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Introduction:Detection of variance quantitative trait loci (vQTL) can facilitate the
discovery of gene-environment (GxE) and gene-gene interactions (GxG).
Identifying vQTLs before direct GxE and GxG analyses can considerably
reduce the number of tests and the multiple-testing penalty.
Methods:Despite somemethods proposed for vQTL detection, few studies have
performed a head-to-head comparison simultaneously concerning false positive
rates (FPRs), power, and computational time. This work compares three
parametric and two non-parametric vQTL tests.
Results: Simulation studies show that the deviation regression model (DRM) and
Kruskal-Wallis test (KW) are the most recommended parametric and non-
parametric tests, respectively. The quantile integral linear model (QUAIL, non-
parametric) appropriately preserves the FPR under normally or non-normally
distributed traits. However, its power is never among the optimal choices, and its
computational time is much longer than that of competitors. The Brown-
Forsythe test (BF, parametric) can suffer from severe inflation in FPR when
SNP’s minor allele frequencies <0.2. The double generalized linear model
(DGLM, parametric) is not valid for non-normally distributed traits, although it
is the most powerful method for normally distributed traits.
Discussion: Considering the robustness (to outliers) and computation time, I
chose KW to analyze four lipid traits in the Taiwan Biobank. I further showed that
GxE and GxG were enriched among 30 vQTLs identified from the four lipid traits.
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1 Introduction

Omitting essential predictors from a regression model can lead to heteroscedasticity
(Breusch and Pagan, 1979). In genetic analyses, loci with unequal phenotypic variances
across different genotype groups are called “variance quantitative trait loci” (vQTLs), which
can be caused by omitting gene-environment interaction (GxE) or gene-gene interaction
(GxG) in the regression model (Pare et al., 2010; Ronnegard and Valdar, 2012; Shi, 2022;
Wang et al., 2019). For example, Wang et al. performed a genome-wide vQTL analysis of
5.6 million variants on ~350,000 unrelated individuals of European ancestry for
13 quantitative traits. They identified 75 significant vQTLs for nine traits, especially
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those related to obesity. Pervasive GxE effects for obesity-related
traits were further explored through direct GxE analyses. Wang
et al.‘s study has demonstrated the detection of GxE without
environmental data (Wang et al., 2019).

Methods for detecting vQTLs are categorized as parametric or
non-parametric. The development of parametric vQTL tests usually
depends on the assumption of normally distributed traits (Marderstein
et al., 2021; Young et al., 2018). Contrastingly, non-parametric vQTL
tests are generally more robust to trait distributions (Miao et al., 2022).

For every single-nucleotide polymorphism (SNP), we can use
the Brown-Forsythe (BF) test (Brown and Forsythe, 1974) to
compute the dispersion within three genotype groups. Compared
with the Levene’s test (Levene, 1960), the BF test is more robust to
outliers by choosing the median to replace the mean as the center of
each genotype group. Moreover, a “deviation regression model”
(DRM) has been proposed to allow continuous predictors such as
minor allele dosages (Marderstein et al., 2021). Therefore, the
predictor is not limited to minor allele counts of SNPs (i.e., 0, 1,
and 2). Furthermore, a double generalized linear model (DGLM)
was also developed to identify loci associated with trait variability
and to detect interactions in genome-wide association studies
(GWAS) (Ronnegard and Valdar, 2011; Smyth, 1989). BF, DRM,
and DGLM are all the so-called parametric vQTL methods.

Non-parametric methods for vQTL identification include the
Kruskal-Wallis test (KW) (Kruskal and Wallis, 1952) and a quantile
integral linear model (QUAIL) (Miao et al., 2022). As the non-
parametric counterpart of one-way analysis of variance (ANOVA),
KW is used to compare themedian difference betweenmultiple groups.
As long as we first calculate the deviation between trait values and
within-group medians, KW can also be applied to test phenotypic
homoscedasticity among the three genotype groups. Another non-
parametric method, QUAIL, assesses genetic effects on phenotypic
variability based on the quantile regression framework. It allows
covariate adjustment, non-normally distributed traits, and
continuous predictors (i.e., not limited to three genotype categories)
(Miao et al., 2022). However, to integrate information from K quantiles
(usually K = 100), QUAIL’s computation time is much longer than that
of its competitors (BF, DRM, DGLM, and KW). Implementing QUAIL
for genome-wide vQTL analysis is computationally challenging.

This work evaluates the performance of the abovementioned
parametric or non-parametric methods in detecting vQTLs through
Monte Carlo simulations. I performed a head-to-head comparison to
assess the false positive rates (FPRs), power, and computation time
across several popular vQTL methods. Furthermore, I apply these
approaches to four lipid traits in the Taiwan Biobank (TWB) data,
including high-density lipoprotein cholesterol (HDL), low-density
lipoprotein cholesterol (LDL), triglyceride (TG), and total cholesterol
(TCHO). After identifying vQTLs for these four traits, I perform direct
GxE and GxG analyses to demonstrate enriched interaction effects
among vQTLs.

2 Materials and methods

2.1 Covariate-adjusted residuals

Let Yj be the continuous trait of the jth individual, G1,j and
G2,j be two indicator variables categorizing three genotype

groups of a SNP, and Xj be the C-length covariate vector of
individual j (assuming C covariates should be adjusted). G1,j and
G2,j can be coded as (0, 0), (1, 0), and (0, 1) for 0, 1, and 2 copies of
a SNP’s specific allele. According to previous studies, the FPR of
detecting vQTLs may be inflated in the presence of a large SNP’s
main effect (Ronnegard and Valdar, 2011). Therefore, I remove
SNP’s main effect and covariates’ effects from Yj to ensure that
the identification of vQTLs will not be confounded by other
factors. Specifically, I extract the residuals of regressing Yj on
G1,j,G2,j , and Xj. With this preliminary procedure, all parametric
or non-parametric vQTL tests have the potential to adjust
for covariates such as age, sex, and ancestry principal
components (PCs).

2.2 Non-parametric vQTL methods

Non-parametric vQTL methods are developed without the
assumption of normally distributed traits. Therefore, they are
generally more robust to trait distributions (Miao et al., 2022).
Like many non-parametric statistical tests, they may be less
powerful than parametric vQTL methods when the traits
indeed follow normal distributions (Ronnegard and Valdar,
2012). However, they can have more valid results even when
the traits are not normally distributed. In the following, I
introduce two non-parametric methods, including the
Kruskal-Wallis test (KW) and the quantile integral linear
model (QUAIL).

2.2.1 Kruskal-Wallis test (KW)
KW is a non-parametric statistical test used to assess whether

there is a significant difference between the medians of two or more
independent groups. Because the KW test is not originally designed
to detect differences in variances, I have to convert the data into a
measure of “dispersion” before using KW. Let e(i)j be the “covariate-
adjusted residual” (obtained from Section 2.1) of individual j with
genotype i, ẽi be the median of “covariate-adjusted residuals” within
genotype group i. The deviation between individual j’s covariate-
adjusted residual and his/her group median is D(i)j � |e(i)j − ẽi| (a
measure of dispersion), where j � 1,/, N and usually i � 1, 2, 3
(subscript j is sufficient to distinguish all N individuals; subscript i is
supplementary to indicate the genotype group). Suppose r(i)j is the
rank of D(i)j counting from all individuals across three genotype
groups. The KW test statistic (Kruskal and Wallis, 1952) is listed in
Equation 1 as follows,

KW � N − 1( ) ∑M
i�1ni ri. − �r( )2

∑M
i�1∑ni

j�1 r i( )j − �r( )2 (1)

where N is the total sample size, ni is the number of individuals in
genotype group i,M is the number of genotype groups (usuallyM =
3), ri. � ∑ni

j�1r(i)j/ni is the average of ranks in genotype group i, �r �
∑M

i�1∑ni
j�1r(i)j/N � 1

2 (N + 1) is the average of ranks among all
individuals. The KW test statistic (1) follows the chi-square
distribution with the degrees of freedom (M − 1). All analyses in
this work were conducted using R (version 4.3.1). The KW test was
implemented with the R function “kruskal.test” in the R
environment.
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2.2.2 Quantile integral linear model (QUAIL)
Although I have adjusted the covariates’ effects in Section 2.1, I

still present the statistical model shown in QUAIL’s paper as follows
(Miao et al., 2022). Through this model, people may get a complete
understanding of Miao et al.’s methodology. Let the conditional
quantile function (Q) of the trait Y at a SNP be Equation 2 as follows

QY τ
∣∣∣∣genotype � i,X( ) � μτ + iβτ + Xατ (2)

where τ is the quantile ranging from 0 to 0.5, i � 1, 2, 3, μτ is the
intercept, βτ is the coefficient of the quantile regression, X is theN × C
matrix for C covariates, and ατ is the C-length vector for covariate
effects. QUAIL measures (β1−τ − βτ) given τ ∈ (0, 0.5), i.e., the
difference between the regression coefficients of the (1 − τ)th and τth

quantiles. QUAIL tests the hypothesis H0: βQI � 0 vs H1: βQI ≠ 0,
where βQI in Equation 3 is the quantile-integrated effect, i.e.,

βQI � ∫0.5

0
β1−τ − βτ( )dτ (3)

βQI is the integral of (β1−τ − βτ) from τ � 0 to τ � 0.5, which can be
estimated by summing the areas of K rectangles with a length of
(β̂1−τk − β̂τk) (where k = 1, . . . , K) and a width of
(0.5 − 0)/K � 1/2K. That is, βQI can be estimated through
β̂QI � ∑K

k�1(β̂1−τk − β̂τk)/2K. To have a more accurate estimation
for βQI, K is required to be a large number. In the QUAIL R code,
Miao et al. used K = 100 as the default setting (Miao et al., 2022). The
QUAIL R code was downloaded from GitHub (https://github.com/
qlu-lab/QUAIL).

2.3 Parametric vQTL methods

Parametric vQTL methods are usually developed with the
assumption of normally distributed traits (Marderstein et al.,
2021; Young et al., 2018). Therefore, their performances are
generally more sensitive to trait distributions (Miao et al., 2022).
However, if the trait really follows the normal distribution,
parametric tests can be more powerful than their non-parametric
counterparts. In the following, I describe three parametric vQTL
methods, including the deviation regression model (DRM), Brown-
Forsythe test (BF), and the double generalized linear
model (DGLM).

2.3.1 Deviation regression model (DRM)
To search for SNPs that are associated with phenotypic

variability, Marderstein et al. regressed D(i)j on the minor allele
count at each SNP (i.e., 0, 1, or 2) (Marderstein et al., 2021). The
regression model is D(i)j � α + β · (i − 1) + εj, where the predictor
(i − 1) is the minor allele count (i.e., 0, 1, or 2) and the random error
term εj follows a normal distribution with a mean of 0 and a variance
of σ2ε . Because D(i)j is the deviation between individuals’ covariate-
adjusted residuals and their group medians, this approach is called
the deviation regression model (DRM). DRM tests whether the
regression coefficient β is statistically significant, i.e., H0: β � 0 vs
H0: β ≠ 0. The DRMR code was downloaded from GitHub (https://
github.com/drewmard/DRM).

2.3.2 Brown-Forsythe test (BF)
The BF test statistic is listed in Equation 4 as follows,

BF �
∑M

i�1ni Di. − �D( )2/ M − 1( )

∑M
i�1∑ni

j�1 D i( )j −Di.( )2/ N −M( )
(4)

where Di. � ∑ni
j�1D(i)j/ni is the average of deviations in genotype

group i, �D � ∑M
i�1∑ni

j�1D(i)j/N is the average of deviations in all
individuals. The BF test statistic (4) follows the F distribution with
the numerator degrees of freedom (M − 1), and the denominator
degrees of freedom (N −M) (Brown and Forsythe, 1974). The BF
test is equivalent to the ANOVA F test for regressing Dij on two
indicator variables that separate the three genotype groups of an
SNP. Therefore, BF treats genotypes as a categorical scale (by using
two indicator variables), while DRM regards genotypes as a
continuous scale (by coding genotypes as 0, 1, or 2).

To implement the BF test, I used the R function “leveneTest”
while specifying “center = median” in the “car” package (version
3.1–3) (Fox and Weisberg, 2018). The Levene’s and the BF tests are
both used to test the homoscedasticity across different groups. The
BF test is more robust to outliers than Levene’s test because it uses
deviations from the group median, while Levene’s test uses
deviations from the group mean.

2.3.3 Double generalized linear model (DGLM)
DGLM fits two generalized linear models (GLM) that model

genetic effects on the mean and dispersion of the covariate-adjusted
residuals (Zhang and Bell, 2024). It regresses the covariate-adjusted
residual e(i)j on the minor allele count at each SNP (i.e., 0, 1, or 2)
while allowing the dispersion of e(i)j varies with the minor allele
count. The regression model is e(i)j � α + β · (i − 1) + εj, where the
random error term εj follows a normal distribution with a mean of
0 and a variance of σ2i (allowing each genotype group has its
variance). The DGLM tests whether the variance of e(i)j varies
with the predictor (i.e., the minor allele count at each SNP). The
DGLM method was implemented with the “dglm” R package
(version: 1.8.6).

2.4 Data from the Taiwan Biobank (TWB)

As of February 2024, 147,836 individuals aged 30 to 70 years
have been genotyped whole-genome. The TWB performed genotype
imputation with the IMPUTE2 software (v2.3.1) (Delaneau et al.,
2013; Howie et al., 2009). To improve the imputation accuracy, the
TWB combined 1,445 TWB individuals with whole-genome
sequence data and 504 East Asians (EAS) from the
1,000 Genomes Phase 3 v5 as the reference panel (Wei et al.,
2021). After completing the imputation, the TWB excluded
variants with missing rates >5%, minor allele frequencies
(MAFs) < 0.01%, or imputation information scores <0.3, where
0.3 was usually adopted as the acceptable threshold for imputation
quality (Kosugi et al., 2023). After this quality control filtering, we
had 9,814,944 autosomal variants for analysis.
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2.5 Simulation studies

I performed simulations to evaluate the type I error rates and
power of the five abovementioned methods. I here focused on the
simulations of detecting SNP1-by-SNP2 interactions. Nonetheless,
the results can be generalized to GxE identification. I randomly
selected four SNPs as SNP1, including rs34625133 on chromosome
(chr.) 1, rs7870809 on chr. 9, rs7982209 on chr. 13, and rs140100 on
chr. 22. The MAFs of these four SNPs were 0.1, 0.2, 0.3, and 0.4,
respectively. They were, in turn (one by one), treated as SNP1. I
aimed to evaluate the power of detecting SNP1-by-
SNP2 interactions under various MAFs of SNP1.

I used 20,000 common SNPs (MAFs ≥ 0.05) on chr. 1 as
SNP2 and generated traits as Equation 5,

Yj � β1SNP1,j + β2SNP2,j + βINTSNP1,j × SNP2,j + εj, j

� 1,/, 30000 or 147836( ) (5)

where SNP1,j � 0, 1, or 2 represented individual j’s minor allele
count at SNP1, and SNP2,j � 0, 1, or 2 was his/her minor allele
count at SNP2. I considered two levels of sample size: N = 30,000 or
147,836, in which 147,836 was the number of TWB individuals with
genotyping data. The coefficients β1 and β2 are main effects of
SNP1 and SNP2, respectively. I investigated two situations: (1) with
SNP main effects (β1 � β2 � 0.3); and (2) without SNP main effects
(β1 � β2 � 0). Given an individual’s genotypes, β1SNP1,j +
β2SNP2,j + βINTSNP1,j × SNP2,j is the deterministic part and εj
is the stochastic part of the trait. Following Miao et al. (Miao et al.,
2022), I considered three settings for the random error term εj: (1) a
standard normal distribution; (2) a t distribution with the degrees of
freedom 3 (a kurtotic distribution); (3) a chi-square distribution
with the degrees of freedom 6 (a skewed distribution). Because εj is
the only stochastic part of the trait, the distribution of the trait is
determined by the distribution of εj. A kurtotic distribution such as
the t distribution has heavier tails than the normal distribution. This
phenomenon mimics the fact that more extreme values exist than
the normal distribution. The chi-square distribution is right-skewed
like the pattern of many phenotypes, such as cholesterol (Tharu and
Tsokos, 2017) and body weight (Kozlowski and Gawelczyk, 2002).
To fix the phenotypic variance explained by SNPs across different
distributions of εj, I followed Miao et al. (Miao et al., 2022) to
perform the z-score transformation on εj.

By specifying βINT � 0, I plotted the QQ plot to examine the
p-values under the null hypothesis. On the other hand, βINT � 0.3
was assumed when evaluating the power of the vQTLs methods. To
sum up, 12 scenarios (two levels of sample size × two situations of
main effects × three kinds of trait distributions) were simulated to
evaluate the performance of the five vQTL methods. Each scenario
was simulated 20,000 times. The percentage of the variance
explained by the interaction effect was approximately 0.3%, 0.6%,
0.9%, and 1.2% when the MAF of SNP1 was 0.1, 0.2, 0.3, and 0.4,
respectively. The coefficients in Equation (5) (i.e., β1, β2, and βINT)
were used to generate phenotype Y. Instead of testing any coefficient,
in simulations, I tested whether phenotypic variance varied with
genotype groups.

Although Equation (5) is originally designed to test for GxG
interactions, the results can be generalized to GxE identification.
Without loss of generality, I can replace SNP2 in Equation (5) with

an environmental factor having three possible levels: 0, 1, and 2.
Therefore, the simulation results can be generalized to GxE
identification.

3 Results

3.1 Simulation studies

3.1.1 False positive rates
Figure 1 presents the QQ plots (the left column) and power

under α = 5E-8 (columns 2–5) for five vQTL tests (N = 30,000; with
SNP main effects). Supplementary Figure S1 demonstrates the
results given N = 30,000, and SNP main effects do not exist.
Supplementary Figure S2 (with SNP main effects) and S3
(without SNP main effects) show the results when N = 147,836.
The rank-based inverse-normal transformation (INT) can convert
data to a normal distribution. However, previous vQTL studies
found that this INT transformation led to inflation in false positive
rates (FPR) (Marderstein et al., 2021; Miao et al., 2022; Wang et al.,
2019). The FPR was calculated by dividing the incorrectly classified
negatives by the total negatives. To evaluate INT’s performance in
our simulation setting, we equipped it with DGLM.

3.1.1.1 Parametric tests
The results show that DGLM has inflated FPR when the

phenotypes are not normally distributed (Figure 1; Supplementary
Figures S1–S3F, K). Taking the INT transformation helps to adjust
FPR for kurtotic phenotypes (Figure 1; Supplementary Figures S1–S3F)
but not for skewed phenotypes (Figure 1; Supplementary
Figures S1–S3K).

The BF test has inflated FPR given kurtotic phenotypes
(Figure 1; Supplementary Figures S1–S3F), and the situation is
getting worse for smaller sample sizes (Figure 1; Supplementary
Figure S1F). Supplementary Figures S4–S15 demonstrate the QQ
plots stratified by the MAF range. For the BF test, the inflation in
FPR is especially severe for kurtotic phenotypes when N =
30,000 and MAF <0.2 (Supplementary Figures S5, S8, (A) (B)
(C)). Given N = 30,000 and a small MAF, a genotype group may
only contain a few observations, and false positives may come with
the issue of data sparsity (Lin, 2024).

DRM is similar to BF, except that DRM treats genotypes as a
continuous scale (0, 1, or 2). DRM does not categorize the three
genotypes into three groups. Therefore, the sparsity within genotype
groups is not a critical problem for DRM, and the inflation in FPR is
not critical for DRM compared with BF (Supplementary Figures
S5, S8A–C).

3.1.1.2 Non-parametric tests
QUAIL preserves an appropriate FPR across three trait

distributions. KW maintains a suitable FPR under the kurtotic
distribution (Figure 1; Supplementary Figure S1–S3F) but has a
slight inflation in FPR given the skewed distribution (Figure 1;
Supplementary Figure S1–S3K). Under a kurtotic distribution, more
extreme values can occur compared to the normal distribution.
Nonetheless, by transforming the extreme values into ranks, KW can
still preserve an appropriate FPR. By contrast, previous research has
found that KW tends to have inflated FPR for heteroscedastic cases
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(McDonald, 2014). Under a skewed distribution, unequal variances
in ranks across the three genotype groups may still exist even if there
is no GxG or GxE. KW’s strategy to transform values into ranks
cannot entirely address the heteroscedastic problem.

3.1.2 Statistical power
The statistical power was calculated by dividing the correctly

classified positives by the total positives (each scenario was
simulated 20,000 times). When the phenotype is normally
distributed, DGLM and DGLM_INT were the most powerful
methods (Figure 1; Supplementary Figure S1–S3C–E). Among the
two non-parametric tests, QUAIL was superior to KW for normally
distributed phenotypes (Figure 1; Supplementary Figure S1–S3C–E).
When the phenotype is a kurtotic distribution, DGLM and BF had
inflation in FPR (Figure 1; Supplementary Figure S1–S3F). KW became
the most outstanding test among the four valid methods that preserve a
suitable FPR (Figure 1; Supplementary Figure S1–S3F–J). When the
phenotype is skewed, KWhad a slight inflation in FPR, whereas DGLM
and DGLM_INT had a severe inflation in FPR (Figure 1;
Supplementary Figure S1–S3K). The other three valid methods
(QUAIL, DRM, and BF) had similar power (Figure 1;
Supplementary Figure S1–S3L–O).

By comparing the results of different simulation scenarios, I
concluded three points: (1) When the MAF for SNP1 or SNP2 was
larger, the percentage of the variance explained by the interaction
effect increased, and the power of each method was enhanced. (2)
When the sample size was enlarged from N = 30,000 to N = 147,836,
the power performances of all methods were greatly improved. (3)
Lastly, by comparing Figure 1 with Supplementary Figure S1, S2
with Supplementary Figure S3, the power of each method was higher
in the presence of SNP main effects than in the absence of SNP
main effects.

3.1.3 Computational time
Table 1 shows the computation time (in seconds) for each

simulation replicate. I measured the execution time in R (version
4.3.1) on a Linux system running at 3.6GHz and 32 GB of RAM.
Although QUAIL is a valid test with appropriate FPR under three
trait distributions, it takes much more computation time than other
methods. The other non-parametric test, KW, requires only
1/70–1/90 of QUAIL’s execution time. The computation time of
the four parametric tests is also reasonable. The time of computation
needed for these tests is ordered as DRM < BF < KW < DGLM ≈
DGLM_INT <<<<< QUAIL. Table 2 summarizes the performance

FIGURE 1
QQplots (the left column) and power (α = 5E-8; columns 2–5) for vQTL tests (N= 30,000; with SNPmain effects). The distribution for the error term:
(top row) a standard normal distribution; (middle row) a t distribution with the degrees of freedom 3; (bottom row) a chi-square distribution with the
degrees of freedom 6. (A) Normal dist., QQ plot. (B) Normal dist., MAF of SNP1 = 0.1. (C) Normal dist., MAF of SNP1 = 0.2. (D) Normal dist., MAF of SNP1 =
0.3. (E) Normal dist., MAF of SNP1 = 0.4. (F) t dist., QQ plot. (G) t dist., MAF o SNP1 = 0.1. (H) t dist., MAF o SNP1 = 0.2. (I) t dist., MAF o SNP1 = 0.3. (J) t
dist., MAF o SNP1 = 0.4. (K) chi-square dist., QQ plot. (L) chi-square dist., MAF of SNP1 = 0.1. (M) chi-square dist., MAF of SNP1 = 0.2. (N) chi-square dist.,
MAF of SNP1 = 0.3. (O) chi-square dist., MAF of SNP1 = 0.4.
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of each method in the simulation on FPR, power, and computational
time under different scenarios.

3.2 Real data analysis

3.2.1 30 vQTLs of four lipid traits
When conducting actual genome-wide data analysis,

investigators had to exclude cryptic relatedness among
individuals (Marees et al., 2018). The TWB investigated cryptic
relatedness among participants with the KING (Kinship-based
INference for GWAS) software (Manichaikul et al., 2010). I
removed the person with higher missing genotype rates for each
first- or second-degree relative pair. This step excluded 28,928 from
the 147,836 TWB individuals, and 118,908 remained in the
vQTL analysis.

I analyzed four lipid traits, including high-density lipoprotein
cholesterol (HDL), low-density lipoprotein cholesterol (LDL),
triglyceride (TG), and total cholesterol (TCHO). Supplementary
Figure S16 shows the histograms of the four lipid traits. All four
traits are right-skewed with positive skewness values, especially TG
(skewness = 2.16). I first removed SNP’s main effect and covariates’
effects from each phenotype. Specifically, I extracted the residuals of
regressing each trait onG1,j ,G2,j (two indicator variables separating
the three genotype groups of a SNP), and 17 covariates, including sex
(male vs female), age (in years), BMI (in kg/m2), current smoking
status (yes vs no), current drinking status (yes vs no), performing
physical exercise (yes vs no), educational attainment (integer
ranging from 1 to 7), and 10 ancestry PCs. Current smoking was

defined as “having smoked cigarettes for at least 6 months when
joining the TWB”. Drinking indicated “having a weekly intake of
more than 150 mL of alcoholic beverages for at least 6 months when
joining the TWB”. Regular exercise meant “performing exercise
lasting for 30 min thrice a week”. Educational attainment was coded
as an integer ranging from 1 to 7: 1 (illiterate), 2 (no formal
education but literate), 3 (primary school graduate), 4 (junior
high school graduate), 5 (senior high school graduate), 6 (college
graduate), and 7 (Master’s or higher degree).

Sex, age, and BMI significantly influence people’s lipid profiles
(Beyene et al., 2020). Smoking impairs lipid metabolism by
decreasing LDL receptor expression (Ma et al., 2020). Alcohol
consumption disturbs lipid metabolism by increasing adipose
tissue lipolysis and causing ectopic fat deposition in the liver
(Steiner and Lang, 2017). Regular physical activity has been
found to improve lipoprotein-lipid profiles (Lin, 2021).
Moreover, lower educational attainment is usually linked to
worse lipid profiles (Lara and Amigo, 2018). Because these seven
covariates are associated with lipid traits, I adjusted them in all vQTL
methods. Furthermore, the first 10 ancestry PCs are adjusted in
genetic analyses to avoid population stratification (Uffelmann
et al., 2021).

Based on the simulation results, I chose the KW test as the
primary vQTL method. This non-parametric approach is robust to
outliers by transforming trait values into ranks (Figure 1;
Supplementary Figure S1–S3F). Moreover, although KW has a
slight inflation in FPR for skewed trait distributions (Figure 1;
Supplementary Figure S1–S3K), investigators can perform a
follow-up regression analysis to check whether GxE and GxG

TABLE 1 Computation time (in seconds) for each simulation replicate The execution time was measured in R (version 4.3.1) on a Linux system running at
3.6GHz and 32 GB of RAM.

Phenotype distribution N KW QUAIL DRM BF DGLM DGLM_INT

Normal 30,000 0.076 5.372 0.018 0.020 0.151 0.162

T 30,000 0.092 8.252 0.024 0.028 0.273 0.214

Chi-square 30,000 0.075 5.485 0.018 0.021 0.163 0.168

Normal 147,836 0.402 33.464 0.096 0.105 0.824 0.891

T 147,836 0.399 33.950 0.094 0.103 1.090 0.875

Chi-square 147,836 0.411 35.913 0.098 0.106 0.884 0.929

TABLE 2 Summary of the simulation results.

KW QUAIL DRM BF DGLM DGLM_INT

False positive rate (FPR) Slight inflation in
FPR given skewed
distributions

Valid Inflation in FPR is not
critical for DRM
compared with BF.

Inflation in FPR is especially
severe for kurtotic traits
when N = 30,000 and
MAF <0.2

Valid only when the
trait is normally
distributed

Severe inflation in FPR
given skewed
distributions

Statistical power Optimal for kurtotic
distributions

Never among
the optimal
choices

Similar to BF. Similar to DRM. Optimal for
normally
distributed traits

Optimal for normally
distributed traits

Computational time
(ranking from shortest
to longest)

3 6 (longest) 1 (shortest) 2 4 4
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exist (i.e., the so-called “direct GxE or GxG analysis”). Furthermore,
KW needs only 1/70–1/90 of the other non-parametric competitor’s
(QUAIL) execution time. Because SNPs with MAFs <0.05 are

difficult to replicate in GxG or GxE findings (Lin, 2024; Wang
et al., 2019), I only analyzed 2,580,790 common SNPs with
MAFs ≥ 0.05.

TABLE 3 Thirty vQTLs (KW p-value < 5E-8 and linkage disequilibrium measure r2 < 0.01) of the four lipid traits.

Trait (number of vQTLs) Chromosome Base pair vQTL Gene

HDL (10) 9 104827463 rs4149307 ABCA1

9 104902020 rs1883025 ABCA1

15 58431476 rs1800588 LIPC

16 56957451 rs183130 Near CETP

16 67998971 rs113731015 DPEP2

16 68256297 rs12446418 PLA2G15

18 49627658 rs80208964 LOC105372112

19 11236981 rs737338 DOCK6

19 44912383 rs445925 APOC1

20 45907572 rs148753678 PLTP

LDL (6) 2 21024193 rs57825321 APOB

5 75325846 rs4704208a Near HMGCR

5 75614147 rs11748027b ANKDD1B

11 116786951 rs3741297 ZPR1

19 11131631 rs2738464 LDLR

19 44912921 rs483082c APOC1

TG (12) 1 62436136 rs631106 USP1

1 62690372 rs1168114 DOCK7

2 27518370 rs780094 GCKR

2 27798099 rs3935148 RBKS

7 73606007 rs3812316 MLXIPL

8 19966163 rs1803924 LPL

8 125465736 rs2001945 Near TRIB1

11 61815236 rs174561 FADS1

11 116792991 rs662799d APOA5

11 117050674 rs1815786 SIK3

17 67966122 rs10445361 BPTF

19 44913484 rs438811 APOC1

TCHO (6) 1 109275536 rs3832016 CELSR2

2 21029662 rs13306194 APOB

5 75325846 rs4704208a Near HMGCR

5 75614147 rs11748027b ANKDD1B

11 116792991 rs662799d APOA5

19 44912921 rs483082c APOC1

ars4704208 (near HMGCR) is a vQTL of LDL and TCHO.
brs11748027 (in ANKDD1B) is a vQTL of LDL and TCHO.
crs483082 (in APOC1) is a vQTL of LDL and TCHO.
drs662799 (in APOA5) is a vQTL of TG and TCHO.
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With the PLINK clumping procedure (Purcell et al., 2007), I
detected 10 independent HDL-vQTLs (KW p-value < 5E-8) with
linkage disequilibrium (LD) measure r2 < 0.01. Moreover, 6, 12, and
6 independent vQTLs were identified from LDL, TG, and TCHO,
respectively. Four SNPs were found to be vQTLs of multiple lipid
traits, including rs4704208 (near HMGCR), rs11748027 (in
ANKDD1B), rs483082 (in APOC1), and rs662799 (in APOA5).
Table 3 summarizes the 30 (=10 + 6+12+6–4) unique vQTLs of
the four lipid traits.

3.2.2 Direct GxE analysis
From the regression (or variable selection) perspective, it is

important to keep the hierarchical structure between main and

interaction effects (Zhou et al., 2021). Following previous vQTL
research (Wang et al., 2019), after identifying vQTLs, I performed a
“direct GxE analysis” by regressing the trait on the minor allele
count of each vQTL (0, 1, or 2), seven environmental factors (Es),
and the product (interaction) term between the minor allele count
and one of the seven Es. To remove population stratification, I also
adjusted the top 10 ancestry PCs in this regression. The seven Es are
listed as the horizontal axis of Figure 2, including SEX (female vs
male), SPO (performing regular exercise, yes vs no), EDU
(educational attainment, an integer from 1 to 7), AGE
(chronological age, in years), BMI (in kg/m2), DRK (alcohol
consumption, yes vs no), and SMK (cigarette smoking status, yes
vs no). AsWesterman et al. (Westerman et al., 2022) indicated, some

FIGURE 2
The phylogenetic heat map of the gene-environment interaction analysis for triglyceride (TG). The magnitude of the value represents–log10 (two-
sided p-value of the SNP-E interaction), which is always positive. However, I deliberately added a positive/negative sign before the magnitude. A positive
sign indicates that the environmental factor (E) exacerbates the vQTLs’ effects. In contrast, a negative sign suggests that the E attenuates the vQTLs’
effects. The x-axis lists the 7 Es, including SEX (female vs.male), SPO (performing regular exercise, yes vs no), EDU (educational attainment, an integer
from 1 to 7), AGE (chronological age, in years), BMI (in kg/m2), DRK (alcohol consumption, yes vs no), and SMK (cigarette smoking status, yes vs no).
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vQTLs were “pleiotropic” concerning phenotypic variability. Table 2
also shows that four loci are vQTLs shared by multiple lipid traits.
Instead of performing the direct GxE and GxG analysis for
respective vQTLs of each lipid trait (i.e., 10 vQTLs for HDL,
6 vQTLs for LDL, 12 vQTLs for TG, and 6 vQTLs for TCHO), I
analyzed all 30 vQTLs to have a more comprehensive picture of the
four lipid traits.

Because TG had more vQTLs compared with the other three
traits, I present the phylogenetic heat map of the direct GxE analysis
for TG in Figure 2. The x-axis of Figure 2 lists the 7 Es. The
magnitude of the value in Figure 2 represents–log10 (two-sided
p-value of the SNP-E interaction), which is always positive.
However, I deliberately added a positive/negative sign before the

magnitude. A positive sign indicates that E exacerbates the vQTLs’
effects. In contrast, a negative sign suggests that the E attenuates the
vQTLs’ effects. Females have more attenuated TG genetic effects
than males (blue color in SEX column), whereas higher BMI, alcohol
consumption, and cigarette smoking lead to more substantial TG
genetic effects (red color in BMI, DRK, and SMK columns).
Moreover, the phylogenetic heat maps for the remaining three
traits are demonstrated in Supplementary Figures S17–S19.

3.2.3 Direct GxG analysis
I further performed a “direct GxG analysis” by regressing the

trait on the minor allele counts (0, 1, or 2) of two SNPs, the seven Es
mentioned above, and the product (interaction) term of the minor

FIGURE 3
The phylogenetic heat map of the gene-gene interaction analysis for triglyceride (TG). The magnitude of the value represents–log10 (two-sided
p-value of the SNP-SNP interaction), which is always positive. The most significant SNP-SNP interaction is between rs438811 (chr. 19, in APOC1) and
rs662799 (chr. 11, in APOA5), where p = 1.3E-15. SNP rs483082 is highly correlated with rs438811 (r2 = 0.99), and rs3741297 is in linkage disequilibrium
with rs662799 (r2 = 0.19). Therefore, despite four black cells indicating four significant SNP-SNP interactions, I only highlighted rs438811-rs662799
interaction.
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allele counts of the two SNPs. Similarly, I adjusted the top
10 ancestry PCs in this regression. Figure 3 shows the
phylogenetic heat map of the direct GxG analysis for TG. The
maps for the other three lipid traits can be found in Supplementary
Figures S20–S22.

Regarding TG, the interaction between rs438811 (chr. 19, in
APOC1) and rs662799 (chr. 11, in APOA5) is the most significant

among the
30
2

( ) � 435 GxG tests constructed by the 30 vQTLs (p =

1.3E-15). The magnitude of the value in Figure 3 represents–log10
(two-sided p-value of the SNP-SNP interaction), which is always
positive. The most significant SNP-SNP interaction is between
rs438811 (chr. 19, in APOC1) and rs662799 (chr. 11, in APOA5),
where p = 1.3E-15. SNP rs483082 is highly correlated with rs438811
(r2 = 0.99), and rs3741297 is in obvious linkage disequilibrium with
rs662799 (r2 = 0.19). Therefore, despite four black cells in Figure 3
indicating four significant SNP-SNP interactions, I only highlighted
rs438811-rs662799 interaction. As analyzed by the direct GxG
regression model, each T allele at rs438811 is associated with
10.8 mg/dL (p = 7.0E-117), and each G allele at rs662799 is
associated with 26.4 mg/dL (p ~ 0, extremely low p-value).
Possible values of the interaction (product) term between
rs438811 and rs662799 are 0, 1 (=1 × 1), 2 (=1 × 2 or 2 × 1), and
4 (=2 × 2). Each point of the interaction term is associated with
5.9 mg/dL (p = 1.3E-15). This result indicates a synergistic
interaction between rs438811 and rs662799: T allele at rs438811
and G allele at rs662799 working together exerts a more substantial
impact on TG than they would have on their own.

4 Discussion

Searching for vQTLs greatly facilitates the mining of GxE and
GxG. For a GWAS incorporating one million SNPs and seven Es,

seven million GxE tests and
1000000

2
( ) � 499999500000 GxG

tests are required to investigate GxE and GxG. In the data
analysis of this work, 30 vQTLs were identified from four lipid
traits. I only needed to perform 210 (� 30 × 7) GxE and 435

(� 30
2

( )) GxG tests for each trait. The number of tests has

dramatically decreased, and the penalty for multiple tests can be
attenuated with a preliminary vQTL search.

This work evaluates the performance of three parametric (DRM,
BF, and DGLM) and two non-parametric (KW and QUAIL)
methods in detecting vQTLs. Although DGLM is the most
powerful method for normally distributed traits (Figure 1;
Supplementary Figure S1–S3C–E), it has severe inflation in FPR
for traits following other distributions (Figure 1; Supplementary
Figure S1–S3F, K). The random error term of DGLM is assumed to
follow the normal distribution. This is why it fails to control for FPR
when the trait is non-normally distributed. Therefore, DGLM
should not be adopted for vQTL detection when the trait
distribution is unclear. Taking INT transformation helps adjust
FPR for kurtotic traits (Figure 1; Supplementary Figure S1–S3F)
but not for skewed traits (Figure 1; Supplementary Figure S1–S3K).
Transforming trait values into ranks like INT and KW can address
the outlier problem in kurtotic distributions. However, these two
rank-based methods, especially DGLM_INT, cannot fully solve the

heteroscedastic problem under skewed traits (Figure 1;
Supplementary Figure S1–S3K).

BF has inflated FPR under kurtotic traits when MAF <0.2
(Supplementary Figures S5, S8A–C). The BF test is equivalent to the
ANOVA F test for regressing Dij on the two indicator variables
differentiating the three genotype groups of an SNP. Therefore, BF
is not a valid test given kurtotic traits and unbalanced sample sizes
across three genotype groups (i.e., only a few observations in a particular
genotype group, which is a common situation under small MAF). This
unbalanced issue can be alleviated given a larger total sample size (N).
As we can see, the problem of inflated FPR in BF is not so severe whenN
increases to 147,836 (Supplementary Figures S11, S14A–C).

DRM has a power performance similar to that of BF. These two
tests are based on a similar strategy. DRM regressesD(i)j (the deviation
between individual j’s covariate-adjusted residual and his/her group
median) on the minor allele count at each SNP (i.e., 0, 1, or 2), whereas
BF regressesD(i)j on the two indicator variables of genotypes. The only
difference between the twomethods is that DRM regards genotypes as a
continuous scale (coding as 0, 1, and 2), whereas BF treats genotypes as
a categorical scale. It is unsurprising that DRM and BF perform
similarly in power. However, DRM controls FPR more appropriately
than BF, because unbalanced sample size is a more critical issue when
separating genotypes into three groups.

Two non-parametric tests, QUAIL and KW, were evaluated in
this work. Although QUAIL maintains an appropriate FPR under
normally or non-normally distributed traits (column 1 of Figure 1;
Supplementary Figure S1–S3), its statistical power is never among
the optimal choices under any situation (columns 2–5 of Figure 1;
Supplementary Figure S1–S3). Besides, the power of QUAIL can be
compromised by quantile crossing, which is a well-known issue
when estimating multiple quantiles simultaneously (Bondell et al.,
2010). However, the QUAIL R code does not evaluate whether an
analysis suffers from quantile crossing. Moreover, QUAIL requires
much longer computation time than the other competitors.
Therefore, I would not recommend using QUAIL to perform a
genome-wide vQTL search. On the other hand, KW is the most
powerful vQTL test for kurtotic phenotypes (Figure 1;
Supplementary Figure S1–S3G–J). When the traits are skewed,
KW presents a slight inflation in FPR (Figure 1; Supplementary
Figure S1–S3K). However, the subsequent direct GxE or GxG
analysis can further assess the significance of GxE and GxG.
Therefore, after considering the computation time, I chose KW
to analyze the four lipid traits in the TWB data.

With the comprehensive simulations in this work, DRM and KW
are themost recommended parametric and non-parametric vQTL tests,
respectively. UnlikeDRM (Marderstein et al., 2021), KWhas no specific
paper to introduce its implementation in detecting vQTLs. Therefore, as
a demonstration, I here used KW to analyze the four TWB lipid traits.
Other investigators may also choose DRM to perform genome-wide
vQTL searches because of its adequate control of FPR and shorter
computational time (Table 1). If one applies two or more methods to
the same data set, he/shemay explore the superiority of eachmethod by
comparing the replication rates of different techniques. That is, one can
first separate the data set into a discovery set and a replication set, then
calculate the replication rates of different methods.

Same with previous vQTL works (Lin, 2024; Wang et al., 2019), I
only analyzed common SNPs with MAFs ≥ 0.05. The reason is that
GxE is the joint distribution between a SNP and E, and GxG is the
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joint distribution between two SNPs. Interaction studies are difficult
to replicate if an SNP has a small MAF (Lin, 2024). Figures 2, 3 show
that GxE and GxG are enriched among vQTLs of the four lipid traits.
With more vQTLs identified from TG, it is not surprising that more
GxE and GxG can be explored from this trait (GxE: comparing
Figure 2 with Supplementary Figures S17–S19; GxG: comparing
Figure 3 with Supplementary Figures S20–S22).

For TG, APOA5 rs662799 has been found to interact with
cigarette smoking and alcohol consumption, based on individuals
from Korea (Park and Kang, 2020). These interactions were also
associated with metabolic syndrome (MetS) by analyzing subjects
from Jilin Province of China (Wu et al., 2016). Because TG is one
critical component of MetS, both studies (Park and Kang, 2020; Wu
et al., 2016) were in line with our analysis results (APOA5 rs662799 is
on the second row of Figure 2).

DRM and KW are the most recommended parametric and non-
parametric vQTL methods. QUAIL appropriately preserves the FPR
under normally or non-normally distributed traits. However, its power
is never among the optimal choices, and its computational time is much
longer than the other competitors. BF suffers from severe inflation in
FPR when SNP’s MAF <0.2. We may alleviate this inflation in FPR by
increasing the sample size to, say, N ~ 150,000. DRM and BF are based
on a similar strategy. DRM regresses the deviation between individuals’
covariate-adjusted residuals and their group medians on the minor
allele count of an SNP, whereas BF regresses the deviation between
individuals’ covariate-adjusted residuals and their group medians on
two indicator variables categorizing three genotypes. Therefore, DRM
and BF have similar power. However, BF suffers frommore inflation in
FPR than DRM does, mainly when a small sample size is observed in
one genotype. Although DGLM is the most powerful method given
normally distributed traits, it is not valid (i.e., producing large FPR) for
non-normally distributed traits. Adopting the rank-based INT
transformation can address the outlier problem and adjust the FPR
for kurtotic traits. However, INT cannot fully solve the heteroscedastic
issue of skewed traits.

Recently, a robust Bayesian mixed model rooted in the one-way
ANOVA has been developed (Fan et al., 2025). By specifying a
likelihood based on a heavy-tailed distribution, this method can
improve robustness in GxE detection. With Fan et al.‘s concept (Fan
et al., 2025), the non-robust parametric tests can build a robust mixed-
effect model.
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