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Introduction: Predicting the relationship between diseases and microbes can
significantly enhance disease diagnosis and treatment, while providing crucial
scientific support for public health, ecological health, and drug development.

Methods: In this manuscript, we introduce an innovative computational model
named BANSMDA, which integrates Bilinear Attention Networks with sparse
autoencoder to uncover hidden connections between microbes and diseases.
In BANSMDA, we first constructed a heterogeneous microbe-disease network by
integrating multiple Gaussian similarity measures for diseases and microbes,
along with known microbe-disease associations. And then, we employed a
BAN-based autoencoder and a sparse autoencoder module to learn node
representations within this newly constructed heterogeneous network. Finally,
we evaluated the prediction performance of BANSMDA using a 5-fold cross-
validation framework.

Conclusion: Experiments results showed that BANSMDA achieved superior
performance compared to other cutting-edge methods. To further assess its
effectiveness, we carried out case studies on two common diseases (including
Asthma and Colorectal carcinoma) and two important microbial genera
(including Escherichia and Bacteroides), and in the top 20 predicted microbes,
there were 19 and 20 having been confirmed by published literature respectively.
Besides, in the top 20 predicted diseases, there were 19 and 19 having been
confirmed by published literature separately. Therefore, it is easy to conclude that
BANSMDA can achieve satisfactory prediction ability.
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Introduction

A multitude of studies has underscored the significant
influence that parasitic microbial communities within the
human body exert on our metabolic processes (Kau et al.,
2011). These microbes offer a range of benefits to humans,
including the collection and storage of energy, the facilitation
of organic compound absorption, and the defense against
external microbes and diseases (Kim et al., 2018). Moreover,
shifts within these microbial populations can potentially
influence our health (Racanelli et al., 2018). Research also
indicates that the onset of chronic diseases is intricately linked
to the symbiotic microbiota that reside within us, particularly
anomalies in the gut microbiota’s genome, which may lead to
alterations in the human genome (Sampson et al., 2016).
Furthermore, the diversity of microbial communities is closely
associated with the incidence and progression of cardiovascular
and neurodegenerative diseases, exerting a substantial impact on
human health (Toya et al., 2020; Cryan and Dinan, 2012).
Consequently, the deliberate modulation of the human
microbiota’s abundance presents a promising avenue for
bolstering our disease resistance and enhancing global health
(Desbonnet et al., 2010). Specifically, fine-tuning the equilibrium
of the gut microbiota can aid in combating viral infections.
Additionally, the supplementation of lactobacilli and
bifidobacteria not only assists in pain relief but also plays a
role in regulating emotions and reducing anxiety, highlighting
the multifaceted benefits of these microbial allies (Turnbaugh
et al., 2007).

Given the inextricable links between microbes and human
health, scientists have embarked on numerous microbiome-
based disease research projects since the 21st century (Gilbert
et al., 2010; Sun et al., 2018). However, traditional wet-lab
methods for detecting microbial-disease associations, such as
culture-dependent and quantitative methods, are time-
consuming, requiring extensive periods for cultivation,
observation, and detection of a wide variety of microbes.
These methods also suffer from a degree of arbitrariness and
inherent risks. To surmount the limitations of biological
research, the application of computational methods has been
on the rise in recent years, spurred by rapid advancements in
biotechnology. Additionally, experimentally validated databases
linking microbes to diseases, such as HMDAD (Ma et al., 2017)
and Disbiome (Janssens et al., 2018), have been established,
providing invaluable data resources for scientific inquiry.
These databases serve as a treasure trove of information,
facilitating a deeper understanding of the complex interplay
between microorganisms and human health. For instance,
reference (Park et al., 2021) employs sophisticated
computational approaches, including hierarchical long short-
term memory (LSTM) networks and ensemble parsing models,
to unravel the complex associations between microbes and
diseases. Reference (Lu et al., 2023) employs a cutting-edge
combination of autoencoders and graph convolutional
networks to predict potential associations between microbes
and diseases. Reference (Chen et al., 2024a) introduces a
pioneering human microbiota disease association prediction
model that is grounded in multi-view latent feature learning,

and reference (Hu et al., 2023) introduces a microbe-disease
association prediction model based on generative
adversarial networks.

In this manuscript, we proposed an innovative forecasting
framework named BANSMDA to infer possible microbe-disease
associations by combining Bilinear Attention Networks (BAN)
with sparse autoencoder (SAE). By fusing the nuanced feature
interactions discerned by BAN (Liang et al., 2025) with the
proficiency of SAE in feature dimensionality reduction and
representation learning, BANSMDA is expected to deliver
more precise and dependable predictions within the realm of
microbe-disease associations. As depicted in Figure 1, the key
contributions of the BANSMDA encompass the following
innovative aspects.

(1) A novel heterogeneous network B composed of microbes and
diseases has been created by integrating the functional
similarity network of microbes, the functional similarity
network of diseases, and the existing microbe-disease
associations.

(2) Utilize the BAN framework and the SEA framework
respectively to derive node attribute representations within
the heterogeneous network B.

(3) Integrate the attribute representations of the two types of
nodes, leveraging their multiple original features, to construct
comprehensive node features within network B.

(4) Calculate potential association scores for microbe-disease
pairs using their feature matrices.

Materials and methods

Data sources

In this section, we would download known microbe-disease
associations from public databases including HMDAD and
Disbiome separately, among them, HMDAD (Ma et al., 2017)
was compiled by Ma et al., in 2017, and after eliminating
duplicate entries, we downloaded 450 distinct association pairs
involving 39 diseases and 292 microbes. Besides, Disbiome
(Janssens et al., 2018) was compiled by Janssens Y et al., in 2018,
and after eliminating duplicate entries, we extracted
5,573 established associations between 240 diseases and
1,098 microbes. Detailed statistical information was shown
in Table 1.

Methods

Microbe-disease incidence matrix

The incidence matrix E ∈ Rnd×nm is a square matrix used to
represent a bipartite graph where one set of vertices represents
diseases (nd) and the other set represents microbes (nm). The matrix
is structured such that the rows correspond to diseases and the
columns correspond to microbes. Each entry eij in the matrix E
indicates the presence or absence of an interaction between disease
di and microbe mj. Specifically, if Eij � 1, it means there’s a
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relationship between disease di andmicrobemj. If Eij � 0, there’s no
known relationship Equation 1 shows how it works:

Eij � 1, if di associates withmj

0, otherwise
{ (1)

Microbe/Disease Gaussian kernel similarity

The similarityDGIP(di, dj) ∈ Rnd×nd between diseases di and dj, as
measured by the Gaussian kernel, can be determined using Equation 2:

DGIP � exp −γd E di( ) − E dj( )����� �����2( ) (2)

In the Gaussian kernel similarity, ‖E(di) − E(dj)‖ refers to the
Euclidean distance between two diseases. The parameter γd as
shown in Equation 3, is key in controlling how the distance
affects the similarity measure:

γd � 1/ 1
nd

∑nd
i�1

E di( )‖ ‖2⎛⎝ ⎞⎠ (3)

Absolutely, the Gaussian kernel similarity
MGIP(mi,mj) ∈ Rnm×nm can be applied to measure the similarity
between microbes as well as shown in Equations 4, 5:

MGIP � exp −γm E mi( ) − E mj( )����� �����2( ) (4)

γm � 1/ 1
nm

∑nm
i�1

E mi( )‖ ‖2⎛⎝ ⎞⎠ (5)

Microbe/disease functional similarity

Under the premise that diseases with similar characteristics
are likely to interact with analogous genes (Wei and Liu, 2020;
Xu and Li, 2006), we proceeded to calculate the functional
similarity of diseases based on the functional associations
among genes implicated in these diseases. The recently
unveiled HumanNet v2.0 database serves as a potent tool for
efficiently accessing gene interactions (Hwang et al., 2019; Long
et al., 2021), with each interaction being accompanied by a log-
likelihood score (LLS). This LLS quantifies the likelihood of a
functional connection existing between genes. For a pair of
diseases, denoted as di and dj, we initially extracted their
respective associated gene sets, denoted as Gi �
gi1, gi2, . . . , gim{ } and Gj � gj1, gj2, . . . , gjm{ }. Here, m
represents the count of genes within set Gi, and n represents
the count of genes within set Gj. We then defined the functional

FIGURE 1
The overall structure diagram of BANSMDA. (A) The heterogeneous microbe-disease network was established by amalgamating the microbe
Gaussian similarity network, the disease Gaussian similarity network, and known associations between microbes and diseases. (B) Learning node
representation based on BAN. (C) Learning node representation based on SAE. (D) Predicting the final scores of potential microbe-disease associations.

TABLE 1 The specific statistical data.

Dataset Diseases Microbes Associations

HMDAD 39 292 450

Disbiome 240 1,098 5,573
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association between a single gene g and a gene set G �
g1, g2, . . . , gk{ } using Equation 6:

PG g( ) � max PSS g, gi( )( ) (6)

where gi ∈ G, and the functional similarity score between genes,
represented by PSS, is defined as shown in Equation 7:

PSS g, gi( ) � LLS′ gi, gj( ), if i ≠ j
1, if i � j

{ (7)

where LLS′ represents the normalized LLS of genes, which is defined
as shown in Equation 8:

LLS′ gi, gj( ) � LLS gi, gj( ) − LLSmin

LLSmax − LLSmin
(8)

where LLSmax and LLSmin denote the maximum and minimum LLS
in the HumanNet database, respectively. Ultimately, we articulated
the disease functional similarity using Equation 10:

DFUN di, dj( ) � ∑gt∈G di( )PG di( ) gt( ) +∑gt∈G dj( )PG dj( ) gt( )
m + n

(9)

In terms of microbe functional similarity, we employed the
methodology advanced by Kamneva. (2017). To ascertain the
functional similarity among microbes. To meticulously determine
the functional similarity for any given pair of microbes, we initially
sourced the protein-protein functional association network from the
STRING v11 database (Szklarczyk et al., 2019). Utilizing the
similarity scores derived therefrom, we constructed a microbe
functional similarity matrix, MFUN, wherein each entry
MFUN(mi,mj) denotes the degree of similarity between microbe
mi and microbe mj.

Constructing the heterogeneous network B

By fusing the microbe-disease adjacency matrix with the disease
Gaussian kernel similarity matrix and the microbe Gaussian kernel
similarity matrix, as shown in Equation 10, we have crafted a
heterogeneous network:

B � DGIP E
ET MGIP

[ ] (10)

where ET represents s transposition.

BAN model

Bilinear Attention Networks (BAN), introduced by Kim in 2018,
are composed of a central component known as the bilinear
attention mechanism, which is designed to learn the distribution
of attention by considering the bilinear interactions between input
channels. This network employs two critical techniques to enhance
feature interaction and manage complex data relationships: bilinear
transformation and attention mechanisms. Bilinear transformation,
which uses a weight matrix and an additive bias to process input
features, is adept at revealing nuanced relationships within complex

datasets, providing a robust framework for analyzing interactions.
Its formula can be expressed as:

x � aTHa + b (11)

In Equation 11, a represents the input vector to the BAN,H is a
trainable weight matrix, b denotes the bias term, and x is the
resulting output vector from the BAN. The forward propagation
process of the BAN can be described as follows:

yReLU � ReLU H1x + b1( ) (12)
y � H2yReLU + b2 (13)

y � H2ReLU H1x + b1( ) + b2 (14)

In Equation 12, H1 denotes the weight matrix from the input
layer to the hidden layer, b1 represents the bias vector of the hidden
layer, and x, defined in Equation 11, corresponds to the input vector.
In Equation 13, H2 and b2 are the weight matrix from the hidden
layer to the output layer and the output layer’s bias vector,
respectively. By substituting Equation 12 into Equation 13, we
derive the final output y and a streamlined forward propagation
formula, Equation 14, which explicitly formalizes the computation
process. The activation function used within the network is ReLU, as
defined in formula 15, which introduces non-linearity to the model
and helps in learning complex patterns. The feature vector that
undergoes processing by this ReLU activation function is referred to
as yReLU.

reLU z( ) � z, z> 0
0, otherwise

{ (15)

By feeding the heterogeneous network B into the BAN, a low-

dimensional matrix C � Cd

Cm
[ ] ∈ R nd+nm( )×l is produced, where

indices Cd and Cm denote the disease nodes and microbial
nodes, respectively. During the computation, the cross-entropy
function is utilized for optimization purposes.

SAE model

To effectively capture both the local and global topological
intrinsic features of nodes, we have further implemented an
enhanced version of Random Walk with Restart (RWR) on the
DFUN. The RWR is defined as shown in Equation 16:

rl+1i � φXrli + 1 − φ( )θi (16)

In Equation 16, φ denotes the restart probability. X signifies the
transition probability matrix, and θi represents the initial probability
vector for node i. The definition of the initial probability vector is as
shown in Equation 17:

θij � 1, if i � j
0, otherwise

{ (17)

Following the aforementioned RWR process, it becomes evident
that we can derive a new matrix DRWR. Similarly, after applying the
improved RWR on MFUN, we can obtain a new matrix MRWR.
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Consequently, by amalgamating all the matrices E, DFUN, and
DRWR, as shown in Equation 18: we can construct a new disease
matrix DN:

DN � E;DFUN;DRWR[ ] (18)

Similarly, by integrating E, MFUN, and MRWR a new microbial
matrix MN can be obtained as shown in Equation 19:

MN � ET;MFUN;MRWR[ ] (19)

Then, use the above twomatrices as inputs to the sparse autoencoder
(SAE). SAE excel in feature extraction and dimensionality reduction,
enabling them to distill crucial features from intricate microbial data and
reduce its complexity, which is particularly valuable for managing high-
dimensional biomedical data. Additionally, the incorporation of sparsity
penalties within SAE helps to constrain the activation of neurons in the
hidden layer, thereby enhancing the model’s feature extraction
capabilities. This sparse representation not only boosts predictive
accuracy but also contributes to the interpretability of the model.
SAE consists of the following steps:

Encoding process: Input data x is converted into a hidden layer
representation h through an encoder, and ReLU is used as a non-
linear activation function after linear transformation. The specific
formula is as shown in Equation 20:

h � ReLU Wencoderx + bencoder( ) (20)

Among them, Wencoder is the weight matrix of the encoder, and
bencoder is the bias term.

Decoding process: The hidden layer representation h is
reconstructed back to the original data x′ through the decoder.
The definition of x′ is shown in Equation 21. This process is also a
linear transformation followed by a nonlinear activation
function ReLU:

x′ � ReLU Wdecoderx + bdecoder( ) (21)
Among them, Wdecoder is the weight matrix of the decoder, and

bdecoder is the bias term.
Refactoring loss: Refactoring error is an indicator that measures

the difference between the reconstructed data x′ and the original
data x, represented by the binary cross entropy (BCE) loss function.
The specific form is shown in Equation 22:

Lrecon � BCE x, x′( ) � −∑
i

xi log x′
i( ) + 1 − xi( )log 1 − x′

i( )[ ] (22)

Sparsity loss: To introduce sparsity, SAE adds a sparsity penalty
term to the loss function, which is typically based on
L1 regularization. The specific form is shown in Equation 23:

Lsparsity � λ∑
j

hj
∣∣∣∣ ∣∣∣∣ (23)

where λ is the regularization coefficient and hj is the activation value
of the hidden layer.

Total loss function: The total loss function, which is the sum of
the reconstruction loss and the sparsity loss, serves as the objective
function for optimization during the training process. It can be
articulated as shown in Equation 24:

Ltotal � Lrecon + Lsparsity (24)

Consequently, by feeding the disease matrix DN and the
microbe matrix MN into the SAE individually, we can derive
matrices DS and MS, respectively.

Microbe/disease feature matrix

Based on the processing results of BAN and SAE models, by
integrating the disease matrix Cd, DS, DRWR, DFUN and the
adjacency matrix E, inspired by Xuan et al. (2020) (Long et al.,
2021), we can construct a new disease feature matrix D as shown in
Equation 25:

D � Cd; DS; DRWR; E; DFUN; E[ ] (25)

Similarly, integrating the microbial matrix Cm, MS, MRWR,
MFUN and the adjacency matrix E, we can construct a new
microbe feature matrix M as shown in Equation 26:

M � Cm; MS; E
T; MRWR; E

T; DFUN[ ] (26)

Calculating the final predicted scores of
potential microbe-disease associations

The dot product of two vectors serves as an effective mechanism
for modeling interactions, highlighting the shared aspects of these
interactions while diminishing the distinct information they might
carry. Consequently, for any given disease di and microbe mj, we
can determine their predicted association scores by computing the
inner product of their feature representations, as shown in
Equation 27:

Rij � Sigmoid D di( ) ·M mj( )T( ) (27)

Experiments and results

In this part, we began by conducting a sensitivity analysis of
crucial parameters to improve the model’s effectiveness. Next, we
chose six state-of-the-art techniques to benchmark against
BANSMDA. Additionally, to confirm the model’s reliability, we
selected two exemplary microbes and diseases for evaluation.

Parameter sensitivity analysis

Considering the actual situation of the model, we identified and
analyzed four parameters that have a significant impact on the final
prediction results. These include the L2 regularization parameter
(λ),which is named l1,in the BAN model, φ in the RWR of formula
(14), the learning rate l2 and the average activation ρ in the
SEA model.

In this section, our objective is to determine the optimal settings
while maintaining the separation of the training and testing datasets.
Specifically, The range of values for l1 is set to
0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1{ }. The range of values
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for φ is 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9{ }. The range of values for
l2 is 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1{ }. The range of values
for ρ is {0.001,0.005,0.01,0.05,0.1}.Subsequently, we employed a 5 -

fold cross - validation (CV) method to evaluate the area under the
receiver operating characteristic curve (AUC) and the area under the
precision - recall curve for the parameter configurations. In the

FIGURE 2
AUC and AUPR values on different parameter sensitivity analysis. (A) The AUC and AUPR values on different l1, (B) The AUC and AUPR values on
different φ, (C) The AUC and AUPR values on different l2,(D) The AUC and AUPR values on different ρ.
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TABLE 2 Results of the compared methods.

Methods AUC AUPR Accuracy F1-score

BANSMDA 0.98011 ± 0.0023 0.64431 ± 0.0032 0.91245 0.47276

MOSFL-LNP 0.93062 ± 0.0012 0.62327 ± 0.0013 0.91269 0.44111

LRLSHMDA 0.85827 ± 0.0035 0.36511 ± 0.0312 0.84887 0.27597

BIRWMP 0.85669 ± 0.0015 0.36395 ± 0.0156 0.91008 0.36711

NTSHMDA 0.77131 ± 0.0020 0.0768 ± 0.0153 0.73452 0.08913

KATZHMDA 0.83502 ± 0.0034 0.23771 ± 0.0048 0.88393 0.08701

HMDA_PRED 0.91875 ± 0.0026 0.21276 ± 0.0074 0.80877 0.18082

The bold values are the maximum values of each column.

FIGURE 3
AUC and AUPR curves of six competitive methods based on the HMDAD dataset. (A) AUC curves of six competitive methods based on the HMDAD
dataset. (B) AUPR curves of six competitive methods based on the HMDAD dataset.
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parameter validation experiment, we first set one parameter, e.g., l2_
lamda, to a fixed value. Then, in each epoch, we changed the value of
one of the other parameters. After that, we collected all AUC and
AUPR values under such circumstances. Finally, we calculated the
average of the obtained AUC and AUPR values respectively, and
used them as the final results for that particular parameter setting. In
the 5-fold CV experiment, we first randomly assigned 80% of the
dataset, including both identified and unidentified associations, to
the training set, with the remaining 20% reserved as the independent
test set. We then divided the training set into five equal-sized subsets
to perform 5-fold cross-validation. Using the HMDAD dataset, we
independently conducted five cross-validation runs. After the cross-
validation was completed, the model’s performance was evaluated
on different subsets of the training set. Finally, we used the pre-
defined independent test set to assess the model’s final performance.
As shown in Figure 2, the model achieves the best performance when
the parameter value are configured as follows: l1 � 0.01,φ � 0.4, l2 �
0.005, ρ � 0.005.

Comparison with advanced methods

To further validate the predictive accuracy of BANSMDA, this
section includes a comparative analysis with six prominent and
competitive approaches. In the experiment, we employed the same
5-fold cross-validation technique on the HMDAD dataset for each
method to ensure fair and consistent comparisons.

MOSFL-LNP (Chen et al., 2024b): This method involves
preprocessing a similarity matrix, integrating low-order and high-
order learning, optimizing and solving the associated equations, and
finally normalizing the predicted association score matrix.

LRLSHMDA (Wang et al., 2017): This is a semi-supervised
computational model utilizes the Gaussian interaction profile kernel
similarity and the Laplacian regularized least squares classifier to
predict the Potential Microbe-Disease associations.

BIRWMP (Shen et al., 2018): This method is a computational
model based on bidirectional random walk, which predicts potential
microbe-disease associations by conducting multipath analysis on
microbe and disease similarity networks.

NTSHMDA (Luo and Long, 2020): A computational model
based on neighborhood topology similarity, which is used for
predicting the potential microbe-disease associations.

KATZHMDA (Chen et al., 2016): This is a computational
method based on the KATZ algorithm, which calculates the
association between microbes and diseases by considering the
number and length of paths connecting two nodes in a microbe-
disease heterogeneous network.

HMDA_Pred (Fan et al., 2020): This method is a novel
computer model based on multi-data integration and network
consistency projection, used for calculating the associations
between microbes and diseases.

We assessed the performance of these models under their default
parameter settings and five-fold cross-validation. By leveraging the
HMDAD dataset, We comprehensively evaluated our model using
four key metrics: AUC, AUPR, Accuracy, and F - score, all of which
were obtained through averaging over five - fold cross - validation.
The results are detailed in Table 2 and visualized in Figure 3,
demonstrating the superior predictive performance and accuracy
of the BANSMDA model compared to other methods.

As detailed in Table 2, BANSMDA exhibits outstanding
performance across three evaluation metrics: AUC, AUPR, and
F1-Score. Specifically, compared to the MOSFL-LNP model,

FIGURE 4
The encoder weight heat map of SAE.
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BANSMDA achieves a 5.31% improvement in AUC and a 3.37%
improvement in AUPR. While slightly inferior to MOSFL-LNP in
terms of Accuracy, the difference is negligible (only 0.00024).
Collectively, these results confirm that BANSMDA is a highly
efficient model for predicting microbe-disease associations.

As showen in Figure 4, we visualize the learned encoder weights
and hidden layer activations to demonstrate the interpretability of
the sparse representations. The results show that each hidden unit
specializes in specific input features and exhibits sparse, selective
activation patterns across samples, supporting our claim that the
SAE produces interpretable representations.

Figure 4 shows the heatmap of the encoder weights after
training. We observe that each hidden unit (row) assigns
substantial weights to only a small subset of input features
(columns), with most weights close to zero. This suggests that
each hidden neuron specializes in detecting specific feature
patterns in the input rather than responding indiscriminately to
all dimensions. Such specialization is desirable because it allows us to
attribute meaningful feature combinations to individual hidden
units, enhancing interpretability of the learned representation.

Figure 5 depicts the hidden-layer activations at epoch 100. These
heatmaps illustrate the activations of 32 hidden units (x-axis) across a
batch of input samples (y-axis). We note two key observations: (1) the
activations are sparse—for each sample, only a few hidden units
exhibit high activation values, while most remain near zero; (2) the
activation patterns are distinct and consistent—different hidden units
activate for different samples, and the same unit responds consistently

to similar samples across epochs. These findings indicate that the
hidden layer learns a set of specialized, non-redundant detectors that
respond selectively to specific input patterns.

Case study

To rigorously assess the predictive performance of the
BANSMDA model, we conducted case study validation using two
prevalent diseases (Asthma and Colorectal carcinoma) and two
clinically significant microbial genera (Escherichia and Bacteroides).

Asthma is a common chronic inflammatory disease originating in
the lower airways, characterized by persistent airway inflammation
(Polyxeni et al., 2021). Clinical manifestations include recurrent
episodes of wheezing, coughing, chest tightness, and shortness of
breath, typically exacerbated during nocturnal or early morning
periods (James, 2015). A growing body of evidence from multiple
references underscores a significant correlation between the
pathogenesis of asthma and specific microbiota, such as
Helicobacter pylori (Zhi et al., 2021), Proteobacteria (Kian, 2017),
and Bacteroidetes (Chie, 2023). Based on the predictive scores,
microbes associated with asthma were ranked in descending order
according to their respective scores. As illustrated in Table 3, among
the top 20 predicted microbes associated with Asthma, 19 have been
confirmed by existing research indexed in PubMed.

Colorectal carcinoma ranks as the third most common cancer
globally (Chie, 2023; Inés et al., 2017). The gut microbiota is

FIGURE 5
The encoder weight heat map of SAE.
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intricately involved in its development, with ecological imbalances
capable of inducing colorectal carcinoma through chronic
inflammatory pathways. Key bacterial taxa implicated in this
multifaceted process include Clostridium (Hui et al., 2023),
Bacteroides (Yasutoshi et al., 2024), and Enterobacteriaceae
(Rashmi et al., 2016). As illustrated in Table 4, all of the top
20 predicted microbes associated with Colorectal carcinoma have
been confirmed by existing studies in PubMed.

Escherichia is a bacterium that embodies a dual identity, capable
of functioning as both a symbiotic microbe and a pathogenic agent
within the host’s body (Olivier et al., 2010). Recent research has
demonstrated that specific strains of Escherichia are capable of
causing a range of intestinal infections, including diarrhea and
enteritis (James, 2005). Moreover, Escherichia can extend its
pathogenicity beyond the gut to cause extraintestinal infections
through mechanisms like fecal contamination or hematogenous
dissemination (Kevin et al., 2019). As illustrated in Table 5,
among the top 20 predicted diseases associated with Escherichia,
19 have been confirmed by existing research indexed in PubMed.

Bacteroidetes are significant clinical pathogens that, when they
breach the intestinal barrier, can induce severe pathology. This
includes bacteremia and the formation of abscesses in various
parts of the body (Hannah, 2007). As illustrated in Table 6,
among the top 20 predicted diseases associated with
Bacteroidetes, 19 have been confirmed by existing research
indexed in PubMed.

In summary, these case studies provide additional evidence for
the ability of the BANSMDAmodel to predict potential associations
between microbes and diseases.

Discussion

In the present research, we developed the BANSMDA model, a
predictive framework combining Bilinear Attention Networks (BAN)
and Sparse Autoencoders (SAE) to identify microbe-disease
associations. Our model demonstrates superior performance over
existing methods in capturing intricate microbe-disease relationships.

TABLE 3 Top 20 Asthma-associated candidate microbes on HMDAD.

Microbe Evidence Microbe Evidence

Helicobacter pylori PMID:33080611 Lactobacillus PMID:33882482

Proteobacteria PMID:29161086 Burkholderia PMID:15297563

Bacteroidetes PMID:38155860 Faecalibacterium prausnitzii PMID:33709404

Prevotella PMID:28542929 Coxiellaceae NA

Staphylococcus PMID:31980492 Clostridium PMID:35349868

Haemophilus PMID:37287344 Clostridiales PMID:24798552

Sphingomonadaceae PMID:21194740 Pseudomonas PMID:36167555

Comamonadaceae PMID:27433177 Betaproteobacteria PMID:23053501

Clostridium difficile PMID:32487252 Propionibacterium PMID:29447223

Oxalobacteraceae PMID:21194740 Gammaproteobacteria PMID:27889361

Notes: The top 10 microbes are listed in the first column, while the top 11–20 microbes are listed in the third column.

TABLE 4 Top 20 Colorectal carcinoma-associated candidate microbes on HMDAD.

Microbe Evidence Microbe Evidence

Bacteroidetes PMID:28643627 Clostridia PMID:36941257

Firmicutes PMID:37069401 Haemophilus PMID:24725844

Prevotella PMID:35935780 Clostridium coccoides PMID:28661219

Bacteroides PMID:38266708 Fusobacterium PMID:26311717

Proteobacteria PMID:27721244 Staphylococcus PMID:28506660

Helicobacter pylori PMID:31368293 Lachnospiraceae PMID:36893736

Clostridium difficile PMID:26691472 Enterobacteriaceae PMID:27015276

Staphylococcus aureus PMID:25495422 Fusobacterium nucleatum PMID:37130518

Lactobacillus PMID:35808840 Clostridium PMID:36941257

Actinobacteria PMID:27015276 Veillonella PMID:37519587

Notes: The top 10 microbes are listed in the first column, while the top 11–20 microbes are listed in the third column.
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However, data scarcity and excessive parameters in the BAN
component may induce overfitting, potentially compromising
generalization capability in real-world scenarios. Future
improvements should focus on integrating biological knowledge,
refining model architecture to reduce parameter redundancy, and
implementing data augmentation strategies to address data
limitations. Balancing model complexity against sparse datasets
remains a critical challenge for practical implementation.

The significant gap between AUC-ROC and AUPR values
discrepancy reflects the extreme class imbalance in HMDAD (0.5%–
2% positive samples). AUPR specifically evaluates positive class
identification, while AUC-ROC measures overall class
discrimination. This imbalance fundamentally constrains AUPR
performance, as demonstrated in prior literature. Potential solutions
include rigorous negative sample validation and AUPR-optimized
training objectives to enhance positive association detection.

In this study, hyperparameter validation was implemented
through a combined approach of partial grid search and typical
values, constrained by computational resources in this study.

Specifically, given the limited sample size, the sparsity target and
penalty coefficient were set to relatively low values to prevent over-
regularization. Final results were obtained by averaging across
multiple runs to minimize potential errors from computational
limitations. Experimental results demonstrate that this approach
yields hyperparameters enabling model performance approaching
the theoretical optimum.

Conclusion

In this study, we introduce a novel model called BANSMDA to
predict potential associations between microorganisms and diseases.
And experimental results demonstrated the superior performance of
BANSMDA. It is important to highlight that data related to
microbes and diseases are often characterized by sparsity. While
SAE can mitigate overfitting to some extent, the substantial number
of parameters introduced by BAN models may still lead to
overfitting, particularly when the volume of available data is

TABLE 5 Top 20 Escherichia-associated candidate diseases on HMDAD.

Disease Evidence Disease Evidence

Type 1 diabetes PMID:36037202 Psoriasis PMID:33924414

Liver cirrhosis PMID:33466521 Colorectal carcinoma PMID:28106826

Irritable bowel syndrome (IBS) PMID:32966000 Atopic dermatitis PMID:36335456

Bacterial Vaginosis PMID:38751998 Systemic inflammatory response syndrome PMID:34997430

Periodontal PMID:33830141 Obesity PMID:34385401

Necrotizing Enterocolitis PMID:37894115 Whipple’s disease PMID:18500934

Cystic fibrosis PMID:24178246 Kidney stones PMID:36798915

Clostridium difficile infection (CDI) PMID:36267392 Type 2 diabetes PMID:31399369

Ileal Crohn’s disease (CD) PMID:37800577 Guttate psoriasis PMID:9,627,688

Crohn’s disease (CD) PMID:36182819 Rheumatoid arthrits NA

Notes: The top 10 diseases are listed in the first column, while the top 11–20 diseases are listed in the third column.

TABLE 6 Top 20 Bacteroidetes-associated candidate diseases on HMDAD.

Disease Evidence Disease Evidence

Type 1 diabetes PMID:34361871 Rheumatoid arthrits NA

Liver cirrhosis PMID:37819146 COPD PMID:37180432

Irritable bowel syndrome (IBS) PMID:37616338 Cystic fibrosis PMID:38179971

Colorectal carcinoma PMID:38266708 Crohn’s disease (CD) PMID:35087228

Infectious colitis PMID:36531989 Constipation Irritable bowel syndrome (IBS) PMID:38073315

Bacterial Vaginosis PMID:8357044 Atopic sensitisation PMID:33741316

Necrotizing Enterocolitis PMID:39013030 Recurrent wheeze PMID:29600046

Periodontal PMID:3279073 Ulcerative colitis PMID:35087228

Type 2 diabetes PMID:37349979 Ileal Crohn’s disease (CD) PMID:38282618

Atopic dermatitis PMID:33551026 Clostridium difficile infection (CDI) PMID:30619112

Notes:The top 10 diseases are listed in the first column, while the top 11–20 diseases are listed in the third column.
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limited. This, in turn, can compromise model performance. Future
research could further enhance the model’s performance by
incorporating additional biological knowledge, refining the model
architecture, or employing data augmentation techniques.
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