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Introduction: Alternative splicing (AS) and RNA-binding proteins (RBPs) have
been implicated in various diseases. However, a comprehensive understanding of
their role in RNA metabolism, progression, and metastasis in cervical cancer
remains elusive. This study aimed to identify the potential effect of zinc finger
CCCH-type containing 18 (ZC3H18) in cervical cancer.
Methods: The Gene Expression Omnibus (GEO) dataset (GSE94427) was used to
analyze the expression level of ZC3H18 in HeLa cells and its regulated alternative
splicing events (ASEs). The Cancer Genome Atlas (TCGA) cervical cancer dataset and
in vitro experiments were used for verification. The signaling pathways and functions
of ZC3H18-regulated ASEs were investigated through enrichment analysis.
Results: Knockdown of ZC3H18 in HeLa cells increased the expression of 106
genes but decreased the expression of 226 genes. ZC3H18 was found to be
involved in the regulation of 1,830 ASEs. The AS genes were enriched in cervical
cancer-related signaling pathways. Validation using 39 cervical cancer samples
from the TCGA database showed that 20 cases had low ZC3H18 expression and
19 had high expression. By integrating GEO and TCGA datasets along with in vitro
experiments, 18 ASEs with consistent changes were identified.
Discussion: This study demonstrated that ZC3H18 extensively regulates AS of
cancer-associated pathways in HeLa cells and cervical cancer tissues. The
identification of ZC3H18-regulated ASEs may provide potential targets for
cervical cancer treatment.
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Introduction

Cervical cancer is a major gynecological issue in developing and less developed
countries (Sung et al., 2021). Infection with a high-risk human papillomavirus (HPV) is
the most prevalent cause of cervical cancer (Eklund et al., 2018). Despite significant
advancements in early detection and treatment modalities, approximately 30% of
patients develop recurrence (Adiga et al., 2021). Patients who relapse usually have a
worse prognosis and a higher mortality rate. Therefore, identification of molecular markers
and therapeutic targets is significant to improve the therapeutic efficacy of cervical cancer.

In the human genome, alternative splicing (AS) has a significant effect on the
complexity of biological functions (Modrek and Lee, 2002). Through alternative splicing
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mechanisms, a single pre-mRNA transcript can give rise to diverse
mRNA splice isoforms. Consequently, a single gene has the capacity
to generate multiple distinct protein variants, each potentially
playing unique functional roles. In the context of neoplasms,
aberrant splicing events are prevalent, often resulting from
mutations in splicing cis-regulatory elements or dysregulation of
splicing factor expression and function (Anczuków and Krainer,
2016; Song et al., 2018). Aberrantly spliced mRNA transcripts can
cause tumor suppressors or oncogene activators to lose their
function (Matlin et al., 2005; Sultan et al., 2008). This abnormal
regulation of AS, which is involved in various tumor processes,
including angiogenesis, apoptosis, migration, and
radiochemotherapy sensitivity (Schwerk and Schulze-Osthoff,
2005; Wang et al., 2016; Sheng et al., 2018; Liu et al., 2022;
Mabeta and Steenkamp, 2022), has emerged as a novel
therapeutic target and biomarker for cancer treatment (Zhao
et al., 2017; Urbanski et al., 2018; Peng et al., 2022). Recently, AS
has been found to control the development of cervical cancer via the
MIL1RAP–NF-κB–CD47 axis (Liu et al., 2018). Che et al. (2023) also
demonstrated that the serine/arginine-rich splicing factor 3 (SRSF3),
which is highly expressed in cervical cancer, modulates the
alternative splicing of exon 12 in the transcriptional cofactor
DEAD-box helicase 5 (DDX5). This splicing alteration leads to
an increased production of the pro-oncogenic splice variant DDX5-
L and a reduction in the levels of the tumor-suppressive splice
variant DDX5-S. Consequently, these changes promote the
proliferation, migration, and invasion of cervical cancer CaSki
cells (Che et al., 2023). Therefore, AS is an interesting
therapeutic target in cervical cancer treatment.

RNA-binding proteins (RBPs), which control cell function by
interacting with RNA, play significant roles in the post-
transcriptional gene expression regulation (Huang et al., 2021).
RBPs are involved in different aspects of RNA, such as editing,
splicing, transport, metabolism, translation, and maintenance of
RNA intracellular localization (Müller-McNicoll and Neugebauer,
2014; Hentze et al., 2018). In recent years, a high level of RBP
expression has been observed in cervical cancers associated with
HPV infection. Furthermore, they participate in the development of
the disease (Huang et al., 2021; Zheng et al., 2022).

Zinc finger CCCH-type containing 18 (ZC3H18), an RBP, is
involved in RNA metabolism, participating in transcription
activated by the nuclear factor kappa-B (NF-κB) and post-
translational modifications (Müller-McNicoll and Neugebauer,
2014; Liu et al., 2018). It plays an essential role in linking RNA
metabolism and transcription. Reduced ZC3H18 expression may be
beneficial in patients with advanced-stage serous ovarian cancer
treated with PARP inhibitors and platinum therapy (Kanakkanthara

et al., 2019). However, the mechanism by which ZC3H18 functions
in cervical cancer remains unclear.

We hypothesized that the abnormal expression of ZC3H18 in
cervical tissue regulates the variable shear of pre-mRNA and
influences the development of cervical cancer. This study aimed
to investigate the effect of ZC3H18 on regulating gene expression
and AS in cervical cancer and HeLa cells using public datasets and
in vitro experiments and help identify the novel targeted therapies to
improve the therapeutic efficacy.

Materials and methods

Acquisition of RNA-seq data from the GEO
and TCGA datasets

To examine the expression of ZC3H18 and the regulation of
AS in HeLa cells and in patients with cervical cancer, RNA-seq
data were obtained from the Gene Expression Omnibus (GEO)
(GSE94427; https://www.ncbi.nlm.nih.gov/geo) (Giacometti
et al., 2017) and The Cancer Genome Atlas (TCGA) ((http://
xena.ucsc.edu) datasets. Splice junction data in BED format for
cervical cancer samples from TCGA were downloaded from the
Genomic Data Commons portal (https://gdc.cancer.gov/) for the
identification of variable alternative splicing events (ASEs)
(Kahles et al., 2018). The overview of datasets used in this
study is presented in Additional file 1. The GEO dataset
contained three HeLa cell samples of siRNA targeting
ZC3H18 mRNA (siZC3H18 groups) and five control HeLa cell
samples [siRNA-targeting firefly luciferase (FFL) mRNA, siFFL
groups]. The TCGA database contains clinical data from 39 cases
of cervical cancer and RNA-seq data from tumor and
adjacent tissues.

Genetic analysis with respect to differential
expression

Pure reads were compared with the human GRch38 genome via
HISAT2 (Kim et al., 2019). Using clearly mapped reads, the number
of exon fragments per base (FPKM) of mapped fragments and reads
per gene were calculated to estimate gene expression levels. DESeq2,
software specifically designed for analyzing differentially expressed
genes (DEGs), was used for the analysis (Love et al., 2014). The input
data used for DEG analysis is the read count. To determine whether
there was a differential expression of a gene, we analyzed the results
using false discovery rate (FDR <0.05) and fold change
(FC ≥ 2 or ≤0.5).

AS analysis

ASEs and regulatory alternative splicing events (RASEs) are
defined and quantified using the ABLas pipeline (Jin et al., 2017; Xia
et al., 2017). In short, ABLas identified 10 distinct ASEs by analyzing
splice junction reads. These included alternative 5′ and 3′ splice sites
(A5SS and A3SS), mutually exclusive exons (MXEs), exon skipping
(ES), intron retention (IR), and mutually exclusive 5′ and 3′

Abbreviations: HPV, human papillomavirus; AS, alternative splicing; SRSF3,
serine/arginine-rich splicing factor 3; DDX5, DEAD-box helicase 5; RBPs,
RNA-binding proteins; ZC3H18, zinc finger CCCH-type containing 18; NF-
κB, nuclear factor kappa-B; FFL, firefly luciferase; FPKM, fragments per
kilobase of exon per million fragments mapped; DEGs, differentially
expressed genes; FC, fold change; FDR, false discovery rate; ASEs,
alternative splicing events; RASEs, regulated alternative splicing events;
PCA, principal component analysis; RASGs, regulated alternative splicing
genes; UTR, untranslated region; IGV, Integrative Genomics Viewer; PARP,
poly ADP-ribose polymerase.
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untranslated regions (5pMXE and 3pMXE). Additionally, the
detection covered cassette exons and complex events combining
A3SS with ES or A5SS with ES. Statistical significance of sample
pairs was assessed using Fisher’s exact test. After normalizing the
reads by RPM (reads per million) of each gene in the samples, an in-
house script (sogen) was used for the visualization of next-
generation sequencing data and genomic annotations.

Selectively spliced reads and their change ratios were calculated
and compared between samples. The RASE detection threshold was
defined as a ratio of ≥0.2 with p ≤ 0.05. Using Student’s t-test, the
meaning of the change in the ASE ratio was assessed during the
repeated comparison procedure.

Enrichment analysis of functions

The KOBAS 2.0 server was used to predict and calculate
functional classes of DEGs based on Gene Ontology (GO)
analysis and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Xie et al., 2011). The enrichment
pathways were defined using hypergeometric tests and
Benjamini–Hochberg FDR controls (corrected p-value <0.05).
Moreover, a functional enrichment analysis of the selected genes
was conducted using the Reactome pathway (http://
reactome.org).

Cell culture and treatment

The human cervical cancer cell line HeLa is preserved by Fuzhou
University (Fuzhou, China). HeLa cells were cultured in DMEM
(Shanghai BasalMedia Technologies, China) containing 10% fetal
bovine serum (FBS, PAN-Biotech GmbH, Germany) in a 5% CO2

incubator at 37 °C.
The siRNA fragments of human ZC3H18 and FFL

were chemically synthesized by Fuzhou University (Fuzhou,
China). The ZC3H18 siRNA sequence was
5′GGAAUGAAUUGUAGGUUUAdTdT; the control FFL
siRNA sequence was CUUACGCUGAGUACUUCGAdTdT.

Reverse transcription PCR

RNA was isolated from all experimental samples using the
TRIzol extraction protocol. First-strand cDNA synthesis was
then performed using a commercial reverse transcription kit
(Yeasen Biotechnology, China) under the following thermal
cycling conditions: an initial 2-min incubation at 42 °C,
followed by 5 min at 25 °C, a 30-min extension at 42 °C,
enzyme inactivation at 85 °C for 5 min, and a final 10-min
hold at 4 °C. The reaction used total RNA as the starting
template. The reverse transcription PCR (RT-PCR) assay was
conducted using the 2× Rapid Taq Master Mix (Vazyme, China)
under the following thermal cycling conditions: initial
denaturation at 95 °C for 3 min, followed by 35 cycles of
95 °C for 15 s, 60 °C for 15 s, and 72 °C for 15 s per kilobase.
Cycle threshold values were recorded for each reaction well.
Primer sequences can be found in Additional file 2.

Statistical analysis

We additionally performed a principal component analysis
(PCA) using the R package to illustrate the clustering of the first
two samples. The “pheatmap” package in the R language was used.
Student’s t-test was used for paired samples with equal variance (P <
0.05 was considered statistically significant).

Results

Differential transcription of siZC3H18 in
HeLa cells

Clustering analysis was based on the gene expression level of five
siFFL samples and three siZC3H18 samples (Figures 1A;
Supplementary Figure S1). Three siZC3H18 samples were grouped
together, and five siFFL samples were grouped together. Consequently,
a clear difference in gene expression was observed between the two
groups. TheM-versus-A plot indicates that there were 335 differentially
expressed genes between siZC3H18 and siFFL, with 106 upregulated
genes and 229 downregulated genes (Figure 1B and Additional file 3).
Cluster analysis revealed distinct groupings of siZC3H18 and siFFL
samples based on DEG expression levels (Figure 1C).

The abovementioned upregulated- or downregulated gene
expressions were extracted for functional analysis. These
upregulated genes were mostly concentrated in signaling
pathways related to extracellular matrix organization, apoptotic
process, cell differentiation, and multicellular organism
development (Figure 1D and Additional file 4). These
downregulated genes were primarily related to the cell surface
receptor signaling pathway, DNA template transcription
regulation, oxidation–reduction process, and RNA polymerase II
transcription regulation (Figure 1E and Additional file 4). Therefore,
ZC3H18 may play a significant role in cervical tumorigenesis.

Identification of abnormal ASEs in HeLa cells

According to the analysis of RASEs, the siZC3H18 groups
significantly differed in terms of several types of RASEs, such as
A5SS, compared with the siFFL groups (Figure 2A and Additional
file 5). In total, 1,830 ASEs were regulated by ZC3H18. Clustering
analysis revealed that RASEs in the siZC3H18 groups differed from
those in the siFFL groups (Figure 2B). To validate the potential
functionality of these RASEs, genes for which RASEs have occurred
were extracted and subjected to GO and KEGG analyses (Figures
2C,D and Additional files 6–7). GO analysis indicated that the genes
undergoing regulated alternative splicing (RASGs) were associated
with various biological processes, including DNA replication,
response to DNA damage stimulus, translation, viral process,
cellular DNA repair, and cell cycle. KEGG pathway analysis
demonstrated that RASGs play a role in multiple biological
processes, including metabolic regulation, DNA repair
mechanisms (specifically base excision and mismatch repair),
ribosomal function, RNA translocation, and endoplasmic
reticulum-associated protein processing. These findings suggest
that ZC3H18 could potentially influence cervical cancer
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FIGURE 1
siZC3H18 resulted in transcriptional differences in HeLa cells. (A) PCA is the ratio based on all mRNA expressions. Ellipses in the group are the confidence
ellipses. (B) Detection of ZC3H18-regulated genes on the MA plots. Upregulated genes are marked in red, while downregulated genes are marked in blue. (C)
Clustering heatmap demonstrating the expression pattern of DEGs among the samples. (D,E) Biological process of the up- and downregulated genes,
respectively. PCA, principal component analysis; MA plot, M-versus-A plot; DEGs, differentially expressed genes; GO, Gene Ontology.

FIGURE 2
Identification of alternative splicing events regulated by ZC3H18 in the HeLa cell lines. (A) Bar plot of the distribution of RASEs between the
siZC3H18 and siFFL groups. Blue and red bars display the number of up- and downregulated RASEs in the siZC3H18 group, respectively, compared with
those in the siFFL group. (B) Heatmap of hierarchical clustering based on the ratio of significant RASEs. (C,D) The scatter plots show the most enriched
biological process and the KEGG pathway in RASGs, respectively.
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development and therapeutic outcomes by regulating ASEs. The
Venn diagram indicated that 19 genes were differentially expressed
between the siZC3H18 and siFFL groups and were regulated by
ZC3H18-mediated alternative splicing (Supplementary Figure S3A
and Additional file 8). These 19 genes were involved in glycine,
serine, and threonine metabolisms, steroid hormone biosynthesis,
ECM–receptor interaction, axon guidance, and metabolic pathways
(Supplementary Figure S3B and Additional file 9).

Analysis of potential ZC3H18-regulated
ASEs in cervical cancer

To identify ZC3H18-regulated RASEs in cervical cancer
samples, 39 cases were downloaded from TCGA, of which
19 showed high ZC3H18 expression and 20 showed low
ZC3H18 expression (Figure 3A and Additional file 10). The
ZC3H18 expression levels were not associated with pathological
stages or survival (Figure 3A; Supplementary Figure S2).

We compared the RASE levels between groups with low and high
expressions of ZC3H18. Consistent with the results in the GEO
database, low ZC3H18 expression increased the ratios of A3SS,
A5SS, and cassette exon events (Figure 3B and Additional file 11).
The signaling pathways involved in RASGs were also consistent with
the GEO results. Furthermore, they were associated with cellular
response to DNA damage, cell cycle, viral processes, DNA repair,
G2/M transition in the mitotic cell cycle, and DNA replication
(Figure 3C and Additional file 12).

The RASGs regulated by ZC3H18 in the GEO and TCGA
databases were intersected, resulting in 206 genes (Figure 3D and

Additional file 13). GO analysis showed that these genes were
involved in multiple functions, including ciliated basal
body–plasma membrane docking, negative regulation of protein
kinase activity, and DNA replication and mitosis of the cell cycle
(Figure 3E and Additional file 14). Therefore, ZC3H18-regulated
RASGs may be involved in tumorigenesis and progression in
cervical cancer.

Validation of ZC3H18-regulated ASEs

The RASEs were identified using the GEO dataset and validated
using the TCGA dataset and in vitro experiments. Eighteen genes
had the same type of AS in the two datasets, and the regulatory trend
was consistent (Figure 4). Their Integrative Genomics Viewer (IGV)
is presented in Additional file 15. In addition, we knocked down the
expression of ZC3H18 by siRNA, and in vitro experiments also
verified that these 18 RASEs were regulated by ZC3H18 (Figure 5).
Of these events, 10 (55.56%) RASEs were reduced at low
ZC3H18 levels. Therefore, these events (ADPGK_A3SS,
PPHLN1_ES, DNAJC1_MXE, CAPRIN2_A3SS, HNRNPC_A3SS,
SCAF11_5pMXE, NASP_MXE, MRE11_A3SS, DLST_MXE, and
PPP4R3A_5pMXE) were positively regulated by ZC3H18. The
remaining eight RASEs were negatively regulated by ZC3H18.

Discussion

Cervical cancer ranks among the leading cancers in low-income
nations (Sung et al., 2021). Despite significant progress in treating

FIGURE 3
Transcriptome analysis in ZC3H18-mediated alternative splicing. (A) Plot shows different expressions of ZC3H18 in the two groups. (B) Bar plot
shows the distribution of RASEs between low and high expression of ZC3H18. The green and red bars show the number of up- and downregulated RASEs
in the low ZC3H18 expression, respectively, compared with those in the high ZC3H18 expression. (C) Top 10 GO analysis of biological process in which
the RASGs were enriched. (D) The RASG intersection was shown in the Venn diagram between the TCGA and GEO databases. (E) Top 10 GO
biological process analyses in the 206 RASGs.
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cervical cancer, such as the development of advanced radiotherapy
techniques and targeted therapies, there has been a limited
improvement in treatment efficacy. Unfortunately, the overall 5-
year survival rate is only 17% (Zeng et al., 2018). Hence, novel

therapeutic target biomarkers should be identified to improve
treatment modes in cervical cancer.

The role of AS in human cancer has garnered considerable
attention in recent times. AS generates protein-coding gene diversity

FIGURE 4
Validation of ZC3H18-regulated alternative splice events in the GEO dataset using TCGA data.
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and plays a critical role in the development and progression of
malignant diseases. Splicing factors, which are actually RBPs and are
frequently dysregulated in cancer, commonly govern the process of AS
development. KEGG pathway analysis revealed that cervical cancer

initiation and development are regulated by RBPs through the mRNA
surveillance pathway, RNA degradation, and RNA transport. AS, an
important contributor to protein-coding gene diversity, is involved in
the development of malignancies. A recently published paper has

FIGURE 5
Validation of ZC3H18-regulated alternative splice events in the GEO and TCGA datasets using the in vitro experiment.
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shown that RBPs are highly expressed in cervical cancer and are also
linked to HPV infection (Fay et al., 2009).

ZC3H18 is highly expressed in a wide range of tumor tissues,
with higher expression in squamous intraepithelial lesions than in
normal cervical tissue. ZC3H18 is an RBP that affects gene
expression via several methods. For example, it triggers the
activation of the NF-κB transcription factor through an
unidentified process (Gewurz et al., 2012) and modulates RNA
metabolism by engaging in mRNA splicing and transport (Chi
et al., 2014), directing RNA degradation via the exosome
(Andersen et al., 2013). However, the role of ZC3H18 in the
regulation of AS in cervical cancer remains unclear. In the study,
the RNA-seq data of HeLa cells and 39 cervical cancer tissues were
integrated to analyze the association between ZC3H18 and AS.

After suppressing ZC3H18 expression in HeLa cells, the
expression of 335 genes exhibited changes. Among these genes,
106 showed increased expression, potentially due to the elevated
levels of unstable nuclear transcripts resulting from
ZC3H18 depletion. These findings align with the role of
ZC3H18 in facilitating CBCN-mediated RNA decay mediated by
the exosome (Andersen et al., 2013; Giacometti et al., 2017; Iasillo
et al., 2017). However, more importantly, the mRNA level decreased
(229, 68.36%), which could not be explained by the RNA
degradation function of ZC3H18. A prior investigation proposed
that these observations could indicate an as-yet-unidentified role of
ZC3H18 that is independent of exosome activity (Winczura et al.,
2018). Therefore, the function of ZC3H18 can still be explored.

The database results showed that ZC3H18 was significantly
involved in the regulation of RASEs in cervical cancer. Among
the five AS types (cassette exon, A5SS, A3SS&ES, A3SS, and
3pMXE), the results obtained from the GEO and TCGA
databases were consistent. The variation trends in ES, A5SS&ES,
and 5pMXE regulated by ZC3H18 differed in the two datasets,
which might be related to individual differences among samples.
Consistent with previous reports, A5SS and A3SS accounted for the
largest proportion of AS events identified in HeLa cells and cervical
cancer tumor tissues (Jin et al., 2017; Xia et al., 2017). Changes in the
5′ splicing site of RNA precursor molecules can lead to different
exon combinations, which, in turn, produce different transcripts and
proteins. Although translation regulation is mediated by sequence-
specific elements in the 5′ untranslated region (UTR) and 3′ UTR,
most sequences affecting translation are located in the 3′ UTR
(Hussey et al., 2011). Levesque et al. (2021) comprehensively
explored the role of A3SS in breast cancer and found that it was
related to the development of breast cancer. Nevertheless, to our
knowledge, comprehensive investigations examining the
involvement of A5SS and A3SS in cervical cancer are lacking.

ZC3H18 can regulate the splicing of some genes in clinical
samples and HeLa cells. Functional enrichment analysis showed that
ZC3H18-related RASGs are involved in several biological processes,
including key cancer-related pathways. HPV replicates when its long
control region interacts with host cytokines, thereby triggering
transcription of the E6 and E7 genes.

Furthermore, by binding to and disabling tumor suppressor
proteins, cell cycle proteins, and their associated kinases, E6 and
E7 genes control the host cell growth cycle (Syrjänen and Syrjänen,
1999). For example, the HPV E6 gene product interacts with p53,
leading to its rapid degradation by intracellular ubiquitin ligases,

thereby disrupting the normal functions of p53 in regulating G1 cell
cycle arrest, apoptosis, and DNA repair (Thomas et al., 1999). The
HPV E7 gene product can bind to the RB protein family and cyclin
E, leading to cell cycle disorders (Syrjänen and Syrjänen, 1999). This
study found that ZC3H18-regulated RASGs were also involved in
the viral process, DNA replication, and cell cycle. Therefore, the
close association between ZC3H18 and cervical cancer highlights its
potential as a promising diagnostic and therapeutic target.

Based on the research findings from both GEO and TCGA
datasets, RASGs linked to ZC3H18 are functionally implicated in
DNA repair pathways. Poly ADP-ribose polymerase (PARP), a
critical DNA repair enzyme, plays a pivotal role in DNA damage
repair and cellular apoptosis (Slade, 2020; Zhu et al., 2020). PARP
inhibitors have emerged as essential therapeutic agents in first-line
and maintenance treatment for homologous recombination-
deficient (HRD) ovarian cancer (Caruso et al., 2025;
Papageorgiou et al., 2025). Significant benefits of PARP inhibitors
have also been documented in endometrial cancer through multiple
studies (Janzen et al., 2013; Ji et al., 2025). Given that cervical cancer
cells with high ZC3H18 expression exhibit significant enrichment in
DNA repair pathways, PARP inhibitors may potentially enhance
disease control rates in this patient subset.

Nevertheless, this study had several limitations. Although we
also constructed a HeLa cell line with ZC3H18 knockdown to
verify the 18 RASEs, the findings of this study are mainly based
on the public data, and additional experiments should be
performed to validate the role of ZC3H18 in AS and elucidate
the potential mechanisms by which it regulates substrate genes or
protein isoforms. In addition, prospective clinical data are
required to validate the diagnostic and therapeutic value of
ZC3H18 in cervical cancer, given the inherent limitations of
this retrospective analysis.

Conclusion

The current study applied the GEO dataset, TCGA dataset, and
in vitro experiment to identify the regulation of ZC3H18 on AS in
cervical cancer. The results showed that ZC3H18-regulated RASEs
were correlated with viral processes, DNA replication, and cell cycles
in HeLa cells and clinical samples of cervical cancer. Thorough
investigation of ZC3H18-mediated alternative splicing will enable a
more precise understanding of the signaling pathways involved in
cancer development and may reveal potential therapeutic strategies
targeting ZC3H18.
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