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Artificial neural networks are machine learning models that have been applied to
various genomic problems, with the ability to learn non-linear relationships and
model high-dimensional data. These advanced modeling capabilities make them
promising candidates for genomic prediction by potentially capturing the
intricate relationships between genetic variants and phenotypes. Despite these
theoretical advantages, neural networks have shown inconsistent performance
across previous genomic prediction research, and limited studies have evaluated
their performance and feasibility specifically for pig genomic predictions using
large-scale data. We evaluated the predictive performance of feed-forward
neural network (FFNN) models implemented in TensorFlow with architectures
ranging from single-layer (no hidden layers) to four-layer structures (three hidden
layers). These FFNN models were compared with five linear methods, including
GBLUP, LDAK-BOLT, BayesR, SLEMM-WW, and scikit-learn’s ridge regression.
The evaluation utilized data from six quantitative traits: off-test body weight (WT),
off-test back fat thickness (BF), off-test loin muscle depth (MS), number of piglets
born alive (NBA), number of piglets born dead (NBD), and number of piglets
weaned (NW). We also assessed the computational efficiency of FFNNmodels on
both CPU and GPU. The benchmarking employed repeated random subsampling
validation with sample sizes ranging from 3,290 individuals for reproductive traits
to over 26,000 individuals for production traits, using data from a total of
27,481 genotyped pigs. Hyperband tuning was used to optimize the hyper-
parameters and select the best model for each structure. Results showed that
FFNN models consistently underperformed compared to linear methods across
all architectures tested. The one-layer structure yielded the best predictive
accuracy among the FFNN approaches. Of the five linear methods, SLEMM-
WW demonstrated the best balance of computational efficiency and predictive
ability. GPUs offered significant computational efficiency gains for multi-layer
FFNN models compared to CPUs, though FFNN models remained more
computationally demanding than most linear methods. In conclusion, FFNN
models with up to four layers did not improve genomic predictions compared
to routine linear methods for pig quantitative traits.
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Introduction

Selective breeding has long been fundamental to improving
livestock traits since the early 20th century and guided by
quantitative genetics theory established by Sir Ronald Fisher’s
infinitesimal model (Fisher, 1919). With the availability of cost-
effective SNP chips, genomic prediction, which refers to the use of
genome-wide DNA markers to estimate the breeding values has
been widely adopted in animal breeding programs, enabling early
and accurate selection of candidates to accelerate genetic progress
(Meuwissen et al., 2001).

The effectiveness of genomic selection depends on statistical
models that relate high-dimensional genotype data to phenotypes.
Traditional genomic prediction methods predominantly rely on
linear mixed models that estimate the contribution of genetic
markers under the assumption of additive genetic effects. One of
the most commonly used methods is Genomic Best Linear Unbiased
Prediction (GBLUP), which assumes marker effects are random
draws from a multivariate normal distribution with a common
variance component (Meuwissen et al., 2001; VanRaden, 2008).
However, the assumption of identical variance for all SNP effects can
be limiting when the genetic architecture includes large-effect
quantitative trait locus (QTLs) or major genes (Daetwyler et al.,
2010; Resende et al., 2012; de los Campos et al., 2013). Therefore,
various Bayesian methods have been developed that allow for more
flexible prior distributions of SNP effects. Bayesian methods like
BayesA, BayesB, BayesCπ, and BayesR generally outperform GBLUP
when a few loci have large effect for a trait (Clark et al., 2011;
Resende et al., 2012; Moser et al., 2015; van den Berg et al., 2015).
These methods typically incur high computational costs, as they
often rely on intensive Markov chain Monte Carlo sampling. Recent
approaches such as LDAK (Linkage Disequilibrium Adjusted
Kinships) and SLEMM (Stochastic Lanczos Expedited Mixed
Models) employ faster algorithms and optimized strategies to
reduce computation time while maintaining high prediction
accuracy. While traditional genomic prediction methods have
proven effective, they predominantly rely on linear mapping
from genotype to phenotype under additive genetic assumptions,
potentially limiting their ability to capture non-linear genetic
architectures. With improvements in computational hardware,
particularly graphics processing units (GPUs), artificial neural
networks (ANNs) have received increased attention (Raina et al.,
2009). ANNs are a class of machine learning methods inspired by
the biological structure and function of the human brain,
comprising interconnected units that simulate the behavior of
neurons (McCulloch and Pitts, 1943; Newell and Simon, 2007).
Each connection, like the synapses in a biological brain, can transmit
a signal to other neurons. Complex neural networks characterized by
multiple hidden layers form the cornerstone of deep learning (DL).
A key theoretical advantage of neural networks in genomic
prediction is their capability as universal function approximators
(Kůrková, 1992). Unlike conventional linear methods, deep learning
approaches are nonparametric models that provide tremendous
flexibility to adapt to complex relationships between inputs and
outputs. Given sufficient data and appropriate architectures, they
can model complex relationships without requiring explicit
specification of interactions beforehand (Montesinos-López et al.,
2021). This capability suggests potential advantages over linear

methods, particularly for traits influenced by dominant, epistatic,
or other non-additive genetic effects (Zingaretti et al., 2020; Costa
et al., 2022). By learning directly from the data, neural networks
might capture complex genetic architectures that traditional
parametric linear models cannot easily accommodate, potentially
improving prediction accuracy for traits with complex
inheritance patterns.

Due to the ability to handle large datasets and capture complex
relationships, artificial neural network algorithms have significantly
advanced data science methodologies and have made multiple
performance breakthroughs in computer vision, speech recognition,
video processing, and natural language processing applications (LeCun
et al., 2015). Their remarkable performance in these areas hasmotivated
researchers to explore their potential application for genomic prediction
in humans, livestock, and plants. However, despite their theoretical
promise, most applications in livestock genomic prediction have not
outperformed conventional linear methods, with several studies
reporting comparable or decreased performance (Bellot et al., 2018;
Montesinos-López et al., 2018; Azodi et al., 2019; Zingaretti et al., 2020;
Srivastava et al., 2021; Lourenço et al., 2024). Conversely, some
investigations have reported modest improvements in prediction
accuracy for specific traits (Gianola et al., 2011; Ma et al., 2018;
Waldmann, 2018; Liu et al., 2019; 2025; Abdollahi-Arpanahi et al.,
2020; Sandhu et al., 2021). These inconsistent findings may stem from
differences in species, traits, reference population size, marker density,
or neural network architecture.

In pig breeding, genomic prediction has been implemented since the
early 2010s (Christensen et al., 2012). The primary breeding objectives
focus on growth performance traits (average daily gain, feed efficiency),
carcass composition traits (backfat thickness, loin muscle area), and
reproductive performance traits (litter size, number born alive), which
collectively determine the economic viability of pig production systems
(Knol et al., 2016; Samorè and and Fontanesi, 2016). More recently,
welfare and resilience traits such as heat stress tolerance (Freitas et al.,
2023; Wen et al., 2024) and disease resistance (Bai and Plastow, 2022;
Cheng et al., 2022) have been considered for incorporation to address
climate change and sustainability challenges.

Currently, comprehensive evaluations of neural networks for
genomic prediction in pigs remain limited, necessitating systematic
benchmarking against conventional linear methods to assess their
practical utility in pig breeding programs. Among various neural
network architectures, feed-forward neural networks (FFNNs)
represent one of the most fundamental and widely applied
approaches in deep learning (Goodfellow, 2016). Their ability to
approximate complex functions while maintaining relative
simplicity makes them a logical starting point for evaluating the
potential of neural networks in genomic prediction applications.

The computational demands of neural networks present another
important consideration for their implementation in routine
genomic evaluations. Traditional linear methods have been
optimized for computational efficiency, enabling rapid evaluation
of large populations. In contrast, neural networks, particularly those
with complex architectures, typically require substantial
computational resources for hyper-parameter tuning, model
training, and implementation. Training deep learning models on
large genomic datasets can be time-consuming and may require
specialized hardware such as GPUs or TPUs to reduce training times
and facilitate large-scale analyses (O’Connell et al., 2023; Schmidt
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and Hildebrandt, 2024). Therefore, it is important to investigate the
practical computational efficiency of neural networks with varying
complexities when evaluating the feasibility of neural networks for
integration into practical breeding applications.

The objective of this study is to comprehensively evaluate FFNN
models with varying architectural complexity for genomic
prediction in pigs. Specifically, we assessed the predictive
performance of FFNNs relative to conventional linear methods
for complex traits, determined the computational efficiency of all
approaches on CPU platforms, and evaluated the potential
acceleration of FFNN models through GPU implementation. This
benchmarking provides valuable insights into the practical utility of
FFNN models in pig breeding programs.

Materials and methods

Duroc pig datasets

This study utilized phenotypic and genotypic data fromDuroc pigs
collected by Smithfield Premium Genetics between 2015 and 2021. Six
complex traits of Duroc pigs, including three performance traits and
three reproduction traits, were used for analysis, with specific sample
sizes and heritability for each trait shown in Table 1. The three
performance traits were collected at the end of the performance test,
as detailed in Bergamaschi et al. (2020). In total, 27,481 pigs with both
valid genotypes and phenotypes were retained for the analysis.

Phenotypes for all traits were pre-adjusted to account for
systematic environmental effects. The adjusted phenotypic values
only included genetic and environmental variation proper of the
individual, being adjusted for farm and physiological sources of
variation. All pre-adjusted phenotypes were then standardized prior
to implementing the genomic prediction models. All animals were
genotyped with PorcineSNP60 BeadChip (Illumina Inc., San Diego,
CA, United States). Genotype quality control was performed using
Plink1.90. SNPs were filtered based onHardy-Weinberg equilibrium
(HWE) P-value > 1E-8 and minor allele frequency (MAF) > 0.01.
After quality control, 30,981 SNPs remained for subsequent analysis.

Artificial neural network models

Feed-forward neural networks (FFNNs) represent a class of
artificial neural networks characterized by unidirectional
information flow, where connections between nodes do not form

cycles. In this study, we implemented fully connected FFNNs, where
each neuron in a layer is connected to every neuron in the
subsequent layer. It has three types of layers: input layer, hidden
layers and output layer. The input layer receives data, hidden layers
process this information through non-linear transformations, and
the output layer produces the final predictions. When an FFNN
contains at least one hidden layer, it is also referred to as a multilayer
perceptron (MLP).

Figure 1 illustrates a fully connected FFNN architecture for
genomic prediction, comprising an input layer with n SNP markers,
two hidden layers with multiple neurons, and an output layer with a
single neuron. For genomic prediction purposes, the input layer
receives SNP genotype data, and information propagates
sequentially through the hidden layers as weighted non-linear
transformations. Each hidden neuron computes a weighted sum
of its inputs plus a bias term, applies a non-linear activation function
to this sum, and passes the resulting value to neurons in the
subsequent layer. The output neuron aggregates the signals from
the previous layer to produce a predicted phenotype.

We implemented FFNN models using TensorFlow v.2.6.2
(Abadi et al., 2015). The architectures evaluated consisted of
one to four layers in total, corresponding to models with no
hidden layers (one-layer networks), one hidden layer (two-layer
networks), two hidden layers (three-layer networks), and three
hidden layers (four-layer networks). For each model, the input
layer received the normalized SNP data, while the output layer
produced continuous predictions for each trait. Hidden layers
employed the non-linear activation function to capture the
complex relationships, and the output layer used a linear
activation function. An L-layer structure FFNN model with
(L-1) hidden layers can be expressed as:

a 0[ ] � X

a l[ ] � σ l[ ] W l[ ]a l−1[ ] + b l[ ]( ) for l � 1, 2,/, L − 1

ŷ � W L[ ]a L−1[ ] + b L[ ]

where a[0] is the input feature derived from the normalized genotype
matrix X as input, with genotypes coded as 0, 1, and 2 for the
homozygote for the major allele, heterozygote, and homozygote for
the minor allele, respectively, and then normalized. a[l] represents
the activations for layer l, σ[l] is the activation function applied at the
l-th hidden layer,W[l] and b[l] are the weight matrix and bias vector
for layer l, respectively, L denotes the total number of layers
including hidden layers and the output layer, and ŷ is the
predicted phenotype.

TABLE 1 Trait descriptions, sample sizes, and heritability estimates for six complex traits in Duroc pigs.

Trait name Abbreviation Number of individuals Heritability

Off-test Back fat thickness BF 26,731 0.371

Off-test Loin muscle depth MS 26,731 0.205

Off-test body weight WT 27,360 0.103

Number of piglets born alive NBA 3,290 0.096

Number of piglets born dead NBD 3,290 0.051

Number of piglets weaned NW 3,290 0.062
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Hyper-parameter optimization

Hyper-parameters are model configuration settings that govern
the learning process and network architecture. Unlike model
parameters (such as weights and biases in a neural network),
which are learned directly from the training data, they are not
updated during training, but must be specified prior to training and
remain fixed throughout.

For optimal model performance, we conducted systematic
hyper-parameter tuning using the Hyperband algorithm
implemented in Keras Tuner (https://keras.io/keras_tuner/api/
tuners/). Hyperband functions as an efficient search methodology
that balances breadth and depth of exploration (Li et al., 2018). It
accelerates the traditional hyper-parameter optimization process by
evaluating many configurations on a small subset of data and
iterations, then allocating additional computational resources
only to the most promising configurations. This method provides
an efficient alternative to exhaustive grid search or random search
approaches, particularly for computationally intensive neural
network training.

We optimized five key hyper-parameter categories: network
capacity (number of units per layer), non-linear transformations
(activation functions), regularization methods (L2 penalty and
dropout rate), optimization strategy (learning rate), and training
duration (epochs). The complete search space for FFNN hyper-

parameters is defined in Table 2. To prevent overfitting during
the hyper-parameter search process, we implemented early
stopping with a patience of 20 epochs. A batch size of
1024 was selected based on preliminary experiments with one-
layer FFNN models for BF trait prediction across 20 replicates.
We tested three batch sizes (32, 1024, and 22K) and found that
while all three provided similar predictive ability, the 1024 batch
size offered better computational efficiency (Figure 2). All model
configurations were validated on a randomly selected 20%
holdout portion of the training data. This internal validation
set allowed for model performance monitoring and early
stopping to prevent overfitting. The best model with the
optimal hyper-parameters was then retrained for the following
genomic prediction.

Conventional statistical methods

To evaluate the predictive performance of FFNN for genomic
prediction in pigs, we conducted comprehensive benchmarking
against five commonly used linear methods including genomic
best linear unbiased prediction (GBLUP), BayesR (Moser et al.,
2015), scikit-learn’s ridge regression (Pedregosa et al., 2011),
LDAK’s BOLT method (LDAK-BOLT) (Zhang et al., 2021) and
SLEMM window-weighted method (SLEMM-WW) (Cheng et al.,

FIGURE 1
Architecture of a three-layer FFNN (with two hidden layers) for genomic prediction. The network architecture illustrates the flowof information from
input to output. The input layer receives SNP genotype data (coded as 0, 1, or 2), the hidden layers process this information through non-linear
transformations, and the output layer produces the predicted phenotypic value. Each circle represents a neuron, and connections between neurons
represent weights that are optimized during model training.

TABLE 2 Hyper-parameter search space for FFNN models.

Hyper-parameters Search range Sampling method

Number of units 32–1024 (step of 32) Uniform discrete

Activation function ReLU, sigmoid, tanh, softmax Categorical

L2 regularization 0.01–20 Logarithmic

Dropout rate 0.0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5 Categorical

Learning rate 1E-3, 1E-4, 1E-5 Categorical

Number of epochs ≤1000 (early stopping, patience = 20) —
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2023). These methods share similar statistical frameworks based on
linear relationships between genetic markers and phenotypic traits,
but differ in their assumptions about genetic architecture and
employ various computational strategies to improve efficiency
and accuracy. The comparison allowed us to assess whether the
potential non-linear modeling capabilities of neural networks
provided advantages over conventional approaches.

GBLUP is one of the most extensively used linear regression
methods for genomic prediction and implements a mixed linear
model approach using a genomic relationship matrix to capture
genetic similarities between individuals (VanRaden, 2008). In this
study, it was implemented with SLEMM v0.90.1 and assumes that all
SNPs contribute equally to SNP heritability.

BayesR extends the linear mixed model framework through a
Bayesian approach that allows SNP effects to follow a mixture of
four normal distributions, with variance components set to 0,
0.0001, 0.001, and 0.01 of the genetic variance. This approach
was implemented with BayesRv2 (Moser et al., 2015), which
employs a computationally optimized Gibbs sampling algorithm
to effectively accommodate complex genetic architectures
characterized by varying SNP effect sizes. We set blocksize = 4,
msize = 500, number of MCMC iterations = 50,000, and burn-in =
20,000 iterations in this study.

Ridge regression applies L2 regularization to the standard linear
regression model, penalizing large coefficient values to prevent
overfitting in high-dimensional genomic data. This method is
mathematically equivalent to GBLUP under specific
parameterizations, when the ridge regularization parameter λ
equals σe2/σg2 × m, where σe2 and σg2 are the residual and
genetic variances, respectively, and m is the number of markers
(Endelman, 2011). We included ridge regression as implemented in
scikit-learn to evaluate computational efficiency using different

optimization strategies compared to GBLUP. Since the optimal
regularization strength was unknown a priori and this parameter
is related to trait heritability, we determined appropriate λ values
based on previous reported heritability estimates for each trait. For
back fat thickness, previous research indicates heritability ranging
from 0.3 to 0.58 (Ros-Freixedes et al., 2013; Guo et al., 2016; Davoli
et al., 2019; Gozalo-Marcilla et al., 2021). We conducted a grid
search across λ values corresponding to heritabilities ranging from
0.3 to 0.6 with increments of 0.01. For each potential λ value, we
performed five-fold cross-validation to identify the parameter that
minimized the mean squared error.

LDAK-BOLT combines the LDAK framework with a
Bayesian approach similar to BOLT-LMM (Loh et al., 2015),
which models SNP effects using a mixture of two zero-mean
normal distributions, one with a relatively small variance and the
other with a relatively large variance. This method offers
computational efficiency for large-scale genomic data while
accommodating markers of varying effect sizes. In our
implementation we used equal weights for all SNPs and
applied default parameters using LDAK v5.2.

SLEMM-WW is a linear mixed model-based genomic
prediction method incorporating a window-based weighting
strategy. The method employs a two-step process: first fitting an
initial model assigning equal weights to all SNPs, then refitting with
weights calculated from neighboring SNP effects within a fixed
window. This weighting scheme leverages the assumption that
SNPs close to each other share similar effects due to their
proximity to underlying quantitative trait loci. In this study we
implemented it with SLEMM v0.90.1 using the default fixed window
size of 20. This method has demonstrated ability to improve
prediction accuracy while maintaining computational efficiency
in large-scale genomic prediction applications.

FIGURE 2
Comparison of (A) predictive ability (measured by Pearson correlation coefficient) and (B) computational time across different batch sizes (32, 1024,
and 22k) for one-layer FFNN model tested on BF. Results show the distribution across 20 random subsampling replicates, with 21,385 individuals for
training and 5,346 for testing.
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Repeated random subsampling validation

We used repeated random subsampling validation with
20 iterations to evaluate the predictive ability of the
aforementioned methods with the six complex traits. For each
iteration, identical random partitions were applied to all
methods, ensuring fair comparison under the same validation
conditions. The dataset was randomly partitioned into a training
population (about 80% of individuals) and a test population (about
20% of individuals). For FFNN models, the training population was
further divided during model fitting, with 80% used for actual
training (64% of total individuals) and 20% used for validation
(16% of total individuals) to monitor model performance and
prevent overfitting during the training process. Predictive ability
was assessed using the Pearson correlation coefficient between
predicted values and observed phenotypes in the test population.

To evaluate computational speed, all analyses were initially
conducted on a Linux server equipped with two Intel Xeon Gold
6258R CPUs. Twenty threads were used for scikit-learn’s ridge
regression, SLEMM-GBLUP, SLEMM-WW, LDAK-BOLT and
FFNN models, whereas four threads (equal to block size) were
used for BayesR, since using twenty threads would have considerably
slowed down its computations. To comprehensively assess the
computational efficiency of neural network approaches across
different hardware platforms, we also evaluated FFNN models on
three GPU configurations: NVIDIA A30, NVIDIA RTX 3060 Ti,
and NVIDIA RTX 3090. This multi-platform evaluation allowed us
to quantify the potential acceleration of genomic prediction
calculations through specialized hardware.

Results

Prior to the main analysis, we conducted preliminary
experiments to determine the optimal batch size for FFNN
training. Using the one-layer FFNN model for BF trait prediction
across 20 replicates, we evaluated three batch sizes: 32 (small), 1024
(medium), and 22K (large, approximately the full training set).
Predictive ability was measured as the Pearson correlation
coefficient between observed and predicted phenotypic values.
While all three batch sizes yielded similar predictive accuracy,
significant differences were observed in computational efficiency
(Figure 2), with the medium batch size of 1024 providing the best
performance. Therefore, a batch size of 1024 was used for all
subsequent FFNN analyses.

Predictive ability

We comprehensively evaluated the predictive abilities of eight
genomic prediction methods for six complex traits in Duroc pigs,
including three performance traits with moderate heritability (BF,
MS, WT) and three reproduction traits with low heritability (NBA,
NBD, NW). The scikit-learn’s ridge regression implementation
achieved results largely same as GBLUP (Figure 3), consistent
with their theoretical equivalence. The minor difference may
arise from the 0.01 grid search step for heritability used to
calculate the penalty value in ridge regression. It was therefore

not included in the comparison of prediction accuracy in
Figure 4. Although the predictive performance varied
considerably across traits, several consistent patterns were
observed in the relative performance of different methods.

The FFNN models consistently underperformed compared to
conventional linear methods across all traits, despite being
implemented with optimized hyper-parameters. Among the
neural network architectures, the one-layer network yielded the
best performance, achieving results comparable to GBLUP. This
aligns with theoretical expectations, as a one-layer FFNN without
activation function is mathematically equivalent to ridge regression,
which in turn is equivalent to GBLUP under specific
parameterizations. Meanwhile, the relationship between neural
network complexity and predictive ability did not follow a
consistent pattern. While the one-layer FFNN generally
performed best among neural network models, the two-layer
FFNN often showed the poorest performance, with three-layer
and four-layer architectures achieving intermediate results for
several traits.

Neural network methods also exhibited greater variability in
predictive ability across validation iterations compared to
conventional approaches. This inconsistency, combined with
their lower average performance, indicates that despite their
theoretical capacity to model complex relationships, FFNN
models offered no practical advantage for genomic prediction of
pigs in this study.

Among the linear methods evaluated, the differences in
predictive performance were minimal. BayesR and SLEMM-WW
demonstrated slightly superior predictive ability across most traits.
There were also some distinct performance patterns across trait
categories. For performance traits with moderate heritability (BF,
MS, WT), linear methods accommodating more flexible genetic
architectures demonstrated slightly superior predictive ability
compared to GBLUP. For reproductive traits with low heritability
(NBA, NBD, NW), this advantage diminished, with GBLUP
achieving predictive abilities that matched or exceeded those of
the more flexible methods.

Computational speed

Computational efficiency is an important aspect for the practical
application of genomic prediction methods in breeding programs.
We first assessed the computational efficiency of all methods using
the BF dataset on the CPU platform. Figure 5A shows the total
computational time required for each method, including hyper-
parameter tuning, model training, and prediction where applicable.
Feed-forward neural networks were generally slower than most
conventional linear models on the CPU platform. The
computational cost was associated with deeper architectures and
increased significantly with the increase of network depth. One-layer
FFNN was the most efficient among the neural network
implementations, and required similar computation time as
BayesR. The computation time required for FFNNs exceeded all
linear methods when using two or more layers. Among the linear
methods, the two methods implemented in SLEMM software
demonstrated superior computational efficiency. SLEMM-GBLUP
completed the analysis in the shortest time, while SLEMM-WW
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required slightly longer due to the additional calculations for
window-based weighting. LDAK-BOLT followed with moderate
computational demands, and BayesR required substantially more
time. The ridge regression implemented by scikit-learn exhibited the
highest computational cost among linear methods, primarily due to
the extensive grid search process for optimizing the
regularization parameter.

The computational efficiency of feed-forward neural networks
was further assessed using three GPU platforms: NVIDIA A30,
NVIDIA RTX 3060 Ti, and NVIDIA RTX 3090 (Figure 5B). While
for the one-layer structure (without hidden layers), the CPU
implementation with 20 threads performed similarly to GPU
implementations, highlighting that simpler linear models did not
benefit from GPU acceleration, all neural network architectures with
hidden layers demonstrated substantial computational acceleration
when executed on GPU hardware. As model complexity increased
with additional hidden layers, the computational advantage of GPU
implementation became increasingly pronounced. The
computational time on the CPU platform increased substantially
with each additional layer, while the increase was considerably less
dramatic on GPU platforms. For the four-layer neural network,
GPU implementation reduced the computational time by
approximately 2-fold compared to the CPU implementation.
Differences among the three GPU platforms were relatively
minor compared to the substantial gap between CPU and GPU
performance for multi-layer networks. The high-end NVIDIA RTX
3090 provided the greatest computational acceleration, followed
closely by the RTX 3060 Ti and A30. This performance advantage
highlights the potential for GPU acceleration to mitigate the
computational disadvantages of complex neural network
architectures for genomic prediction. While neural networks

remain more computationally intensive than the most efficient
linear models even with GPU acceleration, the substantial
reduction in processing time makes deeper architectures more
viable for practical applications in genomic prediction pipelines.

Discussion

In this study, we comprehensively evaluated FFNN models
against conventional linear methods for pig genomic prediction.
Performing genomic prediction using FFNNmodels was feasible for
our pig dataset. With proper hyper-parameter tuning, these models
can achieve reasonable predictive abilities, particularly the one-layer
FFNN which performed closest to GBLUP. However, our results
align with previous research showing neural networks provide no
advantage and often perform worse than linear approaches for
genomic prediction (Montesinos-López et al., 2021).

A primary difference between these methodologies lies in their
modeling approach in that linear methods assume additive
relationships between inputs and outputs, while neural networks,
particularly those with hidden layers and non-linear activation
functions, can theoretically capture complex, non-linear
interactions among features. Several studies have reported that
FFNN models can provide improvements in predictive ability
when analyzing traits with substantial non-additive effects such
as dominance and epistasis (Abdollahi-Arpanahi et al., 2020;
Zingaretti et al., 2020; Costa et al., 2022; Perelygin et al., 2025).
Notably, many research studies have reported that FFNN models
achieved higher predictive accuracy compared to linear methods in
plant genomic prediction research (Gianola et al., 2011; Khaki and
Wang, 2019; Sandhu et al., 2021; Kelly and McLaughlin, 2024). Such

FIGURE 3
Comparison of standardized predictions from GBLUP and ridge regression across six traits in one replicate. Each point represents an individual, and
the dashed line indicates the identity line (y = x). Pearson correlation coefficients (R) are shown for each trait panel.
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performance advantages in plant species may derive from different
breeding histories compared to livestock, potentially resulting in genetic
architectures with greater preservation of non-additive genetic variance.
However, most economically important traits in farm animals are
influenced predominantly by additive genetic effects (Jiang et al., 2017;
Vitezica et al., 2018; de Oliveira et al., 2023). Although non-additive
genetic effects may have more pronounced influence on reproductive
traits (Jiang et al., 2017), the limited sample size in our study may have
restricted the ability of neural networks to capture and leverage these
effects effectively. Moreover, the theoretical advantage of neural
networks in capturing non-linear relationships may be diminished
when conventional methods are properly specified to incorporate these
effects. Linear models with appropriate parameterization to account for
non-additive effects can match or exceed the predictive performance of
deep learning methods when modeling traits with strong non-additive
architectures (Zingaretti et al., 2020).

Determining optimal hyper-parameters represents a significant
challenge in neural network implementation for genomic prediction.
Neural networks, unlike linear methods, operate within a vast hyper-
parameter space that substantially influences model performance.
Hyper-parameters that work well for one trait or population may
not generalize to others (Zingaretti et al., 2020), necessitating trait-
specific optimization that further increases the computational burden.
Traditional grid search approaches become practically impossible for
complex neural networks due to the exponential growth of the search
space as the number of hyper-parameters increases. Random search

offers some relief by sampling hyper-parameter combinations
randomly, but it still requires substantial computational resources
and may not efficiently explore the most promising regions of the
search space (Bergstra and Bengio, 2012). To alleviate this problem, we
applied hyperband tuning (Li et al., 2018), an efficient multi-fidelity
hyper-parameter optimization strategy that evaluates numerous
configurations with limited resources and progressively allocates
more computational time only to promising candidates. Other
efficient approaches such as Bayesian optimization methods (Snoek
et al., 2012; Waldmann et al., 2020) and evolutionary algorithms (Storn
and Price, 1997; Han et al., 2021) have also been explored in deep
learning and genomic prediction contexts.

Neural networks also differ fundamentally from linear methods
in how they process data during training. Linear methods typically
process all individuals simultaneously, while neural networks utilize
batch processing, where only a subset of data is processed in each
training iteration. The choice of batch size in this context introduces
a trade-off between computational efficiency and model
performance. Larger batches provide more stable gradient
estimates and better hardware utilization but require more
memory, while smaller batches offer better generalization in
some cases but slower convergence (Goodfellow, 2016).
Excessively large batch sizes can exceed GPU memory capacity,
particularly for multi-layer architectures where parameter counts
increase substantially. Therefore, we determined the batch size
before proceeding with the main hyper-parameter tuning process.

FIGURE 4
Predictive ability of genomic predictionmethods for six quantitative traits. The predictive ability wasmeasured as the Pearson correlation coefficient
between observed and predicted phenotypic values in the test population across 20 iterations of repeated random subsampling validation. Error bars
represent standard deviations.
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The hyper-parameters optimized in this study directly impact how
neural networks model the relationship between genotypes and
phenotypes and are critical to overall model performance. The
number of neurons determines the model’s capacity to capture
complex patterns. More neurons can capture more complex genetic
relationships but risk modeling noise. Activation functions (ReLU,
sigmoid, tanh, softmax) determined the non-linear transformations
applied throughout the network. While ReLU is commonly used in
deep learning due to its simplicity and computational efficiency (Glorot
et al., 2011), the optimal choice varies by trait and architecture rather
than showing universal superiority (Montesinos-López et al., 2021).
The learning rate controls how quickly the neural network updates its
weights during training, balancing between convergence speed and
training stability. L2 regularization and dropout mitigate overfitting by
penalizing large weights and randomly deactivating neurons,
respectively. Excessive regularization or dropout can lead to
underfitting by impeding the network’s learning capacity (Srivastava
et al., 2014; Goodfellow, 2016).

Our study employed repeated random subsampling validation
with the same 20 random 80/20 splits to evaluate all methods,

ensuring fair comparison with no methodological bias. Each split
maintained strict separation between training and testing sets with
no data leakage.While alternative validation strategies such as k-fold
cross-validation or year-based validation could provide different
perspectives on absolute performance values, they would yield
similar relative comparisons among methods when applied
consistently. Our repeated random subsampling approach is
methodologically sound and well-suited for our research
objectives of comparing method performance within this
population. The 80/20 split ratio provides a good balance
between training data availability and test set size for reliable
evaluation.

While differences in predictive ability among methods were
modest, computational efficiency varied substantially. The two
methods implemented in SLEMM demonstrated exceptional
speed on CPU hardware, completing analyses in under 2 min for
genomic prediction with approximately 20,000 individuals. In
comparison, FFNN models required considerably more
computational resources on the same platform, with processing
time increasing significantly as network complexity increased.

FIGURE 5
Computational efficiency of genomic prediction methods on different hardware platforms. All comparisons were based on one replicate from
repeated random subsampling validation for BF. Genomic predictions were performed using 30,981 SNPs, with 21,385 individuals for training and
5,346 for testing. (A)Comparison of computational time (minutes) required for different genomic predictionmethods implemented onCPU hardware. (B)
Comparison of computational time (minutes) required for feed-forward neural networks implemented on different hardware platforms including
CPU and three GPUs.
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However, when training was performed on a GPU, the additional
time required for deeper architectures was minimal. This difference
can be attributed to the inherent design of GPUs, which are
specialized for parallel processing and are capable of performing
many calculations simultaneously. Unlike CPUs that process
operations sequentially, GPUs can simultaneously execute
multiple matrix and vector operations fundamental to neural
network training (Oh and Jung, 2004). Consequently, GPU
acceleration significantly reduces training times for deep neural
networks, making these computationally intensive models
practical for large-scale genomic prediction. The relative
performance among the three tested GPU platforms (NVIDIA
A30, RTX 3060 Ti, and RTX 3090) showed only minor
differences, suggesting that even consumer-grade GPUs can
provide significant acceleration for genomic prediction
applications. Although the computational requirements for neural
networks with GPU acceleration remain substantially higher than
those of optimized linear methods, this hardware accessibility
creates opportunities to investigate more complex neural network
architectures that may better capture non-additive genetic effects
and improve prediction accuracy for traits with complex inheritance
patterns.Therefore, for practical pig breeding applications,
conventional linear methods, particularly SLEMM-WW, currently
offer the optimal balance of prediction accuracy and computational
efficiency. FFNN models demonstrate no advantage compared to
conventional methods as they demand more computational
resources while typically yielding lower predictive ability.
However, neural network approaches remain promising for
future applications beyond the numeric phenotypes used in this
research. For instance, when phenotypic data takes the form of
images or videos (Billah et al., 2025; Xu et al., 2025), neural networks
may offer substantial advantages due to their established
performance in visual data processing. Additionally, alternative
neural network architectures specifically designed for genomic
prediction merit exploration. Convolutional neural networks that
capture local patterns across the genome, recurrent neural networks
that model sequential dependencies, or transformer models that can
identify complex relationships between distant genomic regions may
prove more effective than standard feed-forward architectures.
Furthermore, incorporating biological information, such as gene
annotations or pathway data, to guide neural network design might
improve their performance by focusing the model on biologically
plausible relationships (Fortelny and Bock, 2020). These potential
directions highlight the need for continued research in applying
machine learning approaches to genomic prediction.

Conclusion

In summary, we comprehensively evaluated FFNN models for
genomic prediction in Duroc pigs. Despite extensive hyper-parameter
optimization, neural networks consistently underperformed all
conventional linear methods across all traits examined. While GPU
acceleration significantly reduced computational time for multi-layer
networks, the combination of lower predictive ability and higher
computational demands makes complex neural networks less practical
than optimized linear methods for routine genomic prediction in
commercial pig breeding programs. Although neural networks have

transformed many fields of artificial intelligence, their application to
genomic prediction requires careful consideration of trait genetic
architecture, sample size, and computational constraints. Our findings
suggest that for current pig breeding applications, conventional linear
methods remain the most effective approach, and among linear methods
we tested, SLEMM-WW offers the optimal balance of computational
efficiency and predictive ability.
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