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Introduction: China is the world’s third largest saline–alkali land country, and the
breeding of salt-tolerant rice varieties has always been a key focus of rice
breeders. Screening and identifying salt-tolerant varieties and exploring related
genes are essential for breeding.

Methods: In this study, 450 high-latitude resource populations were planted on
natural saline–alkali soil for 2 years under 2 treatments. The comprehensive
agronomic traits of the populations were evaluated. The principal component
and cluster analyses were used to preliminarily group the phenotypes, and
individual phenotypes were comprehensively scored and ranked to identify
the top 40 saline–alkali tolerant varieties each year.

Results: Notably, S321 and S19 were the most saline-alkali tolerant varieties each
year. Genome-wide association studies identified one saline–alkali-related
position near 6,636,119 bp on chromosome 8 and another near 23,311,931 bp
on chromosome 11. Os08g0214233 and Os11g0604900 were the nearest genes
from the identified positions, respectively. Gene annotation was used to further
screen the polymorphic sites in the associated regions, identifying 17 and 48
genes with 593 variants, including 56 polymorphic sites located in exons.

Discussion: This study provided candidate gene loci for the fine mapping of
saline–alkali tolerance genes and offered excellent resistant rice resources for the
molecular improvement of varieties.
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1 Introduction

With global warming, the saline–alkali land continues to increase at a rate of 1 × 106 to
1.5 × 106 hm2 per year (Shahid et al., 2018). China is the world’s third largest saline–alkali
soil country, with a total saline–alkali land area of about 100 million hm2, mainly distributed
in the northeast, north, northwest, and other regions of China (Yang, 2006; Li et al., 2014).
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Studies have shown that using salt-tolerant rice varieties with
appropriate farming practices can improve saline–alkali land
(Wang et al., 2024). However, studies on rice’s regulatory
mechanisms under saline–alkali stress and related genes were
limited, hindering the full potential of salt-tolerant rice and
making it difficult to establish a complete set of salt-tolerant rice
cultivation techniques to achieve large-scale production and
maximize benefits (Moeljopawiro and Ikehashi, 1981; Qin
et al., 2020).

Recent studies in China and abroad have explored the molecular
mechanisms of salt and alkali tolerance in plants such as rice. The
regulatory mechanisms of rice include the following: 1. Organic
osmotic penetration (Shen et al., 1997; Chen et al., 2011), such as the
induction of the expression of multiple genes, including OsP5CS1,
OsTPS1, OsTPP, and TPS, under salt stress, leading to the
accumulation of organic substances such as proline, betaine, and
trehalose, and increasing rice’s tolerance to stress (Sripinyowanich
et al., 2013; Ge et al., 2008; Li et al., 2011). 2. The regulation of the
redox equilibrium is achieved through antioxidative enzymes. When
plants receive stress signals, these signals activate pathways that lead
to the synthesis of reactive oxygen species (ROS). Excessive
accumulation of ROS can lead to toxic reactions, such as lipid
peroxidation in plants. To counteract this toxicity, plants need to
synthesize their own antioxidative enzymes (Nadarajah, 2020; Xiao
et al., 2021). Studies showed that a series of antioxidative enzyme
genes, including OsAPX2, OsAPXb, and OsAPx8, were all involved
in regulating saline–alkali stress in rice (Zhang et al., 2013; Sofo et al.,
2015). 3. High salt and alkali concentrations can regulate the
synthesis response of plant hormones such as auxin, gibberellin,
brassinosteroids, and strigolactones, which regulate rice’s salt and
alkali tolerance through a series of signal transductions (Wang et al.,
2016; Zhao et al., 2021). In addition, plants can respond to salt and
alkali stress by regulating the absorption and transport of ions in the
plant (Wu, 2018; Wang et al., 2022). Genes related to the absorption
and transport channels of Na+ and K+ ions in rice, such as OsHKT1,
OsHKT2, OsAKT1, and OsKCO1, regulate rice’s tolerance to salt and
alkali stress to a certain extent (Kumar et al., 2013; Campbell et al.,
2017; Wei et al., 2021; Park et al., 2016).

With the rise of genomics research, many saline–alkali-tolerant
genes have been discovered in recent studies using methods such as
genome-wide association studies (GWAS) and bulked segregant
analyses (Yano et al., 2016; Fekih et al., 2013; Takagi et al., 2013).
Based on genome resequencing, these methods have high detection
accuracy and rich variation within populations, making them
particularly suitable for discovering genes related to quantitative
traits (Abe et al., 2012; Kang et al., 2008). Northeast China has more
than 3.2 × 106 hm2 of saline–alkali land, concentrated in the Songnen
Plain, which has one of the world’s three largest saline–alkali soils
(Wang et al., 2009). Therefore, the discovery of saline–alkali tolerant
genes in the japonica rice population in this region is of great
significance for improving rice variety resistance and increasing
grain yield.

Evaluating saline–alkali-tolerant rice varieties is crucial in
comprehensively evaluating the complex yield-related traits and
obtaining phenotypic data representing the saline–alkali
resistance of the varieties. In plant abiotic stress research, the salt
tolerance index is usually chosen as the phenotypic evaluation
parameter (Masuda et al., 2021; Kumawat et al., 2018). However,

it is easily influenced by environmental factors when dealing with
multi-phenotype analysis. Therefore, applying the membership
function method to calculate comprehensive scores can better
evaluate the saline–alkali resistance of materials through
algorithm improvement (Fan et al., 2023). In this study,
450 high-latitude rice resources were planted in 2 different
saline–alkali levels for 2 consecutive years. Nine yield-related
traits, including plant dry weight, heading date, panicle weight,
panicle length, plant height, tiller number, grain number, seed
setting rate and thousand grain weight, were investigated. The
membership function method was used to comprehensively
evaluate the saline–alkali resistance of the population, aiming to
gain a deeper understanding of the resistance traits in these resource
populations. Additionally, GWAS was conducted to screen for
saline–alkali tolerance genes by combining comprehensive
evaluation scores with population resequencing data. This
approach further elucidated the saline–alkali resistance loci in the
population, providing new insights for future gene discovery and the
selection of gene donor varieties for resistance breeding.

2 Materials and methods

2.1 Study materials

The research panel for this study consisted of 450 samples of
high-latitude japonica natural resources obtained from Jilin,
Liaoning, and Heilongjiang provinces in China, as well as
surrounding countries and regions. This mainly included
cultivars and a small number of landraces. These introduced
varieties matured and were harvested naturally in the study areas.
Detailed information about the study population was previously
introduced in the research of our project group, and the selection in
this study was based on the field growth and phenotype data of the
materials (Zhang et al., 2021).

2.2 Study design and phenotype
investigation

The materials were cultivated at the Da’an Alkaline Land
Ecological Experimental Station of the Chinese Academy of
Sciences, Bajiazi Village, Honggangzi Township, Da’an City,
Jilin Province, China (124.2926°E, 45.5070°N). Plot 1 had mild
saline–alkali soil [pH 8.03, electrial conductivity (EC) 0.458 mS/
cm, and exchange sodium percentage (ESP) 8.52%], serving as the
control (CK). Plot 2 had moderate saline–alkali soil (pH 8.52, EC
0.59 mS/cm, and ESP 17.85%), serving as the stress field (AK).
Both study locations were irrigated with river water and had been
used for rice cultivation for several years, without planting
other crops.

The materials were cultivated in the CK and AK fields in
2016 and 2017 for two consecutive years. First, seedling
cultivation was carried out using the greenhouse dry seedling
method, and the seedings were transplanted into the field after
about 35 days. The field studies were conducted using a completely
randomized block design, with each material being planted in a
single row of 20 plants and spacing of 13 cm between plants and
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30 cm between rows. The water management methods used in the
two fields were consistent with those used in other local paddy fields.

All agronomic traits were measured according to the standards
set forth in the Standard Evaluation System for Rice (International
Rice Research Institute, 2002), including days to heading (DH), dry
weight per plant (DW), plant height (PH), tiller number per plant
(TN), grain number per plant (GN), thousand grain weigh (TGW)
and unfilled grain number (UG). Phenotypes were randomly
selected from five plants in each accession, and the average was
calculated. The seed setting rate was calculated as SR = GN/(GN +
UG). The panicle length (PL) and panicle weight (PW) were
measured from 20 randomly selected panicles per variety, and
the average was recorded as the phenotype.

2.3 Phenotypic statistical analysis

All survey data were entered into MS Excel for classification and
summarization, with the calculation of average values. The basic
data statistical analysis was conducted using the base package in R
(Milano et al., 2019), whereas data visualization was performed
using R packages such as ggplot2, ggpubr, and ggsignif (Wickham,
2016; Constantin and Patil, 2021; Kassambara, 2023).

2.3.1 Genetic diversity analysis
In this study, the genetic diversity analysis of phenotype data was

conducted using the Shannon–Weaver diversity index (H′). The
index was calculated using the following formula:

H′ � −∑ Pi( ) ln Pi( )

where Pi � Ni/N. Ni represents the number of individuals in each
group and N is the total number of individuals in each phenotype;
the calculation used the natural constant (e) as the base and was
performed after excluding missing individuals (Keylock, 2005). The
analysis was carried out using the vegan package in R (Oksanen
et al., 2022).

2.3.2 Correlation, cluster, and principal
component analyses

Different years and environmental conditions were analyzed
separately for correlation analysis. The Pearson correlation
coefficient matrix was calculated using the corr.test function in
the psych/R package (William, 2024). A correlation heat map
was generated using the ggcorrplot package in R. Before
conducting cluster and principal component analyses, the
phenotype data were standardized to avoid the influence of
varying measurement scales on subsequent analyses. For cluster
analysis, the Euclidean distance between samples was calculated
based on the standardized phenotype data. Hierarchical clustering
was then performed using the Ward minimum variance method
with functions from both the stat and psych packages in R. The
principal component analysis involved calculating the standard
deviation and variance explained by each principal component.
The number of principal components and clusters was
determined based on the eigenvalues of each principal
component and cumulative variance percentage. Finally, the
standardized loadings matrix of phenotypic traits corresponding

to each principal component was derived from the
correlation matrix.

2.3.3 Calculation of broad-sense heritability
The lme4/R package was used to calculate the broad-sense

heritability of phenotypic data across 2 years at two treatments.
The phenotypic data were defined as factors, including varieties,
treatments, years, and interactions between varieties and treatments,
as well as varieties and years as random factors (Bates et al., 2015).
The formula used to calculate heritability was as follows:

R � VA/ VA + VAL

L
+ VAY

Y
+ Ve

L × Y
( )

where VA represents the variance between varieties, VAL the interaction
variance between varieties and treats, VAY the interaction variance
between varieties and years, Ve the residual, L the number of
experimental treatments, and Y the number of experimental years.

2.3.4 Calculation of salt tolerance index (S) and
membership function value (U)

First, the individual salt tolerance index was calculated based on
the phenotype values across 2 years and two treatments using the
formula Si � VAK/VCK × 100%. VAK represents the phenotype
values of various traits of the individual in the AK environment,
and VCK the phenotype values of various traits in the CK
environment. The salt tolerance index matrix of the population
was obtained for 2 years. The principal component analysis was
performed on the salt tolerance index of each phenotype, and the
score matrix of each principal component and the variance
contribution rate PVi were obtained. The columns of the score
matrix of each principal component were summarized, and the
maximum value Smax and the minimum value Smin were
calculated. Then, we used fuzzy mathematics to calculate the
membership function (Ui) matrix as follows:

Ui � Si − Smin

Smax − Smin

Where, Si represents the score value of the ith principal
component of the individual, Smax the maximum value in the
score values of the ith principal component, and Smin the minimum
value in the score values of the ith principal component. The weight
of each principal component was calculated as: Wi � PVi/∑PVi.
To comprehensively evaluate the saline–alkali tolerance of the
individual, a comprehensive calculation was performed on the
membership function to obtain the comprehensive evaluation
value of salt tolerance as: D � ∑ (Ui × W), where Ui is the
membership function value of the ith principal component and
PVi the variance contribution rate of the ith principal component.

2.4 GWAS and candidate gene discovery

The GWAS were conducted using the Genome Association and
Prediction Integrated Tool (GAPIT) package in R, with the
association model being the compressed mixed linear model
(Wang and Zhang, 2021). A total of 189,019 SNPs were used in
the GWAS. The confidence interval was calculated using Bonferroni
correction as follows: –Log10 (P) ≥−Log10 (1/189,019) ≈ 5.28. The
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genotype data were obtained from the whole-genome resequencing
data of our research group, with sequencing details referenced in a
previous study (Zhang et al., 2021). Manhattan and Quantile-
Quantile plots (QQ plots) were generated using the package
CMplot in R (Version 4.5.1, https://github.com/YinLiLin/CMplot)
(Li, 2024). The associated loci were annotated using the GenBank
annotation database (2024-4-4, National Institute of Agrobiological
Sciences) as a reference. SnpEff (Version 4.3T) software was used for
annotating single-nucleotide polymorphisms (SNPs) at the
associated loci (Cingolani et al., 2012).

3 Results

3.1 Analysis of differences in agronomic
traits under different treatments

In 2016, the CK group showed coefficients of variation (CV) for
nine phenotypic traits ranging from 7.65% to 35.86%. The smallest
CV was for the heading date, indicating little variation in the
heading date among varieties that could mature normally in
high-latitude areas. The highest CV was for grain number

FIGURE 1
Box plot of interannual and phenotypic trait distributions under different treatments. (A) Dry weight per plant, (B) plant height, (C) tiller number per
plant, (D) grain number per plant, (E) 1000-grain weight, (F) seed setting rate, (G) panicle length, (H) panicle weight, and (I) days to heading. The horizontal
axis represents data from 2016 to 2017, and the vertical axis represents the distribution of values for each phenotype. The yellow box plot represents the
AK group, and the blue box plot the CK group. ** indicates a significant difference between the two groups at the 0.01 level, and * indicates a
significant difference at the 0.05 level.
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(35.86%), indicating significant differences in this trait, which were
linked to varying panicle type requirements in rice breeding across
Heilongjiang Province. The genetic diversity for these phenotypes
were not large, but it exceeded 6%, indicating substantial genetic
variation. Traits such as 1000-grain weight, PL, and heading date
showed the highest CV at 6.08. The CV in the AK group ranged from
6.48% to 31.79%. Similar to the CK group, the heading date and
grain number in the AK group were the minimum and maximum
values of the CV, respectively. The maximum genetic diversity was
6.08 for the DH phenotype (Supplementary Table S1).

The investigation of phenotype showed that the change trend
during 2 years was generally consistent. In the CK group, the CV
ranged from 7.82% to 32.89%. The highest genetic diversity was
observed in TGW and DH. In the AK group, the CV ranged from
8.10% to 36.89%, with the highest genetic diversity values observed
in PH, TGW, PL, and DH, all at 6.08. In 2017, the maximum and
minimum CV in both groups were DH and DW, respectively.
However, unlike in 2016, the CV in DW was higher than that in
GN (Figure 1; Supplementary Table S1).

In the same year, significant differences were observed in PH,
GN, PL, and PW, with lower values in the AK group compared with
the CK group. This suggested that plant growth in the AK group was
inferior to that in the CK group, consistent with the expected
experimental outcomes. Additionally, PH, TN, and PW showed
significant differences across years under the same treatment,
indicating that the traits might be influenced by annual
variations in field conditions. However, no significant difference
was observed in PL between years. DW and TGW showed
significantly lower values in the AK group compared with the
CK group in 1 year only, with significant differences observed
between years under the same treatment. These variations could
be attributed to environmental factors or interactions between yield
traits. SR did not show significant differences between years or
treatments, indicating the minimal impact of experimental
treatments on seed setting rate. However, DH exhibited
significant differences between years and treatments, showing
opposite phenotype changes in different years. This indicated
that different treatments across years were affected by different
environmental factors, leading to an inconsistent variety of
responses during heading.

3.2 Correlation analysis of various traits
under different treatments

We first conducted a correlation analysis to clarify the
correlation among phenotype data under different
environmental conditions and provide a basis for subsequent
cluster and principal component analyses. The correlation
between various traits showed a consistent overall trend, but
individual traits were observed indicating differences in size
under different treatments. Among these, DW was positively
correlated with PH, TN, GN, PL, PW, and DH, but negatively
correlated with SR. PH was mainly positively correlated with PL,
PW, and DH, and negatively correlated with TN. TN exhibited a
strong positive correlation with GN, negative correlations with
PL and PW, and minimal correlations with TGW and DH. The
correlation between GN and TGW, PL, and DH varied slightly

between years and treatments, such as having a positive
correlation with PL in 2017 but a lower correlation in 2016.
GN demonstrated a strong positive correlation with SR and PW.
SR showed a strong negative correlation with DH, indicating
substantial differences in light response among the population
materials, directly affecting the material’s seed setting rate. In
addition, a strong positive correlation was observed between PL,
PW, and DH (Figure 2). The correlation analysis also revealed
that the selected phenotype traits in this study were not
completely independent, and certain linear relationships were
observed between them. This inherent linear relationship must
also be considered in the subsequent analyses.

3.3 Cluster and principal component
analyses under different treatments

We first used the Ward minimum variance method for
hierarchical clustering to further clarify the inherent relationship
of the phenotype of the experimental populations. The clustering
tree analysis revealed slight differences in the classification of
populations in different years and environments. For example, in
the 2016 CK group, the clustering tree could be clearly divided into
3 clusters, each containing 110, 117, and 212 individuals, but no
disagreement was reported in the AK group. The phenotype
clustering of the 2017 population also confronted the same issue;
on the one hand, it indicated a certain bias in the phenotype
variation between years, possibly due to the influence of various
factors such as light, temperature, and so on. On the other hand, the
saline–alkali treatment of the experimental population might
exacerbate the occurrence of variation, leading to greater
uncertainty (Supplementary Figure S1).

Cluster analysis involves grouping a set of objects under study;
however, it does not test statistical hypotheses. We calculated
eigenvalues and eigenvectors of phenotype data in various
environments and plotted scree plots to further clarify multiple
phenotype data groupings and reduce data dimensions
(Supplementary Figure S2). The eigenvalues and scree plots
showed that the eigenvalues and standard deviations of the first
three principal components were all greater than 1 under different
treatments, except for the 2016 AK, where the first four components
had eigenvalues and standard deviations greater than 1. For
consistency in subsequent analysis, we used three principal
components, with a cumulative proportion of variance ranging
from 67.49% to 71.49%, representing all the data
(Supplementary Table S2).

The ingredient matrix showed that PH, PL, PW, and DH had
larger coefficients in PC1, making them the principal
influencing factors in this group. TN and SR had a larger
coefficient in PC2 and PC3, respectively, indicating their
importance in these groups. DW, GN, and TGW were
divided into three different groups across treatments,
indicating differences in the division of different principal
components (Supplementary Table S3). Drawing a three-
dimensional scatter plot of the principal component scores of
each individual in the experiment can also visually display the
division of the three principal components and the classification
of the corresponding groups (Figure 3).
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3.4 Analysis of genotype–environment
interaction and selection of saline–alkali
resistant varieties

We conducted a three-factor analysis of variance on all phenotype
survey data to verify the phenotype variation and genotype–environment
interaction in different treatment groups. The results showed a significant
impact of population genotype on all traits, indicating genetic factors in
response to different saline–alkali environments. TN, SR, and PL showed
no effect of interannual factors, indicating that these traits were mainly
determined by genetic factors. Soil salinity levels significantly impacted all
traits except SR, indicating that the degree of salinity and alkalinity

significantly impacted population phenotypes. Significant genotype–year
interactions were observed in DW, PH, TGW, SR, PL, PW, and DH,
whereas only PW showed a genotype–treatment interaction. Only an
interaction between genotype and different treatments was observed in
the PW phenotype. We estimated the heritability of population
phenotypes to further analyze the proportion of genetic variation in
total variation. The results showed that the heritability from high to low
was in the following order: DH > PH > SR > PW > PL > TN > TGW >
DW > GN (Table 1).

We calculated the saline–alkali tolerance index for eight
phenotype traits that showed significant differences in genetic
and environmental factors so as to analyze the comprehensive

FIGURE 2
Interannual and inter-treatment correlation coefficient matrices and heat maps for different phenotypes: (A) 2016 CK; (B) 2016 AK; (C) 2017 CK; and
(D) 2017 AK. The lower left of each image shows the correlation coefficient matrix, and the upper right shows the correlation heat map. The blue color
indicates a negative correlation, and red indicates a positive correlation, the lighter the color, the weaker the correlation. The larger the colored square,
the greater the absolute value of the correlation coefficient. A cross indicates no correlation or a tiny correlation.
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effects of various traits on the saline–alkali resistance of varieties,
and conducted the principal component analysis. The cumulative
contribution rate of the first five principal components exceeded
80%. We calculated the membership function for all individuals in
the first five principal components and used it with the variance

contribution rate to determine comprehensive scores. In 2016, S321,
S352, S41, S403, and S295 were the top five saline–alkali resistant
varieties; in 2017, S19, S243, S197, S84, and S422 were the top five
saline–alkali resistant varieties (Table 2). These can be used as
candidate varieties for future field screening of saline–alkali

FIGURE 3
Scatter plots of the scores of the first three principal components under different treatments and different grouping: (A) 2016 CK; (B) 2016 AK; (C)
2017 CK; and (D) 2017 AK. The x-axis represents Principal Component 1, the y-axis represents Principal Component 2, and the z-axis represents Principal
Component 3. Different colors represent different groups in the cluster analysis, with blue representing Group 1, black Group 2, and red Group 3.

TABLE 1 Summary of three-factor analysis of variance results and heritability.

Traits F (G) F (Y) F (L) F (G × Y) F (G × L) R

DW(g) 2.80a 8.40b 18.54a 1.37a 1.08 0.4826

PH(cm) 8.49a 512.71a 133.76a 2.61a 1.15 0.6744

TN 2.81a 0.29 21.99a 1.13 0.98 0.5972

GN 1.85a 12.94a 31.58a 0.98 0.79 0.4678

TGW(g) 2.58a 24.01a 37.67a 1.26b 0.90 0.5102

SR (%) 4.28a 2.39 0.00 1.52a 0.97 0.6459

PL (cm) 5.43a 0.04 39.31a 2.09a 1.08 0.6007

PW(g) 5.00a 52.99a 81.51a 1.66a 1.28b 0.6131

DH(d) 9.96a 724.31a 25.73a 2.05a 0.24 0.7947

Note: F (G), genotype variance; F (G × Y), genotype × year interaction variance; F (G × L), genotype × treatment interaction variance; F (L), treatment variance; F (Y), year variance; R, broad-

sense heritability.
aSignificant at the 0.001 level.
bSignificant at the 0.01 level.
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resistant rice varieties or as basic experimental materials for
exploring related resistance genes.

3.5 GWAS and candidate gene discovery

We conducted a GWAS using the saline–alkali tolerance
comprehensive score as the phenotype (Supplementary Figure
S3). The 2016 analysis identified a locus on chromosome 11 at
23,311,931 bp, and the 2017 analysis identified a locus on
chromosome 8 at 6,636,119 bp (Figure 4). Reports on linkage
disequilibrium in the temperate japonica rice population
revealed that linkage disequilibrium decay rates were
estimated at about 150 kb (Huang et al., 2010). We
conducted gene screening and annotation analysis within a
300-kb range around these 2 associated loci (150 kb for each
side), identifying 16 annotated genes on chromosome 8 with
282 polymorphic sites and 48 genes on chromosome 11 with
311 polymorphic sites (Table 3). A total of 593 variations were
annotated, including 489 SNPs and 104 InDels, mainly located
in intergenic regions, with 56 sites in exon regions
(Supplementary Table S4). Annotation analysis of genes near
the associated loci can identify clearer targets for subsequent
gene mapping and expression screening, as well as candidate
target sites for saline–alkali resistant breeding.

4 Discussion

4.1 Selection of saline–alkali stress
conditions

Different types of saline–alkali soils are formed under specific
natural conditions, with saline soil containing chloride or sulfate
salts and alkali soil containing carbonate or phosphate salts.
Saline–alkali-tolerant plant breeding often uses salt concentration
or pH as the stress condition, which may not reflect actual field
environments. The most authentic phenotype feedback can be
obtained by exploring gene functions under natural saline–alkali
stress conditions, thus aiding in identifying practical key genes.

4.2 Phenotypic selection and gene
identification in rice

Rice plants subjected to saline–alkali stress result in weaker plant
growth, with different degrees of response in various phenotypes.
However, the correlation and principal component analyses revealed
no significant correlation between a single trait and saline–alkali
stress. Hence, it is impossible to simply select a single trait to
measure the saline–alkali resistance of rice varieties throughout
the growth period. Previous studies combined the fuzzy

TABLE 2 List of the top 40 rice varieties in terms of salt and alkali tolerance comprehensive score ranking.

Rank Accessions-
2016

Scores Accessions-
2017

Scores Rank Accessions-
2016

Scores Accessions-
2017

Scores

1 S321 0.7363 S19 0.7450 21 S25 0.5975 S215 0.5763

2 S352 0.6920 S243 0.6711 22 S15 0.5974 S339 0.5756

3 S41 0.6904 S197 0.6656 23 S412 0.5973 S250 0.5751

4 S403 0.6835 S84 0.6498 24 S404 0.5939 S196 0.5740

5 S295 0.6803 S422 0.6374 25 S308 0.5921 S124 0.5727

6 S253 0.6767 S18 0.6338 26 S82 0.5864 S311 0.5707

7 S21 0.6756 S170 0.6150 27 S260 0.5856 S337 0.5706

8 S410 0.6577 S32 0.6124 28 S270 0.5844 S245 0.5699

9 S415 0.6520 S156 0.6118 29 S46 0.5830 S45 0.5694

10 S397 0.6482 S56 0.6023 30 S61 0.5814 S144 0.5694

11 S256 0.6378 S209 0.6022 31 S383 0.5813 S303 0.5688

12 S393 0.6314 S246 0.5934 32 S340 0.5808 S86 0.5684

13 S78 0.6314 S21 0.5896 33 S196 0.5738 S20 0.5684

14 S461 0.6309 S294 0.5882 34 S79 0.5723 S232 0.5682

15 S391 0.6241 S139 0.5879 35 S362 0.5709 S16 0.5681

16 S317 0.6217 S211 0.5876 36 S34 0.5704 S223 0.5659

17 S259 0.6163 S25 0.5873 37 S385 0.5701 S67 0.5644

18 S380 0.6007 S203 0.5847 38 S359 0.5687 S26 0.5643

19 S378 0.5987 S340 0.5832 39 S320 0.5671 S37 0.5639

20 S289 0.5985 S216 0.5828 40 S268 0.5660 S248 0.5623

Frontiers in Genetics frontiersin.org08

Wang et al. 10.3389/fgene.2025.1617034

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1617034


mathematics theory to calculate the saline–alkali tolerance scores of
various varieties based on saline–alkali tolerance index, revealing the
strength of saline–alkali tolerance relationships (Fan et al., 2023).
However, this method was influenced by environmental factors,
selection of representative phenotypes, and so forth, leading to
potential biases in the results. Therefore, further field
experiments on these varieties are needed to promote the
development and application of resistant varieties.

Many genes and QTLs associated with saline–alkali tolerance
have been identified, with some located on chromosomes 8 and 11.
OsNAC5 is the abiotic stress-responsive transcription factor located
on chromosome 11, but it lies far from the associated region
(Takasaki et al., 2010). OsFBDUF54 is another genes cloned for
saline-alkali tolerance, situated more than 1.2 Mb away from the
identified region (Li et al., 2020). In addition, numerous QTLs have
been detected for various traits under saline–alkali stress conditions.
Howerver, none of these contain the associated regions, including
QTLs such as qDRW11, qSH11, and qRRN11 on chromosome 11
(Wang et al., 2012; Qi et al., 2009), and qDLRs8, qDSRs8, and
qRL8 on chromosome 8 (Liang et al., 2015; Sabouri et al., 2009).

qDM8 was a salt tolerance QTL identified in an F2:3 population
based on shoot dry mass of. The associated markers on chromosome
8 in our study were located in this QTL. Further analysis is needed to
verify their consistency.

4.3 Phenotypic evaluation of GWAS

GWAS typically uses analysis models for single phenotype
association analysis, but the evaluation of abiotic stress often
involves multiple phenotypes. Therefore, how to use statistical
methods to evaluate multiple phenotype traits as a whole is a
major issue that needs to be considered in the GWAS of abiotic
stress. The comprehensive saline–alkali tolerance score is based on
principal component analysis, calculated by summarizing several
principal components with high contribution rates. It has been
applied in studies of abiotic stresses such as heat tolerance, cold
tolerance, and frost tolerance in various crops, ensuring the
reliability of its use in association analysis. This study combined
this phenotype with population genotype variation to conduct

FIGURE 4
Manhattan and QQ plots of 2-year saline–alkali tolerance genome-wide association studies: (A) 2016 Manhattan plot (left) and QQ plot (right); (B)
2017 Manhattan plot (left) and QQ plot (right).

TABLE 3 Saline–alkali tolerance-associated markers and related variation statistics.

Marker Chr Position P value -LOG10 (P) Nearest gene Number of genes Number of SNPs

S8_6636119 8 6,636,119 4.56e-06 −5.34 Os08g0214233 (8790 bp) 16 282

S11_23311931 11 23,311,931 5.14e-06 −5.29 Os11g0604900 (Intron) 48 311
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GWAS, aiming to obtain more representative saline–alkali tolerance
functional gene loci for further gene discovery and breeding
applications.

5 Conclusion

This study investigated and analyzed 9 phenotypes of 450 rice
resource populations in low- and medium-saline–alkali fields. The
population phenotype changes were basically consistent, with slight
differences in genetic diversity. The resource populations were
divided into three clusters based on hierarchical cluster analysis,
but certain deviations were observed between different years. The
principal component analysis showed that PH, PL, PW, and DH
were the main influencing factors of phenotype under various
treatments, providing a reference for subsequent
gene–environment interactions. Considering the interaction
between genotypes and environments in different years, we
conducted variance analysis of each phenotype factor and
calculated the heritability of each phenotype, with the heritability
ranking from high to low as DH > PH > SR > PW > PL > TN >
TGW > DW > GN.

Finally, we used the membership function method to calculate
the comprehensive saline–alkali tolerance score of varieties based on
the saline–alkali tolerance index. We obtained some candidate
resources with good saline–alkali resistance in the population.
Then, we used the population genotype data obtained earlier for
GWAS and located a saline–alkali-associated region on
chromosomes 8 and 11. The annotation analysis of the region
revealed genomic variation, providing clear associated loci and
candidate genes for further fine mapping of genes.

This study may provide more accurate basic data for exploring
saline–alkali-resistant gene, and candidate gene resources for precise
molecular improvement and breeding of saline–alkali-resistant rice
varieties, thus promoting the development and utilization of
saline–alkali land and increasing rice production.
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