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Editorial on the Research Topic
Statistical approaches, applications, and software for longitudinal
microbiome data analysis and microbiome multi-omics data integration

The microbes inhabiting the human body do not exist in isolation but form an integrated
and dynamic microbial community known as the microbiome. This community interacts
with nearly every major systemic component of the host and plays a pivotal role in regulating
health and disease (Daniel et al., 2021; Ruff et al., 2020). Its modifiable nature makes it an
attractive and promising therapeutic target. The emergence of longitudinal microbiome
studies has significantly advanced our understanding of microbial stability, resilience, and
temporal dynamics. At the same time, innovations in multi-omics technologies—such as
transcriptomics, epigenomics, metabolomics, and proteomics—now enable systematic,
multilayered profiling of host-microbiome interactions (Wang et al., 2019).

Despite these advancements, analyzing complex, high-dimensional datasets remains a
major challenge. Microbiome data, in particular, present unique difficulties due to their
compositionality, sparsity, and underlying evolutionary relationships. This Research Topic
is curated to address these pressing challenges by highlighting robust statistical methods
capable of capturing intricate temporal patterns in longitudinal microbiome data, as well as
innovative approaches for uncovering complex biological interrelationships through
microbiome multi-omics integration.

Longitudinal microbiome studies offer powerful insights into the dynamics of microbial
systems over time. For instance, Palmer et al. introduce a novel analytic framework that
identifies time-lagged associations between longitudinal microbial abundance profiles and a
final health outcome or disease status. Their method uses group penalization to detect both
the direction and duration of these associations, offering a powerful new lens through which
to study host-microbiome interactions.
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Addressing common pitfalls in microbiome analysis, Shi et al.
propose a practical framework that accounts for the skewness and
heteroscedasticity of microbiome abundance data. Their approach
integrates Poisson (log-linear) regression with robust standard error
estimation using the bootstrap method and sandwich estimators,
substantially enhancing the statistical inference in differential
abundance analysis. Notably, while normalization is a critical
preprocessing step, there has been a lack of practical methods
specifically designed for longitudinal microbiome data. To fill this
gap, Luo et al. present TimeNorm, a novel normalization method
tailored for time-course microbiome data that accounts for both
compositionality and temporal dependency. Through simulation
studies and real-world application, they demonstrate that
TimeNorm significantly improves the power of downstream
differential abundance analyses.

Given the sparsity and heterogeneity of microbial species’
temporal patterns, Li et al. introduce ZINQ-L, a zero-inflated
quantile-based framework for longitudinal microbiome differential
abundance testing. This flexible, distribution-free method is well-
suited for identifying heterogeneous associations in complex datasets
and demonstrates improved testing power, providing a robust and
powerful option to the existing methods in the field.

Visualization remains an indispensable component of
microbiome data analysis. Litter et al. propose an enhanced
framework for visualizing repeated-measures microbiome data
using Principal Coordinate Analysis adjusted for covariates via
linear mixed models. This approach supports nuanced data
exploration and clearer biological interpretation in the presence
of confounding factors and complex experimental designs including
longitudinal and clustered designs.

Advancements in artificial intelligence, especially deep learning
and large language models, are beginning to shape microbiome
research. Yan et al. provide a timely review of the applications of AI-
driven models in microbiome and metagenomics analysis. Their
insights highlight emerging opportunities and set the stage for future
AI-empowered discoveries in the field.

This Research Topic also explores multi-omics integration. Chen
et al. combine 16S microbiome data with targeted metabolomics to
uncover biomarkers relevant to aging-related diseases. Their findings
reveal disrupted intestinal barrier function and elevated secondary bile
acid metabolites in aging populations, correlated with shifts in specific
bacterial taxa. Complementing this work, Deng et al. propose a
structure-adaptive canonical correlation framework that integrates
microbiome data with other high-dimensional omics layers while
respecting compositional constraints and incorporating prior
biological structure through adaptive penalization. This method
paves the way for deeper insights into microbiome-host
interactions across molecular domains such as the genome,
transcriptome, epigenome, metabolome, and proteome.

Collectively, the contributions in this Research Topic mark a
significant step forward in the development of cutting-edge
analytical methodologies tailored for the complexities of longitudinal
and multi-omics microbiome research. By addressing key challenges in
normalization, sparsity, temporal dynamics, and data integration, these
works provide powerful tools and frameworks to uncover deeper
insights into the microbiome’s dynamic role in health and disease.
We hope this Research Topic will inspire continued methodological
innovation and interdisciplinary collaboration, ultimately advancing the
field toward more personalized and microbiome-informed healthcare.
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