = 1.5e—54), indicating that key genes within the module are closely associated with subtype traits; (E-G)
Comparison of predictive performance of six machine learning algorithms in OSCC prognosis prediction. Time-dependent AUC values at 1 year, 3 years,
and 5 years were calculated using cross-validation. Higher AUC values indicate better predictive accuracy. The Enet model achieved the best overall
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FIGURE 2 (Continued)
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performance and was selected to construct the final NETs-related prognostic signature; (H-K) Bubble plots showing enrichment analysis results of
NETs signature-related genes in BP (biological process), CC (cellular component), MF (molecular function), and KEGG (Kyoto Encyclopedia of Genes and

Genomes) pathways.

function in the R package “GSVA” (v 1.44.3) was employed for
single-sample gene set enrichment analysis (ssGSEA) to evaluate the
standardized enrichment scores (NESs) of gene sets in each patient.
The R package “estimate” was utilized to compute StromalScore,
ESTIMATEScore, and

ImmuneScore, TumorPurity  for

each subtype.

Construction of WGCNA network

Weighted Gene Co-expression Network Analysis (WGCNA) is
a systems biology approach that identifies modules of highly
correlated genes based on their relationships with gene sets and
phenotypes, aiming to discover candidate biomarker genes and
potential therapeutic targets. In this study, we used the gene
expression profiles of OSCC from TCGA to construct a WGCNA
network. First, samples and genes were filtered, and then the R
package “WGCNA” (v 1.71) was used to calculate the Pearson
correlation between all pairs of genes in the selected samples,
constructing an adjacency matrix. To ensure a scale-free network,
we chose a soft-thresholding power B = 8 (R2 = 0.90). Next, to
further identify functional modules in the weighted gene co-
expression network, we calculated the Topological Overlap
Measure (TOM) based on the adjacency matrix. Using the TOM
values, we employed a dynamic tree-cutting method to establish
gene modules and selected module eigengenes (MEs). MEs are
considered representative of the gene expression profiles within
each module.

Machine learning framework establishes
prognostic NETs signature

To establish a robust NETs signature, we employed six machine
learning algorithms on the TCGA dataset: CoxBoost, Elastic Net
(Enet), Lasso, Random Forest (RF), Ridge Regression, and Support
Vector Machine (SVM). Patients were randomly split into training
(70%) and validation (30%) sets. Model performance was evaluated
using 10-fold cross-validation to compute and compare the AUC
values for 1-, 3-, and 5-year survival predictions. This approach was
used to select the best NET's signature.

Construction of predictive
nomogram model

After selecting the optimal NETSs signature, the Normalized
Enrichment Scores (NESs) of the signature were calculated using
ssGSEA. These NESs, along with other clinical features, were used to
build a nomogram model to predict 1-, 3-, and 5-year overall
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survival rates for patients with OSCC. Calibration curves were
established to assess the consistency between predicted and actual
The “rms”

nomogram model.

survival. R package was used to construct the

NETSs signature annotates tumor
microenvironment, signaling pathways, and
immune-related features

We collected 5 classes of immune regulatory factors, including
antigen presentation, immune inhibition, immune activation,
chemokines, and receptors. Signal pathways related to targeted
therapy and immunotherapy were collected from the MSigDB
database, and NESs were calculated using ssGSEA. Five immune
deconvolution methods were used to assess immune cell infiltration
abundance in patients with OSCC, including quantiseq,
CIBERSORT, MCPcounter, Xcell, and EPIC. The
Immune Phenotype (TIP, http://biocchrbmu.edu.cn) was used to

Tumor

evaluate anticancer immune activity (Xu L. et al., 2018). The TIDE
(http://tide.dfci.harvard.edu/) database was used for immune-
related feature analysis (Avila Cobos et al., 2020).

Patients and specimens

Ten pairs of OSCC patients with established OSCC diagnosis
were collected by the Department of Stomatology Taihe Hospital,
Hubei University of Medicine. In this study, none of the patients was
treated with neoadjuvant therapy. Their OSCC samples and
matched non-carcinoma tissue samples were first formalin-fixed,
paraffin-embedded utilized for testing the expression of LINC00937.
The Ethical Committees of the Taihe Hospital affiliated to Hubei
University of Medicine permitted our study. Each tissue was
provided the informed consent before participation.

Fluorescence in situ hybridization (FISH)

Fluorescence in situ hybridization (FISH) was used to test the
expression of LINC00937 by a Probe Mix kit (Servicebio, Wuhan,
China). OSCC tissue and normal tissue were firstly fixed in 4%
paraformaldehyde (Solarbio, China) for 10 min. The protocol was
used previously. Then, the pre-hybridization pad was discarded, and
150 pL of the hybridization buffer was added with the IncRNA FISH
Probe Mix. Hybridization was done at 37 °C overnight, followed by
washing with different buffers at 42 °C. Nuclei were treatment with
DAPI (Servicebio, Wuhan, China) and images collected by inverted
Jiangxi, China) in five

fluorescence microscopy (Phenix,

random areas.
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TABLE 2 The univariate Cox analysis of genes in Enet model.

Gene HR CI5 ClI95 p value CI 95%
CASQ2 0.25 0.11 0.57 0.001 | 0.11-0.57
MAPK13 035 0.15 0.80 0012 0.15-0.8

ETFDH 037 020 0.68 0.002  0.2-0.68

GOT1 0.40 027 0.60 0.000  0.27-0.6

SYN1 0.43 025 0.73 0.002 | 0.25-0.73
ACADM 0.43 023 0.78 0.006 | 0.23-0.78
PKIA 0.44 0.20 0.95 0.036 | 0.2-0.95

SLC25A4 0.45 029 0.71 0.001 = 0.29-0.71
ZNF385B 0.46 0.28 0.76 0.003 | 0.28-0.76
SERPINB5 0.46 025 0.85 0012 | 0.25-0.85
DCAF6 0.47 023 0.95 0.036 | 0.23-0.95
PFKM 0.49 032 0.76 0.002 | 0.32-0.76
DGLUCY 0.49 030 0.78 0.003  0.3-0.78

GPDIL 0.51 035 0.74 0.000  0.35-0.74
RNF149 0.51 035 0.76 0.001 | 0.35-0.76
PPPIR3F 053 0.36 0.79 0.001 | 0.36-0.79
NNAT 053 029 0.97 0.039 | 0.29-0.97
SCT 0.53 0.28 0.99 0.046 | 0.28-0.99
CLTCL1 0.54 037 0.80 0.002  037-0.8

YBX3 0.54 036 0.82 0.004  0.36-0.82
LINC00937 0.55 036 0.83 0.005 | 0.36-0.83
CRAT 0.55 035 0.85 0.008  0.35-0.85
PLN 0.55 035 0.88 0012 | 0.35-0.88
IDH2 0.55 033 0.94 0.027 | 0.33-0.94
CAMK2A 0.56 035 0.90 0016 | 0.35-0.9

ANKRDI10 0.56 032 0.99 0.048 | 0.32-0.99
MYLK4 0.57 035 093 0.024 | 035-0.93
TRIM63 058 038 0.87 0.009 | 0.38-0.87
P2RX6 0.58 038 091 0.016 | 0.38-0.91
ACYP2 058 037 091 0017 = 037-0.91
PYGL 0.59 039 0.90 0013 | 0.39-0.9

TMEM38B 0.60 0.40 0.88 0.009 = 0.4-0.88

ACTC1 0.60 037 0.95 0.031  0.37-0.95
SMTNL2 0.61 042 0.88 0.009 | 0.42-0.88
1P6K3 0.63 043 093 0.021 | 0.43-0.93
PPPIR3C 0.63 0.41 0.96 0.033 | 0.41-0.96
MAP3K7CL 0.64 0.44 093 0.019 | 0.44-0.93
CIDEC 0.64 0.4 0.94 0023 | 0.44-0.94

Frontiers in Genetics

(Continued in next column)

07

10.3389/fgene.2025.1616868

TABLE 2 (Continued) The univariate Cox analysis of genes in Enet model.

Gene HR CI5 ClI95 p value CI 95%
KLHL30 0.64 043 0.95 0.026 | 0.43-0.95
ADHIB 0.66 045 0.95 0.027 | 0.45-0.95
ADIPOQ 0.67 0.46 0.98 0.041 | 0.46-0.98
ANKRDI1 0.69 047 1.00 0.049  047-1
SVIL2P 1.48 1.02 215 0041 | 1.02-2.15
VIT 1.55 1.04 231 0.030  1.04-231
GRIP2 1.60 1.10 232 0013 | 1.1-232
NATDI 1.79 1.14 2.80 0011 | 1.14-2.8
AC104564.1 1.95 123 3.09 0.004  1.23-3.09
HSPBS 217 1.05 447 0.036 | 1.05-4.47
SCN3B 2.36 1.26 4.41 0.007 = 1.26-4.41
ASBI 271 1.10 6.65 0.030 | 1.1-6.65
PLA2G4C 2.74 1.20 6.24 0.017 | 1.2-6.24
FAM238C 345 1.80 6.62 0.000  1.8-6.62

Cell culture and siRNA transfection

CAL-27, were obtained from TongPai Biotechnology Co., LTD.
(Shang Hai, China). OSCC cells were grown in DMEM (Gibco,
United States) with 10% fetal bovine serum (Gibco, Australia) at
37 °C with a 5% CO2 incubator. LINC00937 siRNAs were obtained
from RiboBIO (Guangzhou, China). siRNA sequences were:

si-h-LINC00937_001: 5-GAGGAATAACTTCACTCTT-3;
si-h-LINC00937_002: 5-GTATAAATTGAGCTGACT-3;
si-h-LINC00937_003: 5-GAGCTGACTGCAAGGTACT-3;

The LINCO00937-siRNA targeting si-LINC00937 or negative
control si-NC by RiboFECTTM CP (RiboBIO, Guangzhou,
China). Control siRNAs were standard as the negative control.

RNA isolation and quantitative real-
time gPCR

Total RNA was harvested and used for cDNA synthesis by Trizol
reagent (Thermo Fisher Scientific, USA) and SuperScript II first-strand
cDNA synthesis kit (Thermo Fisher Scientific, USA). RT-qPCR was
detected by SYBR Premix Ex Taq (TaKaRa, China) based on the
control. The 27T approach was used to determine expression levels
relative to those of GAPDH. The primer sequences were as follow:

LINC00937:

Forward: 5'-CGGGTCCTTCCTCTTCCCCA-3’
Reverse: 5'-CGCAGCCTCTTCTCTTCGGG-3'

GAPDH:

Forward: 5'-GAAGGTGAAGGTCGGAGTC-3';
Reverse: 5'-GAAGATGGTGATGGGATTTC-3'
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TABLE 3 Clinical characteristics of OSCC patients in the NETs signature.

Characteristic  High (n = 213) low (n = 101) p value
Gender: 0.0727
Female 69 (32.4%) 30 (29.7%)
Male 144 (67.6%) 71 (70.3%)
Age 60.1 (13.6) 64.3 (11.0) 0.0004
Tissue: 0.0504
Base of tongue 12 (5.63%) 11 (10.9%)
Buccal Mucosa 15 (7.04%) 7 (6.93%)
Floor of mouth 33 (15.5%) 27 (26.7%)
Hard Palate 1 (0.47%) 6 (5.94%)
Lip 1 (0.47%) 2 (1.98%)
Oral Cavity 44 (20.7%) 28 (27.7%)
Oral Tongue 107 (50.2%) 20 (19.8%)
Grade: 0.0293
Gl 32 (15.0%) 17 (17.2%)
G2 137 (64.3%) 54 (54.5%)
G3 38 (17.8%) 26 (26.3%)
G4 1 (0.47%) 1 (1.01%)
GX 5 (2.35%) 1 (1.01%)
HPV status: 0.015
Negative 40 (93.0%) 12 (66.7%)
Positive 3 (6.98%) 6 (33.3%)
Smoking: 0.0307
No 95 (44.6%) 52 (51.5%)
Yes 118 (55.4%) 49 (48.5%)
Alcohol: 0.0764
No 67 (32.2%) 34 (34.7%)
Yes 141 (67.8%) 64 (65.3%)
Stage: 0.0458
I 10 (4.69%) 2 (1.98%)
I 57 (26.8%) 24 (23.8%)
11 50 (23.5%) 21 (20.8%)
v 96 (45.1%) 54 (53.5%)
T.stage: 0.0527
Tl 15 (7.04%) 6 (5.94%)
T2 76 (35.7%) 29 (28.7%)
T3 56 (26.3%) 25 (24.8%)
T4 62 (29.1%) 38 (37.6%)
X 4 (1.88%) 3 (2.97%)
N.stage: 0.0538
NO 105 (49.3%) 53 (52.5%)
N1 41 (19.2%) 16 (15.8%)
N2 59 (27.7%) 25 (24.8%)
N3 1 (0.47%) 2 (1.98%)
NX 7 (3.29%) 5 (4.95%)
M.stage: 0.0203
MO 205 (96.2%) 93 (92.1%)
M1 1 (0.47%) 1 (0.99%)
MX 7 (3.29%) 7 (6.93%)

(Continued in next column)
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TABLE 3 (Continued) Clinical characteristics of OSCC patients in the NETs
signature.

Characteristic  High (n = 213) low (n = 101) p value
CancerSubtype: 0.0463
c1 60 (28.2%) 30 (29.7%)
c2 40 (18.8%) 19 (18.8%)
c3 28 (13.1%) 20 (19.8%)
C4 40 (18.8%) 17 (16.8%)
cs 45 (21.1%) 15 (14.9%)

Cell growth and proliferation

CCK-8 (Cell Counting Kit 8, Servicebio, Wuhan, China) and
colony formation analyses were employed to test the cell growth. For
the CCK-8 comments, OSCC cells were first inoculated in 96-well
plates with cell numbers of 6,000/well. The CCK-8 reagent was
added to every well at varying time points (0, 24, 48, and 72 h), after
which cells were stored at 37 °C for 2-4 h. All the cells were tested at
the optical density (OD) of 450 nm by a microplate reader (Thermo
Fisher Scientific, USA).

For colony formation assays, cells after treatment as before.
After 14 days treatment cells crucial with 1% crystal violet Dissolve
in methanol for 15-30 min.

Trans-well assay

8-um pore size chambers employed cell migration tests without
the Matrigel gel. Cells with the number at 50,000 were inoculated
into the upper section with a none-serum media. At the lower well
stage, 20% FBS-supplemented medium was added. After 1 day of
incubation, all cells in the wells were stained, after which optical
microscopy (Phenix, Jiangxi, China) was performed for observation.
Five random areas were collected for each sample. Chambers also
performed cell invasion assays with Matrigel gel. Other procedures
were performed as earlier described.

Statistical analysis

We used the surv_cutpoint function from the R package
“survminer” (v 0.4.9) to calculate the optimal cutoff values and
stratify patients into groups. Kaplan-Meier survival curves were
plotted using the R packages “survminer” and “survival” (v 3.3-1) to
compare the differences in survival between different patient groups,
assessed by the two-sided log-rank test. The R package “pROC” (v
1.18.0) was used for ROC curve analysis. Data visualization was
conducted using the R package “ggplot2” (v 3.3.5). For continuous
variable comparisons between two groups, we used the Wilcoxon rank-
sum test for unpaired data and paired t-tests when applicable. Multiple
group comparisons were adjusted using the Benjamini-Hochberg
method to control the false discovery rate (FDR).
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Establishment of prognostic NETs signature for OSCC. (A) Kaplan-Meier curves of OS for patients grouped by NETs signature; (B) AUC values for the
NETs signature predicting 1 years, 3 years, and 5 years survival in OSCC patients; (C—F) Kaplan-Meier curves of OS for patients grouped by NETs signature
in four validation cohorts: GSE31056, GSE31056, GSE42743, and GSE85446; (G) Nomogram model constructed with the NETs signature; (H-J)
Calibration plots of the nomogram model showing the consistency between predicted and actual survival rates at 1 year, 3 years, and 5 years.
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FIGURE 4
Immune characteristics of the NETs signature. (A) Heatmap showing the correlation between the NETs signature and 5 classes of immune regulatory

molecules; (B) Heatmap illustrating differences between NETs signature and immune infiltrating cells using the Xcell algorithm; (C) Heatmap
demonstrating differences between NETs signature and immune infiltrating cells using QUANTISEQ, CIBERSORT, MCPCOUNTER, and EPIC algorithms;
(D) Bean plot showing differences between NETs signature and TIP score; (E) Heatmap showing the correlation between the NETs signature in
OSCC and immune-related pathways; (F) Heatmap showing the correlation between the NETs signature in OSCC and targeted therapy-

related pathways.
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FIGURE 5

Predictive value of the NETs signature for immunotherapy. (A) Violin plot showing TIDE score, Exclusion score, Dysfunction score, IFNG level,
Merckl8 score, CD274 score, CD8 score, MDSC score, CAF score, and tumor-associated M2 macrophage score between the two NETs signature groups;
(B) Bar graph showing the number of responders to immunotherapy in each NETs signature group; (C—E) Bar graphs showing the number of responders
to immunotherapy in four validation cohorts, namely, GSE31056, GSE31056, GSE42743, and GSE85446 cohorts.

All statistical analyses in this study were performed using the R
programming language (v 4.2.0). Unless otherwise stated, all
statistical tests were two-sided, and a P-value < 0.05 was
considered statistically significant.

Results

Development and validation of NETs-related
genetic subtypes

Based on the expression levels of 89 NETs-related genes, we
conducted NMF analysis on the TCGA cohort. The correlation plot
indicated that k = 5 was the optimal number of clusters, resulting in
the stratification of OSCC patients into C1-C5 subtypes (Figures
1A,B). Clinical characteristics of patients across the 5 subtypes are
summarized in Table 1. There were no significant differences in age,
gender, and N stage distribution among the 5 subtypes, while
significant differences were observed in UICC stage, T stage, M
stage, Grade, and tumor site distribution. Kaplan-Meier survival
curve analysis revealed significant differences in overall survival
among the 5 subtypes (Figure 1C), with better prognosis observed in
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C5 subtype patients and shorter survival in C2 and C4 subtype
patients. ssGSEA analysis of hallmark pathways showed enrichment
of Oxidative_phosphorylation in C1 subtype, Interferon_gamma_
response and Interferon_alpha_response in C2 subtype, Kras_
signaling in C3 subtype, Adipogenesis in C4 subtype, and
Angiogenesis in C5 subtype (Figure 1D). Deconvolution analysis
demonstrated enrichment of different immune cells across the
5 subtypes (Figure 1E). Additionally, tumor immune infiltration
status was significantly enriched in different subtypes, with higher
StromalScore in C5 subtype, higher ImmuneScore and
ESTIMATEScore in C2 subtype, and lower TumorPurity in
C2 and C5 subtypes. In contrast, Cl subtype exhibited higher
TumorPurity (Figures 1F-I).

WGCNA network identifies subtype-
associated genes

After constructing the co-expression network using WGCNA
with a soft-thresholding power of B = 8, we identified multiple gene
modules based on topological overlap and hierarchical clustering
(R* = 0.9, Figures 2A,B). To determine the biologically relevant
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FIGURE 6

LINC00937 has a prognostic value in OSCC. (A) the expression of LINCO0937 between OSCC tissues and adjacent tissues from TCGA cohort; (B)
Kaplan-Meier analysis of LINC00937 in OSCC by TCGA cohort; (C) AUC area of LINCO0937 in TCGA cohort; (D) FISH staining was used to show the

expression and location in OSCC patients. ** represents p < 0.01.

module, we evaluated the correlation between module eigengenes
(MEs) and the defined NETs subtypes (Figure 2C). The red module
showed the strongest and most statistically significant correlation
0.65, p = 1.5e-54, Figure 2D), indicating a meaningful

(cor
association with NETs-driven phenotypes. Genes within this
module were further filtered using univariate Cox regression to
identify those significantly associated with overall survival (p < 0.01,
Table 2). This process yielded 186 candidate genes for subsequent
machine learning-based model construction. Next, we applied six
machine learning algorithms to filter the 186 genes and select the
optimal NETs signature. We calculated the AUC values of each
model for 1-, 3-, and 5-year survival to evaluate their prognostic
performance in OSCC patients. The results showed that the Enet
model identified 52 genes with the highest AUC values (Figures
2E-G; Table 2; Supplementary Table 1).

Subsequently, we conducted GO enrichment analysis and
KEGG pathway analysis on the genes identified by the Enet
model. GO enrichment analysis revealed that these feature genes
were enriched in fatty acid oxidation (BP, Figure 2H; Supplementary
Table 2), contractile fiber (CC, Figure 2I; Supplementary Table 2),
and AMP binding (MF, Figure 2J; Supplementary Table 2). KEGG
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pathway analysis indicated enrichment in Necroptosis for these
feature genes (Figure 2K; Supplementary Table 3).

Determination and validation of a prognostic
NETs signature

Based on ssGSEA, we calculated the NESs of the feature genes
identified by the Enet model in OSCC patients, defining it as the NET's
signature. Using the optimal cutoff value based on the NETS signature,
we divided patients into high and low NET' signature groups. We first
evaluated the differences in clinical characteristics between the high
and low NETs signature groups (Table 3). Notably, the low NETs
signature group had a higher proportion of HPV-positive patients,
while the high NETs signature group had a higher proportion of
smokers. Additionally, stage IV patients were predominantly enriched
in the low NETs signature group. Further analysis of their impact on
OSCC prognosis revealed that patients in the low NETSs signature
group had significantly longer survival times compared to those in the
high NETs signature group (Figure 3A). Moreover, ROC curve
analysis demonstrated that the NETs signature had high predictive
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efficacy for 1-, 3-, and 5-year prognosis in OSCC patients (Figure 3B).
To ensure the robustness of our findings, we performed further
validation using four validation cohorts. The results showed
consistent favorable outcomes for the NETs signature across all
four validation cohorts (Figures 3C-F).

To provide clinicians with a quantifiable method for patient
prognosis, we further explored the potential associations between
the NETs signature and clinical pathological features in the TCGA
cohort. We constructed a nomogram model (Figure 3G)
incorporating the NETs signature and clinical pathological
features. Higher scores of the NETSs signature in OSCC patients
were associated with poorer prognosis. Based on the calibration
curves of the nomogram model, we used the NETSs signature to
predict the survival probabilities of patients at 1, 3, and 5 years after
diagnosis of OSCC. The calibration curves for 1-, 3-, and 5-year
survival probabilities accurately predicted the survival rates of
patients at these time points (Figures 3H-J). These results
demonstrate that the nomogram model based on the NETs
signature has strong discriminatory and calibration abilities.
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Features of NETs signatures in tumor
microenvironment

In patients with OSCC, the NETs signature shows significant
correlations with 5 categories of immune regulatory factors
(Figure 4A). Antigen presentation, immune activation, and
receptor molecules are particularly highly expressed in the high
NETs signature group, chemokines
suppression factors are highly expressed in the low NETs
signature group. Various deconvolution algorithms were used to
assess the immune cell infiltration density between the two patient
groups. In the high NETs signature group, OSCC patients enrich
immune-promoting cells such as NK cells, CD8" T cells, and CD4"
T cells, while in the low NETS signature group, immune-suppressive
cells such as myeloid-derived suppressor cells (MDSCs), neutrophils,
mast cells, and fibroblasts are enriched (Figures 4B,C). We used an
online tool to calculate the TIP score of OSCC patients to explore the
biological mechanisms related to the NETs signature. Cancer
immune cycle is more activated in the low NETs signature group,

whereas and immune
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The difference in LINC00937 expression levels before and after
knockdown (the number of biological replicates is three independent
experiments), *p < 0.05, ****p < 0.001.

including cancer antigen presentation (Step 2), immune cell
activation (Step 3), and recruitment of tumor immune infiltrating
cells (Step 4). In contrast, immune cell infiltration (Step 5), T cell
recognition of tumor cells (Step 6), and killing of tumor cells (Step 7)
are enriched in the high NETs signature group (Figure 4D).
Additionally, the NETs signature is significantly negatively
correlated with PD-1 immune therapy, nucleotide excision repair,
and mismatch repair (Figure 4E). We also observed significant
positive correlations between the NETs signature and the ALK
signaling pathway, FGFR3 signaling pathway, while negative
correlations were found with the EGFR signaling pathway and
KIT signaling pathway (Figure 4F).

NETs related immune features

We further explored the relationship between the NETSs
signature and various immune therapy predictive factors. TIDE
score, Dysfunction score, Exclusion score, CD274, and CAF are
higher in the high NETs signature group (Figure 5A). Conversely,
IFNG score, Merck18, myeloid-derived suppressor cells (MDSCs),
CDS8, and tumor-associated M2 macrophages are higher in the low
NETSs signature group (Figure 5A). We also analyzed the association
between the NETSs signature and immune therapy response rates.
The results revealed a higher proportion of immune therapy
response in the low NETs signature group (Figure 5B). The
NETs signature was further analyzed in multiple validation
cohorts. It is evident that the low NETs signature group exhibits
higher response rates to immune therapy, while the high NETs
signature group is relatively resistant (Figures 5C-F). Based on the
TIDE algorithm, OSCC patients in the low NETs signature group
have a better response to immune therapy.
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LINC00937 is highly expressed in OSCC

Due to its higher expression levels and survival relevance in
OSCC patients, we selected LINC00937 for further analysis (Figures
6A-C). Compared to normal tissue samples, LINC00937 is
upregulated in OSCC tumor tissue samples (p 0.007)
(Figure  6A). Using the optimal cutoff of
LINCO00937 expression levels, OSCC patients were grouped into

value

high and low expression groups, where patients with high expression
levels had longer survival times compared to those with low
expression levels (Figure 6B). Subsequent ROC analysis indicated
that LINC00937 has a strong discriminatory ability between tumor
and normal tissues (AUC = 0.712, Figure 6C). FISH was used to
detect the levels and localization of LINC00937 in OSCC tissues.
Our experimental results showed that in 10 pairs of OSCC tumor
tissue samples and normal tissue samples, LINC00937 is more
highly expressed in OSCC tumor tissue samples and is localized
in the cell nucleus (Figure 6D).

We then evaluated the relationship between clinical pathological
features and the expression levels of LINC00937. The expression
level of LINC00937 was significantly associated with tumor grade
(p=0.01), HPV status (p = 0.02), pathological stage (p = 0.04), while
it showed no association with age (p = 0.57) and gender (p = 0.68)
7A-F). LINC00937 exhibits positive
correlations with several NETs-related genes, such as DCAF®6,
PKIA, and KLHL30, and negative correlations with other genes.
Most correlations were in the mild-to-moderate positive range,

(Figures Meanwhile,

suggesting that high LINC00937 expression may be associated
with an overall transcriptional profile enriched for NETs activity
(Supplementary Figure SI).

LINC00937 promotes proliferation and
migration of OSCC cells

We found that the expression level of LINC00937 is significantly
elevated in OSCC tumor tissues, and LINC00937 can impact the
development of OSCC. To further evaluate the significance of
LINC00937 in OSCC, we used siRNA tools to construct a stable
CAL-27 cell line with LINC00937 knocked down (Figure 8). Firstly,
in CAL-27 cells, silencing LINC00937 inhibited cell growth
compared to the control group (Figure 9A). Secondly, trans-well
experiments showed that knocking down LINC00937 expression
suppressed the migration and invasion of OSCC cells (Figure 9B).
Thirdly, inhibiting LINC00937 suppressed the proliferative ability of
OSCC cells, as shown by the colony formation assay (Figure 9C).
Our study results indicate that inhibiting the expression of
LINC00937 in vitro reduces OSCC cell proliferation, induces
apoptosis, and suppresses metastasis, thereby affecting the
occurrence and development of OSCC.

Discussion

As key mediators involved in extracellular matrix formation,
angiogenesis, and immune response, NETs play a critical role in
tumor progression and metastasis. NETs-related genes have been
identified as promising therapeutic targets in various cancers.
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Therefore, establishing a robust prognostic signature and exploring
genes that mediate NETs formation may offer new therapeutic
strategies for OSCC.

Based on previous studies of NETs-related genes, this study
identified five subtypes in patients with OSCC. Significant
differences were observed in tumor staging among the five
subtypes, with subtype C5 associated with better prognosis and
subtype C2/C4 with poorer prognosis. To ensure robustness and
generalizability of the prognostic NETs signature, we adopted a
machine learning framework incorporating six widely used
their
handling  high-dimensional,

algorithms. These models were selected based on

complementary  strengths in
multicollinear, and survival-related data. Feature selection was
performed through the embedded regularization techniques or
variable importance scores within each model—such as L1 or
L2 penalties in Lasso and Enet, or feature importance ranking in
Random Forest. This approach allowed us to minimize overfitting
while retaining the most informative genes. Among all models
tested, the Enet model achieved the best predictive performance
across multiple time points (1-, 3-, and 5-year AUCs) and was
therefore selected for final signature construction. This multi-model
strategy the stability reliability of the

prognostic biomarker.

enhances and
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High NETs signature group patients exhibit a significant
presence of anti-tumor immune cells in the TME, such as NK
cells (Myers et al., 2021; Tang et al., 2023), CD8" T cells (Virassamy
etal., 2023),and CD4" T cells (Li et al., 2024). Conversely, in the low
NETs signature group, OSCC patients enrich immune-suppressive
cells like MDSCs (Hegde et al., 2021; Cassetta et al., 2020), mast cells
(Cheng et al,, 2021), fibroblasts (Caligiuri and Tuveson, 2023; Biffi
and Tuveson, 2021), and granulocytes. Additionally, various
immune modulators including antigen presentation, immune
inhibition, immune activation, chemokines, and receptors are
upregulated in the high NETs signature group, suppressing
tumor cell recurrence and metastasis. Furthermore, cancer
immune cycles are more activated in the low NETs signature
group. All these factors seem to imply that patients in the high
NETs signature group should have a better prognosis. However, in
our study, patients in the low NETSs signature group had better
outcomes. We need to further explore the mechanisms underlying
this contradiction in future research.

From the perspective of immune therapy, the NETs signature
can predict response rates in patients with OSCC receiving anti-PD-
1 or anti-PD-L1 therapy. It is noteworthy that patients in the high
NETs signature group benefit less from immune therapy. Some
immune suppression markers are upregulated in the high NETSs
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signature group, suggesting a potential link to lower response rates.
Therefore, improving the expression levels of these immune
suppression markers in the tumor microenvironment of the high
NETs signature group should be a major therapeutic focus.

In our study, we observed that OSCC patients with a low NET's
signature had significantly better overall survival and showed
enhanced responsiveness to immunotherapy. This finding
appears to contradict certain prior reports suggesting that NET's
immune

can exert anti-tumorigenic effects

trapping
discrepancy, we propose that the role of NETs in cancer may be
highly context-dependent. In the case of OSCC, it is plausible that
the immunosuppressive effects of NETs, such as recruitment of
MDSCs, increased expression of PD-L1, and inhibition of cytotoxic
T cell activity, outweigh any potential anti-tumor mechanisms.

by enhancing

surveillance or tumor cells. To reconcile this

Moreover, it is important to note that the NETs signature
developed in this study was based on a gene expression-based
machine learning model and does not exclusively represent
classical NETs structural proteins. Instead, it may reflect broader
transcriptomic changes associated with a NET-rich, immune-
suppressive, or stromal-activated tumor microenvironment.
Therefore, the high NETs signature may indirectly indicate a
more immunosuppressive tumor state, explaining its association
with worse prognosis and reduced immunotherapy benefit. These
insights highlight the complexity of NETs biology in OSCC and
underscore the need for mechanistic studies at both the cellular and
pathway levels.

Although previous studies, such as Zhang et al. (2022), have
proposed NETs-related scoring systems in a pan-cancer context, our
study provides several key innovations in the OSCC-specific setting.
First, we applied unsupervised clustering based on NETs-related
genes to define molecular subtypes with distinct immune
phenotypes and prognoses in OSCC, which has not been
previously reported. Second, we constructed a robust prognostic
signature through systematic machine learning involving six
different algorithms, allowing model comparison and optimal
selection based on cross-validated AUC  performance.
Importantly, our model was trained and validated specifically in
OSCC, rather than generalized across cancers, thus increasing its
disease relevance. Furthermore, our study bridges bioinformatic
prediction and biological validation by identifying LINC00937 as
a NETs-signature-derived oncogene and confirming its pro-
tumorigenic role in vitro. Together, these contributions enhance
both the clinical utility and mechanistic understanding of NETs in
OSCC, offering a complementary and novel perspective beyond
previous pan-cancer frameworks.

Previous studies have revealed that LINC00937 acts as an
oncogenic factor in certain cancers, such as cutaneous melanoma
(Xu S. etal, 2018). In our study, we found that LINC00937 is highly
expressed in tumor tissues of OSCC patients. When we correlated
LINCO00937 expression with TNM staging in OSCC patients, we also
found that LINC00937 is lowly expressed in late-stage patients,
further demonstrating its impact on the prognosis of OSCC patients.
In vitro experiments showed that knockdown of LINC00937 in
CAL-27 cell lines inhibits cell proliferation, induces apoptosis, and
suppresses migration and invasion. Based on these results, we
speculate that LINCO00937 is involved in the regulation of

pathological progression in OSCC.
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Interestingly, we observed a seeming contradiction between
clinical and experimental data regarding LINC00937. Clinically,
higher expression of LINC00937 was associated with improved
overall survival and lower tumor stage in OSCC patients,
suggesting a potential
in  vitro

tumor-suppressive role. However,
that
LINCO00937 suppressed proliferation, migration, and invasion
of OSCC cells, This

discrepancy may be attributed to several factors. One possible

experiments  showed knockdown  of

indicating an oncogenic function.

explanation lies in the complexity of the tumor
(TME). The LINC00937

detected in bulk tumor transcriptomes may originate not only

microenvironment expression
from malignant epithelial cells but also from stromal or immune
components. If LINC00937 is predominantly expressed in non-
tumor cells such as immune or fibroblast populations, its higher
expression could reflect a less aggressive or more immune-
responsive tumor phenotype, which aligns with better clinical
outcomes. In contrast, our in vitro findings specifically reflect the
function of LINC00937 in tumor epithelial cells, isolated from the
broader TME, where it appears to facilitate oncogenic behavior.
Another possibility is that LINC00937 may exert context-
dual
environment, epigenetic state, or molecular subtype. Similar

dependent, functions depending on the cellular
contradictory roles have been documented for other long non-
coding RNAs

studies—such as

further mechanistic
single-cell RNA spatial
transcriptomics—are warranted to delineate the cellular
sources and context-specific functions of LINC00937 in OSCC.

This study has several limitations. Firstly, it is based on publicly

in cancer. Therefore,
sequencing or

available bulk data, which cannot fully reflect the cell-cell interaction
effects of neutrophils and other immune cells. Due to the short
lifespan of neutrophils, single-cell sequencing faces challenges in
sample acquisition, and the sequencing depth is relatively low.
Additionally, although this study revealed the association
between LINC00937 and NETs
mechanisms still need further validation at the pathway level.

formation, its

underlying

Conclusion

As described above, our findings suggest that NETs play a
critical role in the tumor progression of OSCC. We conducted
NMF analysis on OSCC patients and identified five subtypes
associated with NETs. Using various machine learning
algorithms, this study established and validated a robust NETSs
signature for OSCC patients. Subsequently, LINC00937 was
identified as a key gene and further investigated through in vitro
experiments. Ultimately, we demonstrated that LINC00937 plays a
detrimental role in OSCC tumor growth and is involved in the
regulation of OSCC pathogenesis.
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