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Background: Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD)
marked by persistent inflammation and ulceration of the colonic mucosal lining.
Macrophages regulate intestinal inflammation through distinct polarization
profiles. Emerging evidence indicates that the transcription factor SPI1 is a
critical regulator of macrophage activity and contributes to both the initiation
and progression of UC.
Methods: In this study, single-cell RNA sequencing (scRNA-seq) was conducted to
profile the transcriptomic landscape of macrophages in the intestinal tissues of UC
patients. A gene regulatory network (GRN) was constructed using pySCENIC, which
identified SPI1 as a distinct transcriptional regulator involved in macrophage
activation. To pinpoint key downstream targets of SPI1, microarray data were
analyzed through a combination of weighted gene co-expression network
analysis (WGCNA), differential expression (DE) analysis, and several machine
learning algorithms, including LASSO, Recursive feature elimination with a
random forest classifier (RFE-RF), and Support Vector Machine-Recursive Feature
Elimination (SVM-RFE). An in vitro model of M1-polarized macrophages was then
established, andWestern blot (WB) was used to assess the protein expression of SPI1.
SPI1 was then silenced using siRNA, and its impact on macrophage polarization was
evaluated using flow cytometry and ELISA.
Results: GRN analysis results suggest that the SPI1(+) regulon regulates
macrophage activation in UC. Using WGCNA on microarray data, we identified
key downstream regulatory target genes, specifically IRAK3, IL1RN, CD55 and
PEA15, based onmicroarray data. Their potential as biomarkers was subsequently
validated through several machine learning algorithms. In vitro experiments
demonstrated elevated expression of SPI1 in M1-polarized macrophages, as
confirmed by WB analysis. Flow cytometry and ELISA analyses revealed that
SPI1 silencing inhibited M1 macrophage polarization.
Conclusion: This study identified SPI1 as a potential key transcription factor
involved inmacrophage polarization in UC, possibly exerting its regulatory effects
through IRAK3, IL1RN, CD55 and PEA15. These findings offer a novel perspective
on the molecular mechanisms underlying intestinal inflammation in UC.
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1 Introduction

Ulcerative colitis (UC) is a chronic inflammatory bowel disease
(IBD) marked by episodes of abdominal pain, diarrhea, and rectal

bleeding. Typical endoscopic features include mucosal erythema,
edema, and ulceration (Gore et al., 1984; van der Post et al., 2019). In
recent years, its incidence has risen steadily, posing UC a growing
concern for gastrointestinal health. As the disease advances,
inflammation may progress to cryptitis and crypt abscesses, and
in severe cases, can result in intestinal strictures or perforation.
Persistent and recurrent inflammation over time may drive
epithelial-to-mesenchymal transition (EMT), significantly
elevating the risk of colitis-associated cancer (CAC) (Bopanna
et al., 2017).

As a crucial element of the innate immune system, macrophages
are fundamentally involved in the pathogenesis of UC. Research
indicates that the extent of intestinal macrophage infiltration is
positively associated with UC severity (Mowat and Bain, 2011), and
excessive infiltration can compromise the integrity of the intestinal
mucosal barrier (Liang et al., 2022). Activated macrophages
modulate the inflammatory milieu of the gut. Specifically,
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overpolarization of pro-inflammatory M1 macrophages or
suppression of anti-inflammatory M2 macrophages markedly
increases the production of IL-6, leading to the initiation and
exacerbation of UC (Zhou et al., 2019; Xu et al., 2022).
Furthermore, the accumulation of M1 macrophages in the
intestinal lamina propria leads to TNF-α–mediated disruption of
epithelial tight junctions, fostering ongoing and recurrent
inflammation (Lissner et al., 2015).

SPI1 functions as an important regulator of myeloid cell activity,
especially in the context of macrophage activation. Evidence
indicates that SPI1 facilitates the differentiation of peripheral
blood monocytes into macrophages and modulates their
functional properties by influencing M1/M2 polarization (Jego
et al., 2014). Moreover, SPI1 interacts synergistically with
HOXA3 to dynamically regulate this polarization, thereby
contributing to tissue repair and wound healing processes (Al
Sadoun et al., 2016). These findings suggest that SPI1 may be
involved in the pathogenesis of UC through its regulation of
intestinal macrophage polarization, ultimately shaping the course
of intestinal inflammation.

The development of single-cell RNA sequencing (scRNA-seq)
has opened new avenues for exploring cellular diversity, allowing
for detailed investigation of immune cells in multifaceted
biological contexts. Using the pySCENIC pipeline, we
performed gene regulatory network (GRN) analysis by
integrating co-expression patterns from scRNA-seq data with
regulator inference, leading to the identification of key
differential transcription factors. This approach accurately
characterized transcriptional regulatory units specific to
macrophage subsets from a network topology perspective (Van
de Sande et al., 2020). By combiningWeighted Gene Co-expression
Network Analysis (WGCNA) with differential expression (DE)
analysis, we improved the accuracy of identifying core target genes
regulated by transcription factors.

To investigate the regulatory networks involving macrophage
transcription factors and their downstream genes in UC, we
analyzed two scRNA-seq datasets along with three microarray
datasets. The insights gained contribute to a better
comprehension of UC’s molecular basis and may aid in the
advancement of tailored treatment strategies.

2 Methods

2.1 Data collection

All datasets were retrieved from the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo). ScRNA-seq
data were obtained from two datasets: GSE214695 (Garrido-Trigo
et al., 2023), which includes samples from 6 healthy individuals and
6 patients with active UC, and GSE231993 (Du et al., 2023),
containing 4 healthy controls and 4 active UC cases. Microarray
datasets were derived from three datasets: GSE87466 (21 healthy
controls and 87 active UC samples) (Li et al., 2018), GSE75214
(11 healthy controls and 74 active UC samples) (Vancamelbeke
et al., 2017), and GSE36807 (7 healthy controls and 15 active UC
samples) (Montero-Meléndez et al., 2013). In patients with active
UC, tissue samples were taken from inflamed regions of the colon,

while in the control group, samples were obtained from the normal
colonic tissue of healthy individuals. Table 1 shows the accession
numbers, platforms, and other details of the datasets.

2.2 Materials and reagents

RAW264.7 cells were obtained from the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China). They were
maintained in DMEM supplemented with 10% fetal bovine
serum and 1% penicillin-streptomycin. Cell cultures were
incubated at 37 °C in a humidified atmosphere containing 5%
CO2. ELISA kit for IL-1β (ZC-37974, Zhuocai, China); ELISA kit
for IL-10 (ZC-37962, Zhuocai, China); SPI1 antibody (55100-1-AP,
Proteintech, China); iNOS antibody (22226-1-AP, Proteintech,
China); Arg1 antibody (16001-1-AP, Proteintech, China);
Tubulin antibody (80762-1-RR, Proteintech, China); Anti-rabbit
IgG (H + L) (14780, Cell Signaling Technology, United States).

2.3 Analysis of scRNA-seq data

We conducted single-cell transcriptome analysis on the
GSE214695 and GSE231993 datasets, utilizing the Seurat R
package (version 5.1.0) for data processing. ScRNA-seq data
underwent quality control filtering to retain cells with
300–6,000 detected genes, <10% mitochondrial
reads, >1,000 UMIs, and total counts below the 97th percentile
(Supplementary Figure S1). Data processing followed standard
Seurat workflow including normalization, variable gene
identification, and data scaling (Supplementary Figure S2). After
initial dimensionality reduction via PCA, the Harmony algorithm
was applied to mitigate batch effects (Supplementary Figures S3, S4).
An SNN graph was constructed based on the top 40 harmony
dimensions, and Louvain clustering at 0.4 resolution yielded
18 distinct cell clusters (Supplementary Figure S5). Finally,
UMAP was used for two-dimensional visualization of cellular
heterogeneity. Afterwards, we performed differential expression
analysis on our Harmony-integrated scRNA-seq data using the
FindAllMarkers function in Seurat, applying Wilcoxon rank sum
test with stringent filtering criteria (logfc.threshold = 0.25, min.pct =
0.25, only.pos = TRUE). This approach enabled us to identify
cluster-specific marker genes that facilitated accurate cell type
annotation and provided valuable insights for subsequent
functional characterization of cell subpopulations.

2.4 Identifying differential regulons
with pySCENIC

We leveraged pySCENIC methodology to elucidate GRN at
single-cell resolution (Supplementary Figure S6). The analytical
pipeline commenced with GRNboost2 algorithm implementation
to swiftly detect potential regulatory interactions by examining
transcription factor and target gene co-expression patterns within
single-cell transcriptomic datasets (Van de Sande et al., 2020). We
then incorporated the human promoter motif repository and used
RcisTarget to identify binding sites within promoter regions,
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filtering for sequence-validated interactions to establish robust
regulons. Regulatory influence across cellular populations was
quantified via area under the curve cell-level (AUCell)-derived
activity scores, complemented by PCA dimensionality reduction
to offer alternative visualization of regulatory landscapes. The
resultant cell-type-specific transcriptional networks illuminated
distinctive molecular governance across diverse cellular states and
developmental trajectories, providing crucial insights into
heterogeneity and disease mechanisms. Moreover, we deployed
cell-specific index (CSI) to characterize regulatory modules, with
transcription factor relationships assessed through Pearson
correlation and visualized.

To identify cell type-specific regulons, we first computed a
binary indicator matrix representing the presence of each cell
type across all cells. Using the regulon activity score matrix
(rasMat), we then calculated the Regulon Specificity Score (RSS)
for each regulon across different cell types. Specifically, RSS was
defined as 1− Jensen-Shanno Divergence (JSD). 1− JSD between the
regulon’s activity distribution and the idealized distribution of each
cell type. A higher RSS indicates stronger specificity of a regulon to a
particular cell type. The top-ranked regulons for each cell type were
visualized based on their RSS values.

2.5 Pseudobulk-based differential
expression and SPI1 regulon activity analysis
in macrophages

To investigate transcriptional regulation in UC, macrophage
subsets were extracted from both UC and healthy control groups
using preprocessed Seurat objects. Due to the sparsity of scRNA-seq
data, a pseudobulk strategy was applied by aggregating gene
expression profiles at the sample level, resulting in a gene-by-
sample count matrix. Differential gene expression analysis was
conducted using the DESeq2 package following median ratio
normalization. Genes with at least 10 normalized counts in three
or more samples per group were retained. Differentially expressed
genes between UC and normal groups were identified based on a
negative binomial generalized linear model. Gene set enrichment
analysis (GSEA) was performed using the clusterProfiler R package
(version 4.12.6) (Wu et al., 2021). Enriched pathways were then
mapped onto the previously constructed transcription
factor regulons.

To assess SPI1 activity in macrophages, we extracted its regulon
target genes and calculated their average expression per cell using
Seurat’s AddModuleScore (). This average expression served as an
activity score reflecting SPI1 regulatory strength, which we
visualized on UMAP and compared across macrophage subsets.
Specifically, we assessed the expression activity of each SPI1 regulon
target gene within macrophages and aggregated these measurements
to estimate SPI1’s downstream regulatory impact.

2.6 WGCNA-based identification and
validation of UC-Associated modules

To investigate the association between gene expression and clinical
traits, we employedWGCNA to construct gene co-expression networks

(Supplementary Figure S7). Initially, the WGCNA R package (version
1.72.5) was used to calculate pairwise gene correlations using Pearson’s
correlation coefficient, resulting in a gene co-expression matrix
(Langfelder and Horvath, 2008). To ensure the inclusion of
biologically informative genes, we implemented the PVAC filtering
strategy, which integrates variance, median absolute deviation (MAD),
coefficient of variation (CV), and expression levels. Genes were retained
for downstream analysis only if they exhibited high expression, fell
within the top 75% in terms of variability, and had a minimum
expression value greater than 1. Next, the pickSoftThreshold
function was applied to determine the optimal soft threshold (β) for
constructing a signed network, adhering to the scale-free topology
criterion. This allowed us to construct a signed, weighted gene co-
expression network that emphasizes positive correlations and conforms
to a scale-free architecture, an important feature for identifying
biologically meaningful modules associated with immune activation
in UC. Modules were identified through hierarchical clustering and
dynamic tree cutting, followed by module merging. Following module
detection, we assessed the association between each module and UC by
calculating the Pearson correlation between module eigengenes and the
disease phenotype.

To identify WGCNA modules associated with SPI1 regulation,
SPI1 target genes were first intersected with the set of expressed genes.
The number of SPI1 targets within each module was then quantified.
Subsequently, a hypergeometric test was conducted to evaluate the
significance of target gene enrichment in each module. Modules
exhibiting significant enrichment were deemed closely linked to
SPI1 and were selected for downstream analyses. The module
membership (MM) of each gene was evaluated, which is defined as
the correlation between the gene and its module eigengene. The gene
significance (GS) of a gene was also calculated, which is defined as the
correlation with the UC phenotype. Genes with MM > 0.5 and GS >
0.2 were visualized via scatter plots, and thosemeeting both criteria were
identified as candidate hub genes. Candidate hub genes identified from
the module in one dataset were used to reconstruct a module eigengene
in the other dataset via PCA. The association between the reconstructed
eigengene and disease status was evaluated using Welch’s t-test. A
significant difference in eigengene values supported the robustness of
the association between the core module genes and UC.

To evaluate the reproducibility of co-expression modules, we
conducted a module preservation analysis using WGCNA. Modules
detected in GSE87466 were assessed for preservation in
GSE75214 with 200 permutations and a signed network
approach. Preservation strength was measured by the Zsummary
statistic, where values above 10 indicate strong preservation,
between 2 and 10 moderate preservation, and below 2 weak or
no preservation. This analysis confirmed that key modules were
consistently preserved across independent datasets, demonstrating
their robustness.

2.7 Acquisition of DE analysis and
enrichment analysis

Two microarray datasets, GSE87466 and GSE75214, were
analyzed to identify differential expressed genes. A series of
quality control procedures were applied to both datasets,
including normalization using the normalizeBetweenArrays
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function, gene annotation and integration, and the detection of
potential outliers through PCA (Supplementary Figures S8–S11).
Following preprocessing, differentially expressed genes were
identified using the limma R package (version 3.60.4), with the
filtering criteria set to |logFC| ≥ 1 and a p-value <0.05 (Ritchie et al.,
2015). Volcano plots were generated using the ggplot2 R package
(version 3.5.1) to visualize the differential expressed genes. To
investigate their biological relevance, GO enrichment analysis was
conducted using the clusterProfiler package, focusing on processes
associated with macrophage activation.

2.8 Machine learning screening

To identify potential downstream target genes regulated by
transcription factors, LASSO, Recursive feature elimination with
a random forest classifier (RFE-RF), and Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) were systematically
applied. The training dataset was created by merging
GSE75214 and GSE87466, with batch effects corrected using the
sva R package (version 3.52.0) (Supplementary Figure S24).
GSE36807 was designated as the independent validation set.

Given the high dimensionality of gene expression data, LASSO
regression was first employed to perform variable selection and
dimensionality reduction. Gene expression profiles were
standardized, and LASSO logistic regression was conducted with 10-
fold cross-validation to identify the optimal regularization parameter
(λ) using the λ.1se criterion (Friedman et al., 2010). Genes with non-
zero coefficients at this penalty level were considered candidate
biomarkers with discriminative potential between UC and control
samples. To ensure the robustness of selected features, stability
selection was applied using the stabsel function, with a selection
probability cutoff of 0.7 and PFER control (Hofner et al., 2015).
Genes consistently selected across subsamples were considered stable
and reliable predictors.

RFE-RFwas implemented using the caret R package (version 6.0.94)
(Liaw and Wiener, 2002), incorporating repeated 10-fold cross-
validation to identify the optimal feature subset. Feature selection was
guided by classification accuracy. A random forest model with 500 trees
(ntree = 500) was then trained on the selected features, and variable
importance was assessed via the Mean Decrease Gini index. To further
confirm the robustness and relevance of the selected features, the Boruta
algorithm was applied, with tentative attributes resolved using the
TentativeRoughFix () function (Kursa et al., 2010).

In parallel, the SVM-RFE algorithm was employed to identify
the most informative gene subset for classification, utilizing the caret

package with a linear support vector machine classifier (svmLinear)
implemented through the e1071 package (version 1.7.14) (Guyon
et al., 2002). Prior to feature selection, gene expression data were
row-wise standardized (Z-score normalization). The recursive
feature elimination was performed with repeated 10-fold cross-
validation (5 repeats) to ensure model stability and reduce
overfitting. Various feature subset sizes were evaluated, and the
optimal feature set was chosen based on the balance between
classification accuracy and error rate.

2.9 Diagnostic performances analysis

To assess the diagnostic potential of the target genes, receiver
operating characteristic (ROC) curves were generated using the
pROC R package (version 1.18.5), and the corresponding area under
the curve (AUC) values were computed (Robin et al., 2011). The
GSE36087 dataset served as an external validation cohort. The
expression levels of the target genes were analyzed in both UC and
normal samples from the validation set, and ROC analysis was
conducted to further confirm their discriminative ability.

2.10 LPS-induced macrophage activation

RAW264.7 macrophages were subjected to M1-like polarization
following two passages. Cells were treated with LPS (1 μg/mL) for
24 h to induce M1 polarization. After stimulation, cells were
harvested and processed for subsequent assays. Throughout all
experiments, untreated cells consistently served as blank controls
to establish baseline values.

2.11 siRNA-mediated knockdown of SPI1

A small interfering RNA (siRNA) targeting SPI1 was designed
and synthesized by Xuzhou General Biotechnology Co., Ltd. To
evaluate the impact of SPI1 knockdown, cells were assigned to three
groups: (1) control (untreated), (2) si-NC (transfected with
scrambled, non-targeting siRNA as a negative control), and (3)
si-SPI1 (transfected with siRNA specifically targeting SPI1).

Prior to transfection, cells were plated at 30%–40% confluence in
antibiotic-free growth medium and cultured for approximately 24 h.
Transient transfection was carried out using Lipofectamine reagent
(Tiangen Biochemical Technology Co., Ltd.) following the
manufacturer’s protocol.

TABLE 1 Basic information of datasets involved in the study.

Datasets Normal Active UC Location Applications References (PMID)

GSE214695 6 6 Colon ScRNA-seq analysis 37495570

GSE231993 4 4 Colon ScRNA-seq analysis 37344477

GSE87466 21 87 Colon WGCNA & DE analysis 29401083

GSE75214 11 74 Colon WGCNA & DE analysis 28885228

GSE36807 7 15 Colon Validation 24155895
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2.12 Western blot (WB)

All WB experiments were performed with three independent
biological replicates (n = 3). Cells were lysed in RIPA buffer, and the
resulting lysates were clarified by centrifugation. Protein concentrations
were measured using the BCA assay and adjusted to ensure consistency
among samples. Equal amounts of protein were loaded onto SDS-PAGE
gels for separation and subsequently transferred to PVDF membranes.
After blocking with 5% skimmilk, membranes were incubated overnight
with primary antibodies. Following washes, secondary antibodies were
applied and incubated for 1 h. Protein signals were detected using an
ECL substrate kit and quantified using ImageJ software.

2.13 ELISA analysis

Quantitative determination of inflammatory cytokines IL-1β and
IL-10 was performed using ELISA methodology. All measurements
were performed in triplicate using independent biological samples.
Serial dilutions of reference standards were prepared in accordance
with the manufacturer’s protocol to establish calibration curves.
Absorbance measurements were obtained spectrophotometrically at
450 nm wavelength for all experimental samples, with blank wells
serving as the reference baseline for instrument calibration. This
standardized analytical approach enabled precise quantification of
the target cytokines in the experimental specimens.

2.14 Flow cytometry

Flow cytometry experiments were conducted with at least three
independent biological replicates. RAW 264.7 cells in the
logarithmic growth phase were seeded into 6-well plates at a
density of 1 × 106 cells per well. After enzymatic digestion, cells
were collected by centrifugation, resuspended in a fluorescent dye
working solution, and incubated on ice for 15 min. Prior to analysis,
cells were washed and resuspended in PBS. Flow cytometry was
subsequently performed for detection.

2.15 Statistical analysis

Statistical analysis was performed using GraphPad 8.0 software.
A Student’s t-test was used for two-group comparisons. For
comparisons among more than two groups, a one-way ANOVA
followed by a Tukey’s post hoc test was applied. Results are expressed
as mean ± standard deviation (SD). Differences were considered
statistically significant at P < 0.05 and highly significant at P < 0.01.

3 Results

3.1 Single-cell clustering reveals UC-
associated remodeling of cellular
composition

Although the two scRNA-seq datasets were derived from
partially overlapping regions of the gut, we independently

analyzed each dataset and observed a consistent increase in
macrophage proportions in UC samples (Supplementary Figure
S12). Given this consistent trend across both datasets, we
integrated them for downstream analyses. This integration not
only provides the increased cell numbers and diversity needed
for regulatory network inference using pySCENIC, but also
enables more comprehensive characterization of cell-type
composition in the UC microenvironment.

Based on marker gene expression, the integrated scRNA-seq
dataset was categorized into 14 distinct cell subpopulations
(Figure 1A). Annotation of cell populations was performed using
specific markers from the CellMarker database (Supplementary
Figure S13). Analysis of cellular composition revealed distinct
patterns between groups (Figure 1B). The control group was
dominated by plasma cells (31.3%), followed by CD4 T cells
(17.2%), CD8 T cells (13.3%), and naive B cells (13.0%), with
lower proportions of fibroblasts (9.2%), epithelial cells (8.3%),
and macrophages (2.1%). In contrast, UC samples showed
significant shifts in cellular distribution. Immune cells expanded,
with plasma cells increasing to 40.2%, CD4 T cells to 19.1%, and
macrophages to 3.8%. Simultaneously, structural cells declined
markedly, with fibroblasts decreasing to 2.9% and epithelial cells
to 1.6%. Both CD8 T cells and naive B cells slightly decreased to
11.1% each, while all other cell types collectively comprised
less than 11%.

3.2 Transcriptional regulatory network
analysis in UC

Based on pySCENIC, we identified significantly active regulons.
The activity of each regulon within individual cells was evaluated
using the AUCell scoring algorithm, followed by UMAP
dimensionality reduction clustering based on activity scores
across all regulons (Figures 1C,D). Our analysis revealed notable
differences in macrophages between UC and normal tissues. Based
on the CSI among 401 regulons (TF-target gene pairs) identified by
pySCENIC, cells were clustered into 9 modules (Supplementary
Figure S14). The average activity of regulons within each module is
illustrated in Supplementary Figure S15. Following PCA-based
dimensionality reduction, a significant difference in macrophage
enrichment between the UC and normal groups was observed
(Figures 1E,F), suggesting that macrophages represent key
differential cell types distinguishing UC from healthy controls.

3.3 Association of SPI1 regulon with UC-
related macrophage activation

To investigate the molecular mechanisms underlying altered
macrophage function in UC, we conducted GSEA to identify
signaling pathways enriched in macrophages. The analysis
revealed significant enrichment of macrophage activation-
associated pathway in UC compared to healthy controls
(Figure 2A). To uncover potential upstream regulatory
mechanisms driving these changes, we performed transcriptional
regulatory network analysis. This revealed that SPI1 and its
downstream targets comprised a substantial portion of the
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FIGURE 1
Single-cell RNA-seq analysis data of UC and normal group. (A) UMAP plot showing the clustering of different cell types. (B) Comparison of cellular
composition between UC and normal group. (C,D) UMAP dimensionality reduction based on regulon activity scores, providing enhanced visualization of
cell type clusters (C) and disease-specific differences (D). (E,F) Dimensionality reduction plots showing cell type distribution (E) and disease status (F)
based on PCA.
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FIGURE 2
SPI1(+)mainly regulates UCmacrophage activation. (A)GSEA plots showing significant enrichment ofmacrophage activation-associated pathway in
UC. (B) Transcription factors regulating macrophage activation-associated pathway including SPI1 (+). (C) Rank for regulons in macrophages based on
the RSS. (D)Macrophages are highlighted in the UMA; (E) Binarized RAS for the top regulon SPI1 on UMAP. (F) UMAP showing SPI1 regulon activity across
cell types. (G) Average expression of SPI1 regulon genes in macrophages. Data are expressed as mean ± SD. *P < 0.05, **P < 0 .01 compared to the
other group.
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identified functional gene sets (Figure 2B). Furthermore,
SPI1 regulon activity differed markedly between macrophages
from UC patients and those from the control group (Figures
2C–E; Supplementary Table S1). We extracted SPI1 regulon
target genes and calculated their average expression per cell using
Seurat’s AddModuleScore () function. This average expression score
served as a quantitative proxy for SPI1 regulatory strength.
Visualization on UMAP embeddings showed heterogenous
distribution of SPI1 regulon activity, with macrophages
displaying significantly higher scores compared to other cell types
(Figure 2F). We also calculated the average expression level of each
SPI1 regulon gene within macrophages. Comparison between UC
and control groups revealed that SPI1 target genes were significantly
upregulated in UC macrophages, further supporting transcriptional
activation of SPI1 (Figure 2G). These findings suggest that SPI1 is a
key transcription factor involved in regulating macrophage
activation in UC.

3.4 Genes related to macrophage activation
in ulcerative colitis identified byWGCNA and
DE analyses

We applied the limma package to analyze two gene expression
datasets, GSE87466 and GSE75214 (Figures 3A,B; Supplementary
Tables S2, S3). Based on the identified differentially expressed genes,
GO enrichment analysis was performed to investigate functional
associations (Figures 3C,D). Both datasets revealed a significant
enrichment of biological processes associated with macrophage
activation.

To further explore the molecular mechanisms underlying UC,
we applied WGCNA to the microarray gene expression profiles of
both datasets. In GSE87466, one outlier sample (GSM2332144) was
excluded based on hierarchical clustering (Supplementary Figure
S16). A soft-threshold power of β = 14 was selected to construct a
scale-free network (Figure 3F; Supplementary Figure S17). After
module merging and refinement, 24 co-expression modules were
identified (Figure 3H). Based on the enrichment analysis of
SPI1 target genes, we identified the MEpaleturquoise module as
significantly enriched and thus selected it for further investigation
(Supplementary Figure S18; Supplementary Table S7). This module
also exhibited a strong positive correlation with the UC phenotype
(cor = 0.67, P = 2e−15), suggesting a potential association with
macrophage activation in UC (Figure 3H). Genes within this module
that met the criteria of MM > 0.5 and GS > 0.2 were defined as core
genes (Figure 3J; Supplementary Table S4). In GSE75214, all samples
clustered appropriately without any outliers, as shown by
hierarchical clustering (Supplementary Figure S19).Similarly, in
GSE75214, a soft-threshold of β = 12 was chosen (Figure 3E;
Supplementary Figure S20), resulting in 13 modules after
dynamic tree cutting and merging (Figure 3G). The MEgreen
module was chosen due to its significant enrichment of
SPI1 targets and moderate association with UC traits (cor = 0.58,
P = 5e−9) (Supplementary Figure S21; Supplementary Table S6).
Core genes from this module were similarly identified based on
MM > 0.5 and GS > 0.2 (Figure 3I; Supplementary Table S5). These
gene sets from both datasets were regarded as candidate targets
potentially involved in macrophage-mediated pathogenesis of UC.

As shown in Supplementary Figure S22, most modules exhibited
Zsummary >2, indicating moderate preservation across the two
independent datasets. These findings demonstrate that key co-
expression modules are preserved between GSE87466 and
GSE75214, indicating cross-dataset consistency in gene co-
expression patterns.

To evaluate the robustness of eigengene-trait associations, we
performed cross-dataset validation between GSE75214 and
GSE87466 through PCA. The association with disease status was
tested using Welch’s t-test. The green module eigengene from
GSE75214 showed a strong association with UC in GSE87466
(t = −13.96, P < 2.2e-16) (Figure 3K). Similarly, the paleturquoise
module from GSE87466 was significantly associated with UC when
projected into GSE75214 (t = −13.03, P = 1.42e-14) (Figure 3L).
These results confirm that eigengene–trait relationships are
consistent across datasets, supporting the stability of SPI1-
enriched gene modules in UC.

3.5 Identification and diagnostic assessment
of SPI1-Regulated core target genes

We investigated the target genes regulated by SPI1 in
macrophages and conducted an intersection analysis with two
sets of core genes identified through WGCNA. This analysis
revealed 272 overlapping core genes (Supplementary Table S8).
To further refine the selection, LASSO regression identified
11 candidate genes with non-zero coefficients at the optimal
regularization parameter (λ.1se) (Figures 4A,B). Stability selection
confirmed 5 of the 11 LASSO-selected genes as high-confidence
features (Supplementary Table S9). RFE-RF was employed to
identify the optimal subset of genes for classification, with the
best performance achieved using 10 features. This subset yielded
an accuracy of 97.29% and a Cohen’s kappa of 0.9031 under 10-fold
cross-validation repeated five times (Figure 4C; Supplementary
Table S10). A final Random Forest model constructed using
these 10 genes demonstrated strong classification performance
and provided interpretable feature importance (Figure 4D;
Supplementary Table S11). Notably, all 10 RFE-selected genes
were also confirmed as important by the Boruta algorithm,
further supporting their relevance (Supplementary Figure S23;
Supplementary Table S12). Concurrently, SVM-RFE identified a
30-gene signature that yielded high classification accuracy (up to
98.7%) with minimal error and robust performance (Figure 4E;
Supplementary Tables S13, S14). Finally, we selected the intersection
of genes screened by the three machine learning methods and
determined that the target genes were IRAK3, IL1RN, CD55 and
PEA15 (Figure 4F).

To better evaluate the diagnostic performance of the four
identified targets for UC, ROC curve analysis was conducted on
both the training and validation datasets. The AUC values exceeded
0.90 in the training set and were above 0.80 in the validation set,
demonstrating strong discriminatory power (Figures 4I,J). In two
independent datasets (GSE87466 and GSE75214), SPI1, along with
IRAK3, IL1RN, CD55, and PEA15 showed significantly higher
expression in the UC group compared to the normal controls
(P < 0.05, Figures 4G,H), suggesting that these genes may be
upregulated in response to disease-associated regulatory
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FIGURE 3
Microarray data identify genes associated with macrophage activation. (A,B) Volcano plots in GSE75214 (A) and GSE87466 (B). (C,D)GO enrichment
analysis reveals significant enrichment of macrophage activation pathways. (E,F) Cluster dendrograms from WGCNA analysis showing module
identification in GSE75214 (E) andGSE87466 (F). (G,H)Heatmaps showingmodule-trait relationships between identified genemodules and disease status
(Normal vs. UC) in GSE75214 (G) and GSE87466 (H). (I,J) Module membership versus gene significance correlation plots of green module in
GSE75214 (I) and paleturquoise module in GSE87466 (J). (K) Cross-dataset validation of the green module eigengene from GSE75214 projected into
GSE87466. The eigengene showed a strong association with ulcerative colitis (UC) status (Welch’s t-test, t = −13.96, P < 2.2 × 10−16). (L) Cross-dataset
validation of the paleturquoisemodule eigengene fromGSE87466 projected into GSE75214. A significant association with UCwas also observed (Welch’s
t-test, t = −13.03, P = 1.42 × 10−14).
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FIGURE 4
Identification of SPI1-regulated hub genes through the integration of gene set intersection and machine learning approaches. (A,B) LASSO
regression analysis with cross-validation curve showing the optimal lambda value selection and coefficient profiles for gene selection. (C) Accuracy
versus number of variables selected using RFE. (D) Bar chart of top genes ranked by importance scores. (E) SVM-RFE identified a 30-gene signature that
achieved the highest classification accuracy. (F) Venn diagram illustrating the overlap between genes selected by three machine learning methods
(LASSO, RFE-RF, and SVM-RFE). (G,H) Expression levels of SPI1, IRAK3, IL1RN, CD55, and PEA15 in two independent datasets GSE87466 (G) and
GSE75214 (H). (I) ROC curves for IRAK3, IL1RN, CD55 and PEA15 in the training dataset. (J) ROC curves for IRAK3, IL1RN, CD55 and PEA15 in the validation
dataset. ****P < 0.0001 compared to the control group.
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FIGURE 5
LPS-induced polarization of M1 macrophages is affected by SPI1 in vitro. (A–D) The protein expressions of SPI1 (B), iNOS (C), Arg1 (D)measured by
WB. (E–G) Macrophage M1 polarization induced by LPS was detected by flow cytometry. (H, I) WB analysis was performed to assess the knockdown
efficiency of SPI1 following si-SPI1 treatment, including three groups: untreated control, si-NC (non-targeting siRNA), and si-SPI1. (J–L) The expressions
of iNOS (K) and Arg1 (L) measured by WB after SPI1 knockdown. (M–P) Macrophage polarization induced by LPS was detected by flow cytometry
after SPI1 knockdown. (Q, R) Levels of IL-10 (Q) and IL-1β (R)measured by ELISA after SPI1 knockdown. All experiments were performed in triplicate with
independently prepared biological samples. Data are expressed as mean ± SD. *P < 0.05, **P < 0 .01 compared to the other group.
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mechanisms. Meanwhile, SPI1 expression showed a correlation with
IRAK3, IL1RN, CD55 and PEA15 in human samples
(Supplementary Figure S27), supporting a potential regulatory
role of SPI1 in promoting downstream target gene expression.

3.6 SPI1 regulates macrophage polarization
in Vitro

To elucidate the molecular mechanism by which SPI1 regulates
macrophage polarization, a series of in vitro experiments were
conducted. Initially, M1 polarization of RAW264.7 mouse
macrophages was successfully induced using LPS. WB analysis
confirmed the induction, evidenced by a marked increase in the
M1 marker iNOS and a corresponding decrease in the M2 marker
Arg1 (P < 0.05, Figures 5A,C,D). Flow cytometry further supported
this observation, showing a significant upregulation of CD86 in the
LPS-treated group, while CD206 levels remained unchanged
between groups, reinforcing the effective induction of
M1 polarization (P < 0.05, Figures 5E–G). Subsequent WB
analysis revealed that SPI1 expression was significantly elevated
in the LPS group compared to the control (P < 0.05, Figures 5A,B).
To investigate the functional role of SPI1, we employed siRNA to
selectively silence SPI1 expression. The knockdown efficiency was
validated through WB (P < 0.05, Figures 5H,I). WB analysis also
showed that after SPI1 knockout, the level of the M1 marker iNOS
was even higher than that induced by LPS, while the M2 marker
Arg1 was decreased (P < 0.05, Figures 5J-L). ELISA analysis revealed
that SPI1 knockdown significantly increased IL-1β secretion while
reducing IL-10 levels following LPS stimulation (P < 0.05, Figures
5Q,R). Flow cytometry also found that knocking out SPI1 promoted
M1macrophage polarization (Figures 5M-P). These findings suggest
that SPI1 plays a complex role in modulating macrophage
polarization.

4 Discussion

UC is an autoimmune disorder characterized by aberrant activation
of inflammatory responses. Impaired macrophage function is closely
linked to the underlying inflammatory mechanisms of UC. During the
active phase of UC, an imbalance in macrophage subsets has been
reported, potentially driven by alterations in their polarization states
(Du et al., 2023). An increase in pro-inflammatory M1 macrophages is
commonly observed, accompanied by a reduction in anti-inflammatory
M2 macrophages. Notably, inducing macrophage polarization toward
the M2 phenotype can mitigate oxidative stress in epithelial cells and
substantially reduce UC-associated intestinal damage.

To further investigate macrophage dynamics in UC, we analyzed
scRNA-seq from UC patients. This analysis revealed a significant
increase in macrophage abundance, underscoring their central role
in UC pathogenesis. We then employed the pySCENIC algorithm to
reconstruct gene regulatory networks based on co-expression
patterns and transcription factor binding predictions. Regulon
analysis highlighted significant upregulation of macrophage
activation pathways in UC, with SPI1 identified as a highly active
transcription factor.

SPI1 (PU.1) is an essential regulator of macrophage immunity
and belongs to the ETS transcription factor family (Lloberas et al.,
1999; Zakrzewska et al., 2010). The scRNA-seq analysis
demonstrated strong enrichment of SPI1 and its target genes in
macrophage activation pathways among UC patients, consistent
with SPI1’s important role in regulating macrophage function
during UC pathogenesis. These findings align with previous
reports indicating elevated SPI1 activity in IBD (Huang et al.,
2022; Nowak et al., 2022). Studies have shown that increased
SPI1 expression could regulate microglial immune activity and
attenuate inflammation near amyloid plaques in Alzheimer’s
disease (Kim et al., 2024), suggesting its broader role in
restraining aberrant immune responses. In vitro experiments
further support SPI1’s immunoregulatory function. Our findings
indicate that upon LPS stimulation, macrophages that have
polarized toward the M1 phenotype exhibit a significant increase
in SPI1 expression. However, SPI1 knockout significantly enhanced
the expression of pro-inflammatory markers such as IL-1β, while
reducing levels of the anti-inflammatory cytokine IL-10. This shift
indicates a heightened M1 polarization in the absence of SPI1,
highlighting its role in maintaining macrophage functional
balance. Collectively, although SPI1 expression increases during
M1 polarization, our study suggested that SPI1 may serve to
restrain excessive M1 activation and maintain macrophage
homeostasis. In response to inflammatory stimuli such as LPS,
heightened SPI1 expression likely represents an adaptive
mechanism. This mechanism helps prevent detrimental
overactivation of M1 macrophages and facilitates their transition
to the anti-inflammatory M2 state. In addition, SPI1 boosts
phagocytosis in microglia and macrophages, which helps alleviate
ongoing neuroinflammation following cerebral hemorrhage (Zhang
et al., 2024). Conversely, SPI1 knockdown under LPS exposure can
impair phagocytosis, potentially exacerbating and prolonging
inflammatory responses.

To further investigate the regulatory role of SPI1 in
macrophages, we integrated SPI1-associated downstream gene
regulatory networks with microarray sequencing data. Using
machine learning algorithms, we identified and validated IRAK3,
IL1RN, CD55 and PEA15 as critical downstream targets of SPI1. In
UC patients, the expression levels of these genes were significantly
elevated compared to healthy controls.

IRAK3, or interleukin-1 receptor-associated kinase 3, is a key
negative regulator of the Toll-like receptor (TLR) signaling pathway.
It is mainly expressed in monocytes and macrophages. In these cells,
IRAK3 plays an important role in preventing excessive activation of
the innate immune system and helps maintain immune balance
(Wesche et al., 1999; Tunali et al., 2023). In mouse models of DSS-
induced colitis, deletion of IRAK3 significantly lowers serum IL-1β
levels and reduces intestinal inflammation (Berglund et al., 2010). In
patients with U, IRAK3 expression in the intestinal mucosa rises
during active disease but returns to near-normal levels during
remission (Günaltay et al., 2014). This pattern suggests that
IRAK3 may help regulate immune responses during flare-ups of
the disease. Recent studies also link IRAK3 to macrophage
polarization. IRAK3 expression is closely associated with the shift
toward the M2 macrophage phenotype (Chinju et al., 2022). This
shift may represent a compensatory response, where the body
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promotes M2 polarization to limit inflammation and support
tissue repair.

IL1RN encodes the interleukin-1 receptor antagonist (IL-1RA), an
important regulator of inflammation. IL-1 RA blocks the binding of IL-
1 to its receptor. In doing so, it helps suppress downstream
inflammatory signals (Zou et al., 2021). IL1RN is known for its
protective role in many autoimmune diseases. In a mouse model of
rheumatoid arthritis, loss of IL1RN leads to stronger and more
persistent inflammation (Horai et al., 2000). IL1RN expression often
increases in UC. This upregulation may help reduce IL-1β production
and provide a negative feedback loop to control mucosal inflammation
(Ashwood et al., 2004). Recent studies add another layer to its function.
IL1RN may also support the shift of macrophages toward the anti-
inflammatory M2 phenotype. This effect could help protect intestinal
tissue and limit injury (Cao et al., 2023).

CD55, also known as decay-accelerating factor, is a crucial regulator
of the complement system (An et al., 2023). In the context of UC,
CD55 expression is upregulated in response to inflammation. Notably,
its expression levels show a positive correlation with the severity of
mucosal inflammation (Inaba et al., 1998). This increase likely reflects a
compensatory response aimed at limiting excessive immune activation.
Supporting this, CD55-deficient mice exhibit aggravated colitis
symptoms (Lin et al., 2004). Mechanistically, CD55 exerts anti-
inflammatory effects by modulating autocrine C3aR1 and
C5aR1 signaling. It promotes the polarization of dendritic cells
toward a tolerogenic M2 phenotype (Strainic et al., 2019) and
inhibits complement convertase activity, thereby reducing
macrophage infiltration and tissue injury (Hsu et al., 2025).

In this study, we found that PEA15 wasmarkedly upregulated in the
intestinal tissues of patients with UC. PEA15, a phosphoprotein involved
in regulating the ERK/RSK2 signaling pathway, has been shown to
suppress cell proliferation and migration across various cellular contexts
(Krueger et al., 2005; Gawecka et al., 2012). Accumulating evidence also
implicates PEA15 in themodulation of inflammatory responses. It could
attenuate LPS-induced oxidative stress and DNA damage, exerting
notable anti-inflammatory effects. Additionally, PEA15 inhibits the
MARK signaling pathway, thereby reducing inflammation triggered
by external stimuli (Yong et al., 2018). These findings suggest that
elevated PEA15 expression may represent a compensatory feedback
mechanism in response to an inflammatory microenvironment.
Notably, exosomes derived from M2-polarized macrophages in the
intestinal mucosa of IBD patients have been shown to interact with
PEA15, indicating a potential link between PEA15 upregulation and
macrophage polarization status (Liu et al., 2025).

This study utilized public scRNA-seq and microarray data
lacking key clinical parameters such as age and gender beyond
basic disease status. Since these factors significantly influence UC
pathogenesis, their absence may contribute to heterogeneity in
immune cell composition, gene expression, and regulatory
networks (Tedde et al., 2008; Chhibba et al., 2024). Although
standardization and batch correction were applied during
scRNA-seq analysis and WGCNA module construction to
minimize non-biological variation, residual bias from missing
clinical features cannot be excluded. Consequently, these findings
necessitate validation and expansion using larger cohorts with
comprehensive clinical annotation. It should be noted that the
in vitro model is inherently deficient in its representation of the
inflammatory microenvironment in UC, where dynamic

intercellular crosstalk and multiple signaling pathways collectively
regulate the functional states and polarization of macrophages.
Consequently, the establishment of suitable animal models for in
vivo validation is essential to assess the pathophysiological relevance
of SPI1-mediated macrophage polarization. While our study
demonstrates SPI1’s overall influence on macrophage
polarization, further experimental validation is required to
elucidate the functional roles and regulatory relationships of its
candidate downstream targets, IRAK3, IL1RN, CD55 and PEA15.
Moreover, the lack of in vivo human studies limits the direct clinical
translatability of our findings, underscoring the need for future
validation in patient-derived tissue samples or ex vivo systems that
better recapitulate human disease physiology.

5 Conclusion

In this study, we identified the transcription factor SPI1 related
to the polarization of UC macrophages in scRNA-seq data, and
validated its regulatory role in macrophage polarization using
in vitro experiments. Furthermore, potential downstream targets
of SPI1—IRAK3, IL1RN, CD55 and PEA15—were identified
through WGCNA and machine learning approaches based on
microarray data. These findings offer novel insights into the
regulatory mechanisms by which SPI1 influences M1 polarization
in UC macrophages and may facilitate the development of
personalized therapeutic strategies for UC patients.
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