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MicroRNAs (miRNAs) play a crucial role in regulating gene expression, and their
subcellular localization is essential for understanding their biological functions.
However, accurately predicting miRNA subcellular localization remains a
challenging task due to their short sequences, complex structures, and diverse
functions. To improve prediction accuracy, this study proposes a novel model
based on a graph transformer and amulti-head attention mechanism. Themodel
integrates multi-source features which include the miRNA sequence similarity
network, miRNA functional similarity network, miRNA–mRNA association
network, miRNA–drug association network, and miRNA–disease association
network. Specifically, we first apply the node2vec algorithm to extract features
from these biological networks. Then, we use a graph transformer to capture
relationships between nodes within the networks, enabling a better
understanding of miRNA functions across different biological contexts. Next, a
multi-head attention mechanism is implemented to combine miRNA features
from multiple networks, allowing the model to capture deeper feature
relationships and enhance prediction performance. Performance evaluation
shows that the proposed method achieves significant improvements over
current approaches on open-access datasets, achieving high performance
with an AUC (area of receiver operating characteristic curve) of 0.9108 and
AUPR(area of precision-recall curve) of 0.8102. It not only significantly improves
prediction accuracy but also exhibits strong generalization and stability.
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1 Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs widely distributed in
eukaryotic cells, typically around 22 nucleotides in length. They mainly regulate gene
expression through the post-transcriptional processes Hombach and Kretz (2016); Holley
and Topkara (2011). In organisms, miRNAs bind to specific target sites on mRNAs, causing
their subsequent degradation or translational inhibition, thereby modulating key
fundamental physiological processes like cell proliferation, differentiation, apoptosis,
and immune system activation Bartel (2009). Recent studies have shown that miRNAs
have indispensable functions in a variety of human diseases, including cancer,
neurodegenerative disorders, and cardiovascular diseases Li et al. (2023); Dugger and
Dickson (2017). They also show great potential in drug response prediction, resistance
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mechanisms, and therapeutic target discovery Miska (2007); Small
and Olson (2011). In this context, studying the subcellular
localization of miRNAs is of great significance for understanding
their regulatory networks and functional mechanisms Kabekkodu
et al. (2018); Catalanotto et al. (2016); Gurtan and Sharp (2013).
Different subcellular localizations often suggest that miRNAs are
involved in distinct biological processes. Accurate localization
prediction not only facilitates the understanding of functional
diversification of miRNAs but also provides theoretical support
for early disease diagnosis and targeted therapy Jie et al. (2021).
Although conventional experimental methods, such as fluorescence
in situ hybridization and subcellular fractionation combined with
high-throughput sequencing, can directly determine miRNA
distributions, these techniques are often complex, expensive, and
lack scalability for large-scale samples Thomson and Dinger (2016).
Therefore, developing computational methods to efficiently predict
miRNA subcellular localization has become a focal point in
bioinformatics research. Currently, researchers have developed
various machine learning models based on sequence information
to explore potential miRNA localization patterns. For example,
Huang et al. (2007) proposed a prediction framework combining
k-mer frequency patterns with a Support Vector Machine (SVM)
classifier, showing the feasibility of using sequence information for
localization recognition. However, due to the short length and
complex structure of miRNAs, as well as their heterogeneity
across different tissues or disease states, models relying solely on
sequence-level features often fail to capture the complete biological
semantics, resulting in limited accuracy and generalization Li et al.
(2014). To address this, some studies have incorporated biological
network information, such as the miRNA-mRNA interaction
network Hsu et al. (2011), the miRNA-disease association
network Jiang et al. (2010), and the miRNA-drug association
network Chen H. et al. (2019), to improve prediction accuracy.
For instance, Xie et al. constructed a miRNA-target gene interaction
network using Graph Convolutional Networks (GCNs) and applied
deep learning to predict miRNA functions within cells Guan et al.
(2022). Li et al. integrated miRNA, disease, and drug information
through a heterogeneous network and used graph embedding
techniques for feature learning Sun et al. (2020). Over the past
few years, deep learning innovations have significantly advanced
bioinformatics research. Convolutional Neural Networks (CNNs)
have been used to retrieve sequence features of miRNAs—such as in
the DeepMirTar model, which utilized CNNs to improve target gene
prediction accuracy Wen et al. (2018). Recurrent Neural Networks
(RNNs) have also been employed to capture sequential
dependencies, as seen in MirLocNet, which uses Long Short-
Term Memory (LSTM) networks to computationally infer
miRNA subcellular localization Chen Q. et al. (2019). Graph
Neural Networks (GNNs) are widely applied in modeling
biological networks. As proposed by Gao et al. (2022), a novel
Graph Attention Networks (GATs) combined with biological
network information to improve miRNA function prediction
Zhao et al. (2022).

In the field of miRNA subcellular localization, researchers have
developed various models to enhance prediction accuracy and
biological interpretability. MiRLoc Xu et al. (2022), for instance,
inferred miRNA spatial distribution by leveraging known mRNA
localization and their interaction with miRNAs, reflecting their role

in post-transcriptional regulation. MirLocPredictor Asim et al.
(2020) incorporated CNNs and positional encoding of k-mers to
enhance sequence representation for multi-label localization tasks.
DAmirLocGNet Bai et al. (2023a) integrated Graph Convolutional
Networks and autoencoders to jointly model miRNA sequence
features, disease associations, and disease semantic networks,
learning high-level representations from complex graph
structures. Some existing excellent models provide us with
references. For example, Wang X.-F. et al. (2024) proposed a
multi-channel graph neural network framework that integrates
multimodal similarity information with hypergraph contrastive
learning, effectively identifying novel cancer biomarkers. Wang
X.- et al. (2024) designed a directed graph neural network-based
multi-view learning model capable of systematically extracting
regulatory feature signals from multiple biological layers,
enhancing the model’s representational power. Additionally,
Wang et al. (2022) developed KGDCMI, a method that integrates
multi-source biological information with deep learning techniques
to accurately predict interactions between circRNA and miRNA.
Comparatively, PMiSLocMF Chen et al. (2024) fused heterogeneous
data such as miRNA-mRNA, miRNA-drug, and miRNA-disease
networks using a graph attention mechanism, achieving robust
performance even in scenarios with sparse data or incomplete
labels. Despite improvements, present architectures still face
challenges such as inadequate information integration and
underutilization of multi-head feature relationships. Effectively
integrating multi-source information and building more
expressive feature representations to improve miRNA subcellular
localization prediction remains an urgent and critical problem.

To overcome these limitations, this study proposes a novel
miRNA subcellular localization prediction model named
GTMALoc, based on graph transformer and multi-head attention
mechanisms. This approach effectively incorporates miRNA
sequence information and their roles across different biological
networks to improve prediction performance. Specifically, we first
extract miRNA features from multiple biological
networks–including miRNA sequence similarity, miRNA-mRNA
associations, miRNA-disease associations, and miRNA-drug
associations—using node2vec. Then, a graph transformer
framework is applied to infer latent node correlations, offering
better insight into miRNA functionality in different contexts. A
multi-head attention mechanism is subsequently employed to
integrate miRNA features across networks, capturing deeper,
multi-head relational patterns and enhancing predictive
performance. The evaluations show that our model outperforms
mainstream methods in terms of accuracy, generalization, and
stability on public datasets, demonstrating its effectiveness and
feasibility in the miRNA subcellular localization task. Key
improvements over existing methods provided by this study are:

(1) We propose a new miRNA subcellular localization prediction
model that leverages graph transformer and multi-head
attention mechanisms to integrate multi-source biological
network information.

(2) Complex relationships within biological networks are
modeled using node2vec and graph transformer to
improve high-dimensional representations of
miRNA features.
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(3) A multi-head attention mechanism is employed to fuse
heterogeneous network information, thereby strengthening
inter-feature relationships and improving the prediction
accuracy and generalization ability of model.

2 Materials and methods

2.1 Datasets

The dataset used in this study is sourced from version 2.0 of the
RNALocate database Cui et al. (2022), which systematically
compiles a large number of experimentally support RNA
subcellular localization records. From this database, we select a
subset containing 1,041 miRNAs to construct and evaluate our
model. To ensure biological consistency, all select miRNAs are
included in the miRNA functional similarity network established
in the MiRLoc Xu et al. (2022) study, facilitating the exploration of
potential functional associations. In terms of localization
annotation, these miRNAs are assigned to seven subcellular
compartments: cytoplasm, nucleus, nucleolus, mitochondrion,
exosome, microvesicle, and extracellular vesicle. The specific
numbers are as follows: 870 exosomes, 825 microvesicle,
499 nucleus, 308 cytoplasms, 259 mitochondrion,
102 extracellular vesicle, and 67 nucleolus. This categorization
not only covers the major cellular structures where miRNAs may
reside but also reflects their diverse roles in intracellular and
intercellular communication, providing a rich and challenging
dataset for multi-label classification tasks.

2.2 Methods

In this study, we develop a multi-source feature fusion model,
GTMALoc, for miRNA subcellular localization prediction, aiming
to comprehensively capture miRNA characteristics in various
biological contexts. This process is illustrated in Figure 1. First,
we extract structural features from several biological networks,
including the miRNA sequence similarity network,
miRNA–mRNA regulatory network, miRNA–disease association
network, and miRNA–drug interaction network. To preserve both
local and global structural information within each network, we
apply the node2vec algorithm to perform embedding learning on
these heterogeneous graphs, thereby obtaining a representation
vector for each miRNA under different semantic
relations—reflecting its functional characteristics in diverse
biological environments. Next, we utilize the graph transformer
model to process the graph embedding features. Leveraging its
built-in structural awareness and self-attention mechanism, the
model captures complex and variable dependencies among nodes,
enabling a deeper understanding of miRNA behavior and influence
across different networks. To achieve effective multi-source
information fusion, we further introduce a multi-head attention
mechanism to align and integrate miRNA representations from
various networks. This allows the model to automatically uncover
important cross-network interactions and latent high-level
semantic relationships. The fusion strategy not only enhances
the model’s sensitivity to critical features but also significantly
improves overall prediction accuracy and generalization
performance.

FIGURE 1
The architecture of the GTMALoc model.
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3 miRNA networks

3.1 miRNA sequence similarity network and
miRNA functional similarity network

All miRNA sequence data are obtained from the authoritative
database miRBase (version 22) Kozomara et al. (2019), which
provides experimentally validated miRNA sequences from
humans and other species, and is widely used in miRNA
research. To construct the miRNA sequence similarity network,
we employ the Smith–Waterman algorithm Smith and Waterman,
(1981), a classical local sequence alignment technique that precisely
evaluates the similarity between two miRNA sequences in terms of
base composition and order. Specifically, the algorithm uses
dynamic programming to find optimal local alignments based on
base matches, mismatches, and gap penalties, thereby computing a
similarity score for each miRNA pair (Equation 1).

SW mi,mj( ) � sp mi,mj( )�������������������
sp mi, mi( ) · sp mj,mj( )√ , (1)

sp(mi,mj) represents the local alignment fraction of the two
sequences, and a symmetrical similarity matrix can be obtained by
performing the above alignment process between all miRNAs. The
miRNA sequence similarity network was created according to the
similarity matrix by assigning the miRNA as the node and the
similarity score assigned to the corresponding edge as its weight. In
order to develop a functional similarity network of miRNAs, we
initially used the association data between miRNAs and diseases to
construct a disease hierarchy with the help of medical subject
headings (MeSH). Specifically, each disease di is represented in
an acyclic diagram (DAG) by a subgraph that includes the di, and all
of its higher-level diseases. For each disease dt in the subgraph, its
contribution to di can be expressed as (Equation 2):

C dt, di( ) � a ×
1

Depth dt, di( ), (2)

where a is the adjustment parameter, which Depth(dt, di)
represents the hierarchical distance between dt and di. Next, the
semantic value of disease di is established by aggregating all node
contributions within its subgraph (Equation 3):

SV di( ) � ∑
dt∈S di( )

C dt, di( ), (3)

let S(di) denote the set containing disease di and all of its ancestor
diseases. The semantic similarity between two diseases, di and dj,
denoted as Sim(di, dj), can be calculated based on the overlap of
their semantic values, which reflects their semantic similarity. For
two miRNAs, m1 and m2, let their associated disease sets be D1 and
D2, respectively. Their initial functional similarity can then be
defined as the average semantic similarity between diseases in m1

and those in m2 (Equation 4):

FS m1, m2( ) � 1
|D1 ∩ D2| ∑

d∈D1∩D2

Sim d( ). (4)

The challenge of similarity underestimation arising from disease
set sparsity is resolved through linear combination with miRNAGIP

kernel similarity, generating robust functional similarity estimates
(Equation 5).

FS* m1, m2( ) � λ FS m1, m2( ) + 1 − λ( ) GIP m1, m2( ), (5)
where λ is a fusion parameter, and GIP(m1,m2) represents the
similarity between the two miRNAs under the GIP kernel.
Specifically, λ is used to balance the contributions of functional
similarity and GIP kernel similarity. We perform a grid search over
the values [0.1, 0.3, 0.5, 0.7, 0.9], using multi-label classification
performance as the evaluation criteria. The optimal value is found to
be λ = 0.5, which offered a good trade-off between generalization and
robustness. For the threshold T used to binarize the similarity matrix,
we adopt an empirical approach Wang et al. (2010), adjusting T to
control the sparsity of the resulting adjacency matrix. We ultimately set
T to 0.6 to ensure a reasonable balance between sparsity and
connectivity in the resulting graph. After calculating the similarity
between all miRNA pairs, a similarity matrix is constructed. This
matrix is then binarized using a predefined threshold T (Equation 6):

Aij � 1, if FS*(mi,mj)>T
0, otherwise

{ . (6)

The resulting adjacency matrix A defines the miRNA functional
similarity network, where nodes represent miRNAs and edges reflect
their functional similarity.

3.2 miRNA-mRNA association network

The miRNA–mRNA regulatory network in this study is
primarily based on data from the authoritative miRTarBase
(2020 version) Huang et al. (2020), supplemented by a curated
dataset of validated interactions compiled by Xu et al. (2022).
miRTarBase is known for its high-quality data, integrating
miRNA–target gene interactions supported by both low- and
high-throughput experimental evidence, such as reporter gene
assays, qRT-PCR, and Western blot. The constructed network
contains 8,254 high-confidence regulatory relationships between
1,041 non-coding miRNAs and 2,836 protein-coding genes.

3.3 miRNA-drug association network

The miRNA–drug association network is based on data from
ncDR, a drug resistance research database Dai et al. (2017), which
collects experimentally verified and predicted interactions between
non-coding RNAs and drugs. The data are standardized as follows:
First, the 1,041 miRNAs involved in previous studies are matched
based on miRBase nomenclature. Second, only interactions with
clearly annotated drug resistance evidence (including preclinical or
cell line experiments) are retained. This results in 3,305 high-
confidence miRNA–drug interactions involving 130 commonly
used clinical drugs, such as cisplatin and gefitinib.

3.4 miRNA-diease association network

To construct the required network, this study references the
dataset from HMDD v3.2 Bai et al. (2023b), a widely-used human
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microRNA disease database. After curation and filtering,
15,547 miRNA–disease association pairs are obtained, covering
1,041 miRNAs and 640 human diseases.

4 Node2vec algorithm

Network modeling has emerged as a pivotal paradigm in
biomedical research due to its intuitive representation of complex
relationships, particularly in systematic miRNA analysis involving
multimodal correlations. This study integrates four critical
biological networks: the miRNA sequence similarity network
(quantifying functional conservation), the miRNA–disease
association network (revealing pathological regulation), the
miRNA–drug interaction network (reflecting therapeutic
targeting), and the miRNA–mRNA regulatory network (decoding
genetic circuitry). To effectively capture topological features from
these non-Euclidean spatial data, we employ the node2vec algorithm
Grover and Leskovec (2016), a graph embedding approach based on
adaptive random walk strategies. By tuning search parameters—the
return parameter p controlling local neighborhood sampling and the
in-out parameter q governing global structural exploration—this
approach generates semantically preserved node sequences,
subsequently vectorized through Skip-Gram modeling. Notably,
we implement dimension-specific embedding strategies tailored
to distinct network characteristics: 64-dimensional
representations in sequence similarity networks to resolve fine-
grained patterns of conserved functional motifs, versus 128-
dimensional high-capacity embeddings in the three
heterogeneous association networks to capture complex multi-
hop interactions. This hierarchical embedding mechanism
simultaneously reduces feature redundancy while preserving
network-specific information, establishing an interpretable
mathematical foundation for subsequent multi-view feature fusion.

5 Graph transformer

This study proposes a structure-aware graph neural network, the
graph transformer, to learn high-quality node embeddings from
graph structures. Unlike traditional GNNs, which struggle with
sparse or heterogeneous structures, the graph transformer
incorporates multi-head attention and a structure reconstruction
loss, enabling better modeling of local and global graph information.
First, the input miRNA functional similarity matrix and association
matrix are feature fused. After generating the node feature matrix hk
at layer k, it dynamically rebuilds the attention weights matrix ak+1
through dot products of hk and hTk , enabling the joint evolution of
topology and features. This gradient-preserving update critically
suppresses false-positive edges caused by experimental noise. The
model adopts Pre-Layer Normalization (Pre-LN), normalizing
features before multi-head attention and feed-forward operations
rather than after, which better accommodates high-dimensional
biological feature propagation and curbs gradient vanishing in
deep training. For extremely sparse data like miRNA-drug
networks, binary attention masking embedded in multi-head
layers automatically blocks unobserved associations (e.g.,
unknown miRNA-drug interactions), reducing computational

complexity from O(N2) to O(E) (where E denotes valid edges)
with less GPU memory consumption, while preventing noise from
distorting attention weights. These improvements jointly optimize
the model, and the output layer further sharpens the precision-recall
curve through dot product similarity and L2 normalized feature
constraints in the range of [0,1]. During embedding learning, the
model stacks L layers of graph attention modules, where each node’s
representation is updated by aggregating the representations of its
neighbors (Equation 7):

h(l)i � σ ∑
j∈N(i)

A(l)
ij W

(l)h(l−1)j
⎛⎝ ⎞⎠. (7)

Here, σ is an activation function, and W(l) is a learnable weight
matrix. The attention weights a(l)ij are calculated as (Equation 8):

a l( )
ij � exp LeakyReLU a⊤ W l( )h l−1( )

i ‖W l( )h l−1( )
j[ ]( )( )

∑k∈N i( ) exp LeakyReLU a⊤ W l( )h l−1( )
i ‖W l( )h l−1( )

k[ ]( )( ), (8)

where a is the attention weight vector, which ‖ represents the vector
splicing operation. Graph transformer further introduces a multi-
head attention mechanism, using K attention heads in parallel in
each layer, and finally integrating their output splicing or averaging
into the input of the next layer (Equation 9):

h(l)i � 1
K

∑K
k�1

σ ∑
j∈N(i)

a(l,k)ij W(l,k)h(l−1)j
⎛⎝ ⎞⎠. (9)

In order to enhance the model’s ability to express structural
information, graph transformer also introduces structural
reconstruction loss as the training goal. In the unsupervised
setting, the model scores the node pairs of the real edges in the
input graph, and defines the structural reconstruction similarity as
(Equation 10):

sij � σ h⊤i hj( ), (10)

where hi, hj are the final embeddings of nodes i and j, and σ denotes
the sigmoid function. The structural reconstruction loss is
formulated as (Equation 11):

Lreconstruct � − ∑
i,j( )∈E+

log σ h⊤
i hj( )( ) − ∑

i,j( )∈E−
log 1 − σ h⊤

i hj( )( ),
(11)

where E+ represents the set of true edges, and E− denotes negative-
sampled non-edges to prevent degenerate solutions where all nodes
become indistinguishable. This objective effectively preserves high
separability of node connectivity patterns in the embedding space.
The final node embeddings H � [h1, h2, ..., hN] undergo L2-
normalization for downstream tasks.

6 Multi-head attention mechanism

To capture cross-modal dependencies and interactions among
various biological features, a Multi-Head Attention (MHA) module
is introduced as the core feature interaction component in the fusion
model. Based on the transformer encoder, MHA computes attention
across multiple subspaces in parallel to enhance local and global
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correlation modeling. Four input feature types—miRNA sequence,
drug features, mRNA features, and disease features are first
projected to a common 128-dimensional space using fully
connected layers with L2 regularization. These are concatenated
and reshaped into a 2D sequence format before being passed into the
MHA module. The Multi-Head Attention Mechanism is calculated
as follows (Equations 12, 13):

Q � HWQ, K � HWK, V � HWV, (12)

Attention Q,K,V( ) � softmax
QK⊤��
dk

√( )V. (13)

The outputs of all heads are concatenated and transformed, the
formula is as follows (Equations 14, 15):

MHA H( ) � Concat head1, . . . , headh( )W0, (14)
H 1( ) � LayerNorm H + Dropout MHA H( )( )( ). (15)

To further improve the representation capability, the multi-
head attention output will be delivered through two layers of
Feed-Forward Network (FFN), the formula is as follows
(Equations 16, 17):

FFN H( ) � ReLU HW1 + b1( )W2 + b2, (16)
Hfusion � LayerNorm H 1( ) + Dropout FFN H 1( )( )( )( ). (17)

The final output represents the fused multimodal semantic
embedding features, which are used as the input of the
subsequent self-supervised learning projection head and the
multi-label classification header, which not only retains the
information of the original modal features, but also integrates the
high-order correlation between them.

7 Prediction of miRNA subcellular
localization

During forward propagation, the fused high-dimensional
features are processed through the MHA and FFN modules.
Finally, the classification head maps the features to predicted
subcellular localization probabilities (Equation 18):

ŷ � o fcls x( )( ), (18)
where fcls is a linear mapping and o is the Sigmoid activation
function that converts the output into a probability vector over [0,
1]. For each class, if the predicted probability exceeds the threshold
(0.5), the class is labeled as positive; otherwise, negative–resulting in
the final binary classification output.

8 Results

8.1 10-Fold cross-validation

In our experiments, we employ 10-fold cross-validation to
comprehensively assess the generalization ability of the model.
The dataset is randomly shuffled and evenly divided into
10 subsets, each fold rotation assigned one decile to testing
and nine to training, ensuring comprehensive parameter

optimization. After training, the model generates predicted
probabilities for each class on the test set, which are then
mapped to the [0,1] range using the Sigmoid activation
function and binarized with a threshold of 0.5. For each fold,
we calculate the Area Under the ROC Curve (AUC) and the Area
Under the Precision-Recall Curve (AUPR) as evaluation metrics,
and record the results for each class. As shown in Figures 2, 3, our
model achieves an average AUC of 0.9108 and an average AUPR
of 0.8102 on the multi-label subcellular localization task, fully
demonstrating the model’s effectiveness and robustness in
capturing multimodal features and their high-order interactions.

8.2 Comparative experiments

To comprehensively evaluate the performance of the GTMALoc
model, we use both 5-fold and 10-fold cross-validation strategies
and systematically compare it with four existing methods (MiRLoc,
MirLocPredictor, DAmiRLocGNet, and PMiSLocMF). The
evaluation metrics include AUC and AUPR to thoroughly assess
the model’s effectiveness.

As shown in Table 1, GTMALoc achieves an average AUC
score of 0.9094 under 5-fold cross-validation, outperforming the
other methods across most subcellular localization categories. It
performs particularly well in structurally complex or sparsely
connected categories such as cytoplasm (0.9240), extracellular
vesicle (0.9115), and microvesicle (0.9113), demonstrating its
strength in integrating high-dimensional heterogeneous
information and modeling complex relationships. Table 2
presents the comparison based on AUPR, which primarily
reflects the model’s robustness in class-imbalanced scenarios.
GTMALoc also achieves the highest average AUPR of 0.8044,
showing excellent performance in critical functional regions such
as exosome (0.9900), nucleus (0.9248), and microvesicle (0.9900).
Although the score slightly decreases in the nucleolus (0.5142),
where signals are sparse, the overall performance
remains superior.

Furthermore, as indicated in Table 3, GTMALoc’s average
AUC increases to 0.9108 under 10-fold cross-validation, further
confirming the model’s stability and generalization across
different data splits. Its outstanding performance in categories
such as nucleolus, cytoplasm, and exosome highlights its ability
to accurately identify miRNAs localized in these regions. This
advantage is largely attributed to the multi-head attention
mechanism, which effectively captures complex sequence
patterns and graph-structured information. As shown in
Table 4, although GTMALoc’s AUPR scores for some sub-
tasks are slightly lower than those of PMiSLocMF, the overall
average AUPR reaches 0.8102, demonstrating strong resilience to
data imbalance. We observe significant performance differences
across localization categories: exosome and microvesicle achieve
near-perfect AUPR scores, indicating successful recognition of
key regional features, while performance in nucleolus and
extracellular vesicle is relatively lower, likely due to
insufficient positive samples and data sparsity. This suggests
that future work should focus on improving data quality or
adopting sample augmentation strategies to enhance
performance in low-signal categories. Overall, the
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experimental results demonstrate that GTMALoc consistently
exhibits strong predictive power and generalization ability under
various cross-validation strategies, confirming its feasibility and
practicality as a reliable tool for miRNA subcellular localization
prediction.

8.3 Ablation study

To validate the contribution of each submodule within the
overall architecture, we conduct detailed ablation studies by
sequentially removing key components of the model and
observing the resulting AUC performance on the multi-label
subcellular localization task. As shown in Figure 4, we design five
ablation settings: removing the miRNA-disease association network,
removing the miRNA-drug interaction network, removing the
miRNA-mRNA regulatory network, removing the graph
transformer module, and removing the multi-head attention
mechanism. All other modules remain unchanged across
experiments to ensure a consistent model structure and fair
evaluation. Each module contributes positively to the model’s
overall performance, especially the graph transformer and multi-
head attention modules, which play crucial roles in capturing high-

order cross-modal interactions and both local and global
structural features.

8.4 Parameter study

To investigate the effect of the number of attention heads on
model performance, we systematically evaluate different
configurations (2, 4, and eight heads) on the validation set, as
shown in Figure 5. A grid search strategy fixes other
hyperparameters while varying the number of attention heads to
observe sensitivity in the AUC metric. Results show that the model
achieves peak performance (AUC = 0.9108) when the number of
heads is set to 4, outperforming the 2-head and 8-head
configurations by 0.0005 and 0.0006, respectively. This can be
attributed to two main factors: (1) a moderate number of heads
helps capture complementary interaction patterns in parallel
subspaces, enhancing the model’s ability to fuse features across
networks; (2) exceeding the optimal number of heads leads to
redundancy in attention weights and an increased risk of local
overfitting. Therefore, we adopt the 4-head configuration in the
final architecture, balancing computational efficiency and
predictive accuracy.

FIGURE 2
The Model GTMALoc 10-fold cross-validation AUC value.
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9 Case studies

To further demonstrate the practical utility of GTMALoc in
predicting miRNA subcellular localization, we conduct case
studies across seven subcellular categories: cytoplasm,

exosomes, nucleolus, nucleus, extracellular vesicles,
microvesicles, and mitochondrion. For each compartment, we
select the top five miRNAs with the highest predicted
probabilities generated by GTMALoc. We then manually
verify these predictions against experimental evidence reported

FIGURE 3
The Model GTMALoc 10-fold cross-validation AUPR value.

TABLE 1 AUC Performance Comparison of miRNA Subcellular Localization Models Based on 5-Fold Cross-Validation.

Subcellular localization MiRLoc MirLocPredictor DAmiRLocGNet PMiSLocMF GTMALoc

Cytoplasm 0.8356 0.5740 0.8601 0.8901 0.9240

Exosome 0.7391 0.5839 0.7043 0.9503 0.9251

Nucleolus 0.9080 0.5289 0.9280 0.9254 0.9271

Nucleus 0.7766 0.6755 0.7955 0.8745 0.8854

Extracellular vesicle 0.8001 0.6330 0.8317 0.8634 0.9115

Microvesicle 0.5093 0.5967 0.6729 0.9369 0.9113

Mitochondrion 0.7691 0.6742 0.8321 0.8689 0.8815

Average AUC 0.7625 0.6094 0.8035 0.9013 0.9094
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in the scientific literature. In total, 35 miRNA–localization
associations are examined. As shown in Table 5 of these are
supported by published studies, while only five lack current
experimental validation.

Taking miR-122 and miR-21 as representative examples, we
analyze the alignment between GTMALoc’s predictions and
reported biological findings. miR-122 is a liver-specific miRNA
that is highly enriched in hepatocytes, and its cytoplasmic
localization is well supported by experimental evidence Zhang

et al. (2021). Previous studies indicate that miR-122 plays a
crucial role in liver homeostasis by regulating lipid metabolism,
cholesterol biosynthesis, and HCV replication through mRNA
binding Ren et al. (2008). GTMALoc assigns a high confidence
score of 0.98 for its cytoplasmic localization and captures its
interactions with liver metabolism-related mRNA nodes,
highlighting the model’s capacity to extract biologically
meaningful features from the molecular network. In contrast,
miR-21 is known for its multi-localization behavior and is highly

TABLE 2 AUPR Performance Comparison of miRNA Subcellular Localization Models Based on 5-Fold Cross-Validation.

Subcellular localization MiRLoc MirLocPredictor DAmiRLocGNet PMiSLocMF GTMALoc

Cytoplasm 0.7239 0.8472 0.7621 0.8149 0.8957

Exosome 0.9822 0.8219 0.9233 0.9897 0.9900

Nucleolus 0.4141 0.4901 0.5732 0.5199 0.5142

Nucleus 0.8111 0.4313 0.7945 0.8869 0.9248

Extracellular vesicle 0.2902 0.3464 0.4600 0.4682 0.5153

Microvesicle 0.9201 0.2443 0.8872 0.9854 0.9900

Mitochondrion 0.5189 0.3111 0.6867 0.7275 0.8009

TABLE 3 AUC Performance Comparison of miRNA Subcellular Localization Models Based on 10-Fold Cross-Validation.

Subcellular localization MiRLoc MirLocPredictor DAmiRLocGNet PMiSLocMF GTMALoc

Cytoplasm 0.8366 0.5741 0.8606 0.8909 0.9260

Exosome 0.7395 0.5842 0.7051 0.9513 0.9177

Nucleolus 0.9085 0.5286 0.9289 0.9267 0.9258

Nucleus 0.7765 0.6752 0.7960 0.8764 0.8916

Extracellular Vesicle 0.8003 0.6335 0.8350 0.8574 0.9193

Microvesicle 0.5099 0.5973 0.6757 0.9502 0.9110

Mitochondrion 0.7694 0.6758 0.8332 0.8702 0.8843

Average AUC 0.7630 0.6098 0.8049 0.9033 0.9108

The bold values indicate the best result.

TABLE 4 AUPR Performance Comparison of miRNA Subcellular Localization Models Based on 10-Fold Cross-Validation.

Subcellular localization MiRLoc MirLocPredictor DAmiRLocGNet PMiSLocMF GTMALoc

Cytoplasm 0.7258 0.8391 0.7636 0.8192 0.9099

Exosome 0.9892 0.8248 0.9248 0.9905 0.9902

Nucleolus 0.4148 0.4925 0.5739 0.5298 0.5029

Nucleus 0.8102 0.4349 0.7961 0.8763 0.9359

Extracellular Vesicle 0.2916 0.3434 0.4619 0.4695 0.5289

Microvesicle 0.9203 0.2469 0.8883 0.9866 0.9902

Mitochondrion 0.5277 0.3113 0.6882 0.7294 0.8139

Average AUPR 0.6689 0.4990 0.7281 0.7716 0.8102

The bold values indicate the best result.
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FIGURE 4
The Model GTMALoc ablation experiment.

FIGURE 5
The Model GTMALoc parameter experiment.
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expressed in various cancer types. It has been shown to be secreted
via exosomes, contributing to immune modulation and tumor
microenvironment remodeling Krishnamurthy et al. (2018), and
also localizes in the nucleolus, where it may influence non-coding
RNA processing Beckett et al. (2015). GTMALoc successfully
predicts both localizations with high confidence and focuses
attention on miR-21’s connections to tumor-associated signaling
pathways, consistent with its known roles in cell proliferation, anti-
apoptosis, and inflammatory response. These case studies suggest
that GTMALoc not only achieves accurate subcellular localization
predictions but also provides biologically interpretable outputs,
particularly for multi-localized miRNAs, offering valuable
insights for downstream functional analysis and subcellular
mechanism exploration.

10 Conclusion

In this study, we propose a computational model, GTMALoc,
for predicting miRNA subcellular localization. GTMALoc combines
graph transformers with a multi-head attention mechanism to fuse
heterogeneous biological information from multiple sources.
Specifically, the model effectively integrates miRNA sequence
features, interaction network structures, and functional
properties. Through graph-based modeling and dynamic
attention weighting, GTMALoc learns more discriminative high-
dimensional feature representations, significantly improving the
accuracy of localization prediction. We conduct a comprehensive

evaluation of GTMALoc on public datasets. The results show that
GTMALoc outperforms existing methods on multiple performance
metrics, especially in handling sparse graph structures and high-
dimensional feature spaces. Ablation studies confirm the key
contributions of each feature modality and attention component
to the model’s overall performance. Additionally, through
representative case studies, we validate the biological
interpretability of GTMALoc. The predicted subcellular
localizations are not only consistent with known miRNA
functions reported in the literature but also reveal potential
regulatory modes that have not been fully explored. Given that
miRNA localization is closely related to its regulatory roles in
various cellular contexts, accurate localization prediction provides
valuable insights into miRNA-mediated mechanisms under
physiological and pathological conditions.

Although GTMALoc performs well in various experiments, it
still faces some limitations. We integrate multiple heterogeneous
features, such as sequence data, functional similarity, and molecular
interaction networks; however, biological data often contain noise
and incompleteness. For example, the functional annotations of
many miRNAs remain incomplete, and some interaction networks
may contain missing data or experimental biases, which can
adversely affect the accuracy of feature learning. Additionally,
differences among data sources in species, experimental
conditions, or time points introduce biases and impair the
model’s generalizability. In future work, we plan to further refine
the model architecture to improve its interpretability, adaptability,
and applicability in real-world biomedical research scenarios.

TABLE 5 Case studies of miRNA subcellular localizations.

Rank miRNA Localization Evidence Rank miRNA Localization Evidence

1 miR-122 Cytoplasm PMID:34073601 4 miR-10a Nucleus PMID:30405557

2 miR-16 Cytoplasm PMID:26304540 5 miR-26a Nucleus PMID:26304540

3 miR-34a Cytoplasm Unconfirmed 1 miR-142-3p Extracellular vesicle PMID:36277256

4 miR-146b-5p Cytoplasm PMID:37108595 2 miR-92a Extracellular vesicle PMID:22506055

5 miR-21 Cytoplasm PMID:30405557 3 miR-221 Extracellular vesicle PMID:28304367

1 miR-21 Exosome PMID:29515311 4 miR-48 Extracellular vesicle Unconfirmed

2 miR-126 Exosome PMID:22506055 5 miR-155 Extracellular vesicle PMID:22424232

3 miR-155 Exosome PMID:22424232 1 miR-126 Microvesicle PMID:34881308

4 miR-16 Exosome PMID:22506055 2 miR-143 Microvesicle PMID:31626610

5 miR-224 Exosome PMID:30765428 3 miR-223 Microvesicle PMID:31626610

1 miR-206 Nucleolus PMID:19723800 4 miR-199a Microvesicle PMID:34881308

2 miR-340-5p Nucleolus PMID:19723800 5 miR-21 Microvesicle PMID:31626610

3 miR-149 Nucleolus PMID:31732639 1 miR-1 Mitochondrion PMID:38205681

4 miR-21 Nucleolus PMID:26674922 2 miR-365 Mitochondrion PMID:19941672

5 miR-1 Nucleolus Unconfirmed 3 miR-302a Mitochondrion PMID:19941672

1 miR-29b Nucleus PMID:26304540 4 miR-37 Mitochondrion Unconfirmed

2 miR-320 Nucleus PMID:26674922 5 miR-7 Mitochondrion PMID:38205681

3 miR-9 Nucleus Unconfirmed
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