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This study introduces a Drought Adaptation Index (DAI), derived from Best Linear
Unbiased Prediction (BLUP), as a method to assess drought resilience in
switchgrass (Panicum virgatum L.). A panel of 404 genotypes was evaluated
under drought-stressed (CV) and well-watered (UC) conditions over four
consecutive years (2019–2022). BLUP-estimated biomass yields were used to
calculate the DAI, which enabled classification of genotypes into four adaptation
groups: very well-adapted, well-adapted, adapted, and unadapted. The DAI was
compared with conventional drought tolerance indices, including the Stress
Susceptibility Index (SSI), Stress Tolerance Index (STI), Geometric Mean
Productivity (GMP), and Yield Stability Index (YSI). Correlation analyses
demonstrated strong agreement between DAI and these indices, supporting
its validity and consistency. Biplot analyses using the Genotype plus
Genotype-by-Environment Interaction (GGE) and Additive Main Effects and
Multiplicative Interaction (AMMI) models revealed significant genotype-by-
environment interactions (GEI) and identified J222.A, J463.A, and J295.A. A as
high-performing genotypes, with J222.A exhibiting greater yield stability across
treatments and years. Additionally, DAI isoline curves provided a graphical
representation of differential genotype performance under drought and
control conditions. These visualizations aided in distinguishing genotypes with
stable and superior biomass yield across contrasting environments. Overall, the
BLUP-based DAI is a robust and practical selection tool that improves the
accuracy of identifying drought-resilient, high-yielding switchgrass genotypes.
Its integration into breeding programs offers a comprehensive framework for
improving biomass productivity and stress adaptation under variable climatic
conditions. The application of DAI supports the development of climate-resilient
cultivars and contributes to sustainable bioenergy and forage production
systems.
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1 Introduction

Switchgrass (Panicum virgatum L.) is a warm-season, perennial
C4 grass with dual use as bioenergy feedstock and forage for
livestock. Its adaptability to a wide range of environmental
conditions, across North America, makes it a valuable species for
sustainable biomass production and ecological conservation
(Perlack et al., 2011). In addition to its bioenergy potential and
forage use, switchgrass plays a vital role in soil and water
conservation due to its extensive root system and ability to thrive
in marginal lands (Parrish and Fike, 2005).

Switchgrass exhibits substantial genetic and phenotypic diversity
and is subdivided into three ecotypes: upland, lowland, and coastal
(Lovell et al., 2021). These ecotypes differ in morphology, growth
habits, and adaptation to environmental conditions. Lowland
ecotypes generally exhibit higher biomass productivity, are
predominantly tetraploid, and thrive in warmer, wetter
environments (Fike et al., 2006; Perlack et al., 2011). Upland
ecotypes, which can be either tetraploid or octaploid, are adapted
to lower precipitation, cooler climates, and typically have thinner
tillers and narrower leaves (Fike et al., 2006; Perlack et al., 2011).
Coastal ecotypes display an intermediate combination of traits,
possessing a lowland-like plant structure but upland-like leaf
characteristics (Lovell et al., 2021). This classification is largely
based on their geographical origins and ecological adaptations,
with upland ecotypes favoring drier, elevated habitats and
lowlands preferring riparian zones and floodplains (Casler et al.,
2011). While tetraploids are predominant in lowland ecotypes, both
tetraploids and octaploids are found in upland ecotypes. Switchgrass
follows a disomic inheritance mode (Okada et al., 2010), and the
genome size of tetraploid switchgrass is estimated to be 1,130 Mb
(Lovell et al., 2021). Identifying superior performance and selecting
consistent genotypes are critical for the success of crop
improvement programs.

Drought stress is one of the most critical environmental factors
limiting biomass yield and stand persistence in switchgrass for
multiple years. The ability of switchgrass genotypes to maintain
high yield under drought conditions varies significantly,
necessitating robust selection strategies that integrate phenotypic
performance with genetic resilience. Genotype plus Genotype-by-
Environment Interaction (GGE) biplot analysis has been widely
used to study genotype-by-environment interactions (GEI) and the
stability of genotypes in various crops. Missaoui et al. (2023) applied
this method to evaluate tall fescue experimental populations selected
under grazing pressure in stress environments. Their study assessed
ten experimental populations and six standard checks across nine
environments, revealing significant variations in yield due to
populations, locations, years, and GEI. While lowland switchgrass
germplasm typically yield higher biomass under optimal conditions,
upland genotypes often exhibit superior drought tolerance due to
their adaptation to arid environments (Casler et al., 2011).

Switchgrass breeding programs must consider its complex
reproductive biology. As a wind-pollinated, outcrossing species
with allopolyploidy, switchgrass exhibits tetraploids and
octaploids as the most common ploidy levels, which adds to the
complexity of breeding efforts. Traditionally, breeding programs for
switchgrass improvement have relied on recurrent selection
methods, such as half-sib family selection, among- and within-

family selection, and progeny testing, to enhance desirable traits
(Casler and Brummer, 2008). These selection approaches involve
evaluating genotypes over multiple years, selecting the best-
performing genotypes, and conducting polycrosses for genetic
improvement. While effective, these methods are time-
consuming, requiring multiple selection cycles to achieve
significant genetic gains. Maximizing genetic gains depends on
the time required to complete a selection cycle and the selection
accuracy, often measured using Pearson’s correlation coefficient.

With advances in genomic selection, breeders can now predict
genetic values based on genome-wide markers, accelerating genetic
gains (Meuwissen et al., 2001). Genomic selection is particularly
advantageous for complex traits controlled by multiple quantitative
trait loci (QTL), such as biomass yield and drought tolerance
(Bernardo, 2008). When DNA sequence information is available,
the development of genomic prediction models reduces the reliance
on costly phenotyping in subsequent selection cycles. However, in
the absence of extensive genomic data, phenotypic indices remain
crucial for assessing stress tolerance and yield stability across diverse
environments. Best Linear Unbiased Prediction (BLUP) is a widely
adopted statistical approach in plant breeding that enables precise
genetic evaluation by accounting for environmental and spatial
variation in field trials. BLUP estimates genetic values more
accurately than raw phenotypic data (Viana et al., 2022),
improving selection efficiency for stress-adapted genotypes.
Piepho et al. (2008) provided a comprehensive review of BLUP
and its applications in plant breeding and variety testing,
emphasizing its shrinkage property, which enhances accuracy by
reducing errors. The review explored its applications in plant
breeding, both with and without known parentage, including
single trials improved by spatial models, multi-environment trials
where BLUP outperformed BLUE for estimating main effects, and
spatial models with flexible variance structures. Despite these
advancements, drought selection methods often fail to
simultaneously capture high yield and drought resilience,
necessitating improved selection approaches.

Various drought adaptation indices have been used to assess
crop performance across various species. Sánchez-Reinoso et al.
(2020) evaluated the effectiveness of nine drought tolerance indices -
Stress Susceptibility Index (SSI), Tolerance (TOL), Mean
Productivity (MP), Geometric Mean Productivity (GMP), Stress
Tolerance Index (STI), Yield Stability Index (YSI), Yield Index (YI),
Harmonic Mean (HM), and Drought Sensitivity Index (DSI) - in
identifying superior common bean genotypes under water deficit
during vegetative and reproductive stages. Their study found that
SSI was the most effective in distinguishing genotypes least affected
by drought. Aydınşakir et al. (2025) assessed drought tolerance of
four sorghum genotypes (Uzun, Erdurmuş, Beydarı, and
Ogretmenoglu) in Antalya, Turkiye, under full and deficit
irrigation. Their study utilized indices such as SSI, STI, MP, and
GMP to identify drought-tolerant genotypes, with Uzun emerging as
the most resilient under water-limited conditions. These studies
highlight the importance of drought tolerance indices in genotypes;
however, many conventional indices primarily rely on absolute yield
differences rather than accounting for relative yield performance
within specific environmental contexts.

Although a plant’s genetic makeup remains constant across
different environments, except for rare spontaneous mutations,
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genes alone do not fully determine its appearance or traits. Instead,
genes allow for a range of expressions based on the plant’s genetic
background, how it develops in specific tissues, and environmental
factors (Rédei, 1998; Yan and Kang, 2002). The Additive Main
Effects and Multiplicative Interaction (AMMI) and GGE biplots are
some of the most commonly used methods by plant geneticists to
evaluate genotype performance in diverse environments (Frutos
et al., 2014). Sanadya et al. (2025) evaluated forage oat germplasm
under varying growing conditions in conventionally and organically
managed fields in Palampur, India, assessing GEI using GGE and
AMMI biplot analyses. Over three cropping seasons (2019–2022),
they studied 96 oat genotypes across inorganic and organic farming
systems, observing significant GEI effects on green fodder yield and
dry matter yield. The researchers identified highly stable genotypes
for green fodder yield, stable genotypes for dry matter yield, and
delineated mega-environments, each with specific genotypes
exhibiting superior performance.

To address the limitations of existing drought selection
methods, this study introduces the Drought Adaptation Index
(DAI), a BLUP-derived index inspired by the Acid Soil Adaptation
Index (ASAI) (Howeler et al., 1991). The DAI quantifies drought
resilience by comparing biomass yield BLUP values under
drought-stressed and well-watered conditions, enabling precise
differentiation of very well-adapted, well-adapted, adapted, and
unadapted genotypes. Unlike traditional indices that rely on
absolute yield differences, DAI accounts for relative yield
performance within a given environmental context. In addition
to developing the DAI, this study calculated several established
drought tolerance indices - including Stress Susceptibility Index
(SSI), Stress Tolerance Index (STI), Geometric Mean Productivity
(GMP), and Yield Stability Index (YSI) - to compare their
effectiveness in identifying stress-resilient genotypes. By
integrating multiple drought indices, this study provides a

comprehensive assessment of drought tolerance and identifies
the most reliable selection metrics for breeding programs.
Specific objectives include evaluating the drought adaptation
potential of a diverse set of switchgrass genotypes under
contrasting water availability conditions, validating the DAI as
a novel selection criterion, comparing DAI with other drought
tolerance indices, analyzing genotype stability across years, and
informing breeding decisions for sustainable biomass production.
The findings are expected to provide valuable insights for
improving biomass yield and drought resilience in switchgrass,
with applications for both bioenergy production and
forage systems.

2 Materials and methods

2.1 Experimental sites and plant materials

The experimental sites were located at the University of Georgia
(UGA) Gibbs Farm in Tifton, GA. The soil type is loamy sand. The
experimental setup was a randomized complete block (RCB) design
with three replications for each of the two treatments: drought-
stressed (covered, CV; Figure 1) (31.441535° N, −83.580013° W,
116 m elevation) and well-watered control (uncovered, UC;
Figure 2) (31.438345° N, −83.580185° W, 116 m elevation). Due
to limited availability of tiller material during initial transplanting
period, only two replications for each treatment were established in
August 2018. The third replication for each treatment was
propagated in the greenhouse and added in April 2019. Plants
are spaced 0.9 m within each block (replication) in a grid layout
of seven rows and 58 columns in the CV field and 14 rows and
29 columns in the UC field as shown in the spatial map
(Supplementary Figure S1) as shown in the spatial map showing

FIGURE 1
Switchgrass growing inside a rainout shelter, representing the water-stressed drought treatment or covered field (CV).
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the spatial distribution of genotypes within each block, ensuring
randomized planting and minimizing spatial biases. The x-axis
denotes row positions, while the y-axis indicates column
positions within each block. Each panel corresponds to one of
the three replications (blocks), distinguished by separate facets.
The genotypes are color-coded by replication: Blue (Block 1),
Green (Block 2), and Red (Block 3). The presence of colored
rectangles in each block represents plant genotypes, while white
spaces indicate missing or unplanted areas. In plots where plants
were missing or died, AP13 filler plants were used to minimize
border and edge effects.

A total of 404 switchgrass genotypes were used in this study,
representing different cytotypes and ecotypes. The distribution of
these genotypes across different cytotypes and ecotypes is
presented in Table 1 (Lovell et al., 2021). The dataset includes
lowland, coastal, and upland classification, with a few unknown
genotypes, primarily from tetraploid cytotypes and a few from
octaploid cytotypes. Prior to the establishment of the experiment,
the drought-stressed field was cropped with cotton and peanut
from 2012 through 2017 and the control field was a long-term

grassland consisting of bahiagrass (Paspalum notatum) and
bermudagrass (Cynodon dactylon).

2.2 Drought treatment, environmental
control, and trial maintenance

To impose drought stress on the switchgrass genotypes, a rain
exclusion shelter (55 m in length, 26 m in width, and 2.3 m in height,
with a maximum height of 4.5 m at the peak of the hoop roof) was
installed (Figure 1). The shelter is designed to block rainfall while
maintaining adequate airflow. The side panels can be fully or
partially opened or closed depending on weather conditions to
balance ventilation and drought control. The shelter
accommodated three blocks, each with a capacity of 406 plants.
To monitor the water table, six piezometers (PVC well screen pipes)
with a depth of 8 ft were installed at three key locations: one at the
middle of the left border edge, one at the middle of the right border
edge, one at the front between the first and second blocks, one at the
front between the second and third blocks, one at the back between
the first and second blocks, and one at the back between the second
and third blocks. After the switchgrass establishment year, the
drought plots were not irrigated beyond early spring fertilization,
effectively creating a dry-down condition.

Weather conditions during the trial period (2019–2022) were
obtained from the University of Geogia Weather Network (2025).
These years showed substantial interannual and seasonal variability
in both temperature and precipitation. Monthly average maximum
temperatures (based on mean daily highs) ranged from 15.1 °C
(January 2021) to 32.0 °C (May 2019), while monthly average
minimum temperatures (based on mean daily lows) ranged from
5.1 °C (January 2019) to 19.5 °C (May 2019). Monthly total
precipitation varied widely across years and seasons, from as low

FIGURE 2
Switchgrass in a rainfed and irrigated control or uncovered treatment (UC).

TABLE 1 The cytotype (octaploid, tetraploid, and unknown) and ecotype
distributions among 404 switchgrass genotypes.

Ecotype Octaploid Tetraploid Unknown Total

Lowland 0 134 3 137

Coastal 0 112 10 122

Upland 0 98 1 99

Unknown n 9 18 19 46

Total 9 362 33 404

Source: Lovell et al. (2021).
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as 2.7 cm (May 2021) to as high as 22.3 cm (February 2021)
(Supplementary Table S2). Although the drought fields were
protected from rainfall using a rain-exclusion shelter and the
control fields received scheduled irrigation, other weather factors
such as air temperature and solar radiation were not controlled and
fluctuated across years and seasons. These environmental variations
may have influenced plant physiological responses and contributed
to differences in genotype performance under both drought and
control conditions.

A Bartlett Weather Alarm (Model RWL11X2, Bartlett
Instrument Company, Fort Madison, IA, United States of
America) was integrated into the system to monitor
environmental conditions, including rainfall. The alarm detected
precipitation events and assisted in operating the rainout shelter,
ensuring that drought plots remained sheltered during rainfall.
Additionally, a VentBoss 2.0 (Bartlett Instrument Company, Fort
Madison, IA, United States of America) was installed to regulate
airflow and mitigate excessive heat buildup. A Rain Bird irrigation
system (Rain Bird Corporation, Azusa, CA, United States of
America) was installed to enable precise and automated water
application, while an AQUA TRAC system (AgSense, Huron, SD,
United States of America) was used to monitor soil moisture levels
and assist in managing irrigation efficiency.

Soil moisture levels were monitored using a FieldScout TDR
350 Soil Moisture Meter (Spectrum Technologies, Inc., Aurora, IL),
with volumetric water content (VWC)measured in both the CV and
UC fields. Measurements were taken at multiple time points
throughout the growing season at a soil depth of 0–10 cm to
assess differences in soil moisture availability between treatments
(Figure 3). Although this depth does not capture the entire rooting
zone, it served as an indicator of surface soil moisture
under drought.

A drip irrigation system was used to supply water to plants in
both the drought and control sections. In the drought field, during

the initial establishment year, drip irrigation was provided with one
dripper per plant, installed using microtubing and polytube, with
irrigation applied for 30 min per day. Following the establishment
year, irrigation was withheld. In the control field, during the
establishment year, irrigation was applied using a Hydrogol drip
line with one dripper per plant position (both at the plant and
between plants) for 15 min per day. In subsequent years, irrigation
was provided as needed to maintain the moisture level at field
capacity. An AQUA TRAC system (AgSense, Huron, SD,
United States of America) was used as a regulator to monitor
and manage irrigation.

Fertilizer was applied each spring through drip irrigation to both
drought and covered fields using Jack’s Professional 20:20:20 water-
soluble formulation. The application rate was 11.34 kg per treatment
area (~0.1018 ha), equivalent to approximately 111.35 kg/ha of total
fertilizer. Given its balanced composition (20% each of nitrogen,
phosphorus, and potassium), this corresponds to approximately
22.3 kg/ha of each nutrient (N, P, and K).

FIGURE 3
Volumetric water content (VWC) measured using a FieldScout TDR 350 Soil Moisture Meter (Spectrum Technologies, Inc., Aurora, IL) at a soil depth
of 0–10 cm to assess moisture availability in the drought field (blue data points) and control field (red data points).

TABLE 2 The Shapiro-Wilk test to check distribution of the yield data (after
curation and outlier removal) across different years and treatments.

Year Treatment Statistic (W) P Value

2019 CV 0.81 0.00011

2019 UC 0.77 0.00002

2020 CV 0.80 0.00008

2020 UC 0.90 0.00730

2021 CV 0.79 0.00004

2021 UC 0.81 0.00008

2022 CV 0.84 0.00034

2022 UC 0.87 0.00184
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2.3 Biomass harvest

Biomass harvest was conducted for the first two replications during
the fall of 2019, while subsequent harvests were carried out for all three
replications each year from 2020 to 2022. In December, the plants were
harvested at 10 cm height from ground. The plants at CV fields were
harvested using chainsaw or hand sickles and the plant at UC field were
harvested using Wintersteiger Cibus Harvester (Wintersteiger AG, Ried,
Austria). To calculate the dry biomass yield of each switchgrass plant, a
fresh biomass sample weighing between 50 g and 300 g was collected and
dried in a forced-air dryer at a constant temperature of 55 °C for 5 days.
The resulting dry matter percentage was then used to estimate the total
dry biomass yield per plant.

2.4 Preliminary data processing

To ensure data reliability, we filtered the data by excluding yield
values below 50 g plant-1 from further analyses. The raw dry biomass
yield data were initially examined for distributional characteristics.
Normality of the dataset was assessed using the Shapiro-Wilk test
and visually confirmed with a Quantile-Quantile (QQ) plot. The
initial raw and filtered distributions of dry biomass yields are
illustrated in Supplementary Figures S2, S3, respectively. The
filtered data was then used to identify outliers for removal using
the Median Absolute Deviation (MAD) method, with the default
MAD cutoff set to 6. The absolute MAD-scaled distance of each data
point from the median was calculated as:

absMADAway � data −median data( )| |
MAD data( )

The value is considered an outlier if
absMADAway > MADcutoff.

The spatial distribution of plant genotypes within each block was
examined using a spatial map (Supplementary Figure S1) to confirm
randomization and assess planting uniformity. The QQ plots
(Supplementary Figure S4) were used to further examine skewness
and tail behavior.

The Shapiro-Wilk test was conducted and a QQ plot was generated
to assess whether the yield data follow a normal distribution for each
year and treatment combination after curation and outlier removal. The

Shapiro-Wilk test results, including the W statistic and p-values, are
provided in Table 2. The QQ plots of dry biomass yield data after
removal of outliers are presented in Supplementary Figure S4.

2.5 Thin plate spline (TPS) correction

After outlier removal, a TPS regression model was applied to the
yield data to account for spatial variation and ensure that interpolation
and spatial corrections were not biased by extreme values. The TPS
model was fitted using the Tps () function from the fields R package
(Nychka et al., 2017), with spatial coordinates (row and column) as
independent variables and yield values as the response variable. The
residuals from the TPS model were extracted and added to the mean
yield per plot to obtain TPS-adjusted values. These corrected values
were then used for further statistical analyses.

BLUP values were estimated for each genotype using a linear
mixed model (LMM) with genotype as a random effect. The model
was fitted separately for each year and treatment using the lmer ()
function from the lme4 R package (Bates et al., 2015). Variance
components were extracted from themodel to compute repeatability
(R) for dry biomass yield, calculated as:

R � Vg

Vp

whereVg is the genetic variance andVp is the total phenotypic variance.
Vg was extracted from the random effect variance component for
genotype, and residual variance (Ve) was obtained as the squared
residual standard deviation from the linear mixed model. The
estimated values of Vg , Vp, and repeatability for each year and
treatment are presented in Table 3. The distribution of BLUP-
predicted values was assessed using histograms to visualize variability
across years and treatment conditions (Supplementary Figure S5). The
ggplot2 package in R was used to generate histograms for BLUP
distributions.

2.6 Drought adaptation index (DAI)

We designed and calculated DAI for switchgrass genotypes
following the procedure introduced by Howeler et al. (1991) for

TABLE 3 Repeatability.

Year Treatment Genetic variance (Vg) Phenotypic variance (Vp) Repeatability (R)

2019 CV 530,654.89 839,764.08 0.63

2019 UC 353,617.41 728,616.16 0.49

2020 CV 331,640.61 997,327.24 0.33

2020 UC 378,310.46 1,021,137.62 0.37

2021 CV 207,718.63 668,504.68 0.31

2021 UC 792,607.53 1,654,216.53 0.48

2022 CV 62,063.54 271,506.21 0.23

2022 UC 413,679.04 916,472.04 0.45
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the Acid Soil Adaptation Index (ASAI). The DAI was calculated
as follows:

DroughtAdaptation Index DAI( ) � YCV × YUC

�YCV × �YUC

where Y and �Y represent individual yield BLUP performance
(separately for each year) and the grand mean yield BLUP (for
each year) for CV and UC treatments as indicated by the
corresponding subscripts, respectively.

We also calculated nine other drought tolerance associated
indices compiled and used by Sanchez-Reinoso et al. (2020)
using BLUP predicted values for biomass yield under drought

and control conditions to compare with the index DAI that we
designed. While Sanchez-Reinoso et al. (2020) applied these indices
to grain yield, we adapted them for biomass yield evaluation to assess
drought tolerance in our study. The indices included: Stress
Susceptibility Index (SSI), Tolerance (TOL), Mean Productivity
(MP), Geometric Mean Productivity (GMP), Stress Tolerance
Index (STI), Yield Stability Index (YSI), Yield Index (YI),
Harmonic Mean (HM), and Drought Sensitivity Index (DSI).
These indices along with DAI were computed using custom
functions in R and applied to the dataset using the dplyr
package. These nine indices were computed based on yield under
stress (Ys), non-stress (Yp), the mean yield under stress (�Ys), and

FIGURE 4
Correlation matrices of drought indices for each year from 2019 to 2022, where red represents positive correlations, blue represents negative
correlations, and color intensity reflects the strength of the correlation.
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non-stress (�Yp) conditions following the methodology described by
Sanchez-Reinoso et al. (2020). The index formulae are defined
as follows:

SSI � 1 − Ys/Yp[ ]
1 − �Ys/�Yp[ ]

TOL � Yp − Ys

MP � Yp + Ys

2

GMP �
�������
Yp × Ys

√

STI � Ys× Yp

�Yp( )2
YSI � Ys/Yp

YI � Ys/�Yp

HM � 2YsYp

Ys + Yp

DSI � Ys−Yp

Yp

To evaluate drought tolerance and compare indices, Pearson
correlation matrices were constructed for each year (2019–2022).
Data for each year was extracted separately, removing non-numeric
columns such as genotype identifiers to ensure accuracy. The
correlation matrices were computed using complete observations
and visualized with the corrplot package in R. The correlation plots
were arranged in a 2 × 2 layout, with each subplot representing a
different year. The corrplot function was used with a blue-to-red
color gradient, and the final heatmaps were generated using R
packages corrplot and dplyr (Figure 4). To assess the temporal
stability of DAI across years, Pearson correlation coefficients were
computed among DAI values across years using cor () function in
R (Figure 5).

2.7 Visualization of DAI isoline curves

To visualize dry biomass yield stability across drought and
control conditions, DAI isoline curves were generated separately
for each of the 4 years (2019–2022). Data was first filtered to retain
only numeric yield BLUP values for CV and UC treatments,

FIGURE 5
Correlation among 4 years to assess the stability of the Drought Adaptation Index (DAI). Red represents positive correlations, blue represents
negative correlations, and color intensity reflects the strength of the correlation.

TABLE 4 Drought adaptation index constants based on mean, mean + 1 SD,
and mean + 2 SD.

Year C1_SD0 C1_SD1 C1_SD2

2019 1 2.6 4.8

2020 1 1.9 3.2

2021 1 2.0 3.4

2022 1 1.8 2.8
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removing any missing entries. For each year, genotype yield values
were plotted on a scatter plots, with CV yield on the x-axis and UC
yield on the y-axis. A custom function (C1_Fn) was used to compute
the DAI threshold constants (C1 values) based on mean and
standard deviations of yields under both conditions. Three
C1 values corresponding to different standard deviation levels 0,
1, and 2 (SD0, SD1, SD2) were calculated to define isoline
reference curves:

Blue (C1_SD0): Baseline stability threshold.
Red (C1_SD1): Moderate stability threshold.

Orange (C1_SD2): Higher stability threshold.
These isoline curves were overlaid onto the scatter plots to

depict varying degrees of drought stress impact. Table 4
presents the C1 constants for each year. Genotype
classification based on their positioning relative to the
isolines is presented in Figure 6 and Supplementary Table S1.
The plots were arranged in a 2 × 2 layout, representing
individual years. This approach provides a graphical
representation of genotype performance, aiding in selection
strategies for drought resilience breeding.

FIGURE 6
Drought Adaptation Index (DAI) isoline curves and classification of genotypes. These plots depict the distribution of genotypes based on their yield
BLUP values in CV and UC conditions, with overlaid isoline curves representing different C1 constants, i.e., drought adaptation index threshold values
(based on standard deviation values: 0, 1, and 2), which indicate varying degrees of drought stress impact. The plots categorize genotypes into four
adaptation groups: very well-adapted (above the orange isoline), well-adapted (above the red isoline), adapted (above the blue isoline), and
unadapted (below the blue isoline) for each year.
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2.8 GGE and AMMI biplots

A data-subset consisting of 24 genotypes and 8 environments
was used for the analysis of GGE and AMMI biplot models. The
environments were formed by combining two letter labels for
treatments with the last two digits of the year. CV and UC
represent drought and control treatments, respectively, while
19, 20, 21, and 22 correspond to the years 2019 through 2022.
The dataset included BLUP-predicted biomass yield values across
four drought environments (CV19, CV20, CV21, CV22) and four
control environments (UC19, UC20, UC21, UC22). Missing
values were imputed using the lowest observed value in each
respective column to maintain data consistency. Only one
missing value in UC19 for genotype J191. A was replaced with
539.2762, the minimum recorded value in that column. The
biplot data analyses were performed using Genstat 24 (VSN
International, 2024).

3 Results

3.1 Yield data distribution and normality
assessment

The Shapiro-Wilk test results, summarized in Table 2, provided
statistical evidence of deviation from normality (p < 0.05 for all
cases). The W statistics ranged from 0.77 to 0.90, indicating varying
degrees of skewness. The distributions exhibited a right-tailed
skewness, with most observations concentrated at lower values, as
shown in Supplementary Figure S2. After filtering out data points
below 50 g plant-1, the distribution remained skewed but with a
reduced range, as seen in Supplementary Figure S3. All QQ plots
showed substantial deviations from the 45-degree reference line,
particularly in the tails, indicating non-normal yield data
(Supplementary Figure S4) consistent with the Shapiro-Wilk
test results.

FIGURE 7
GGE biplot.
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3.2 Soil moisture measurement using
TDR 350

The recorded VWC values confirmed a consistent moisture
deficit in CV, validating the effectiveness of the imposed drought
conditions. The data show a clear separation between the two
treatments, with CV consistently exhibiting lower VWC values
compared to UC. This confirms that the drought-imposed
conditions effectively reduced soil moisture availability in the CV
field. Variability in the UC treatment likely resulted from natural
fluctuations due to rainfall and soil characteristics.

3.3 BLUP distribution across years and
treatments

The distributions of BLUP-predicted values across years and
treatments (Supplementary Figure S5) highlighted variations in

spread and treatment effects. The histograms revealed a right-
skewed distribution, with a majority of genotypes showing lower
BLUP values and fewer genotypes exhibiting exceptionally high
values. The spread of values differed slightly across years, with some
years displaying a broader range of predicted values. Additionally,
differences in distribution patterns were observed between CV and
UC treatments, suggesting a potential treatment effect on yield
performance.

3.4 Repeatability (R)

Repeatability (R) values (Table 3) for dry biomass yield ranged
from 0.23 to 0.63 across years and treatments. The highest
repeatability was observed in the drought treatment in 2019
(0.63), indicating greater consistency in genotype performance
under drought stress in that specific year. However, repeatability
values were generally lower in drought-treated fields compared to

FIGURE 8
‘Which-Won-Where’ analysis.

Frontiers in Genetics frontiersin.org11

Makaju et al. 10.3389/fgene.2025.1626083

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1626083


control, highlighting the increased environmental influence and
variability under drought stress.

3.5 Drought indices and correlationmatrices

In 2019 correlation matrix, strong positive correlations were
observed among MP, GMP, STI, and YSI, indicating their
interdependence in evaluating drought tolerance. SSI showed a
strong negative correlation with DAI and other yield-related
indices, suggesting that higher stress susceptibility is
associated with lower stability in drought conditions. The
correlation matrix in 2020 is similar to 2019 as MP, GMP,
and STI were positively correlated. However, the correlation of
TOL with DAI, MP, GMP, STI and HM was weaker. The
correlation matrix in 2021 showed correlation between SSI
and stability indices (MP, GMP, STI) towards moderate
positive and a high negative correlation between SSI with
TOL. TOL exhibited negative correlations with yield stability,
indicating its limited predictive ability for drought tolerance in

2021. In 2022, a strong correlation between DAI, MP, GMP, and
STI was again observed, reinforcing their reliability in drought
assessment. SSI showed an inverse relationship with drought
resilience indices in 2022. Overall, the matrices show consistent
patterns across years, helping in the selection process for drought
tolerance assessment.

3.6 Stability of DAI across years

The correlation matrix shows strong positive correlations
between yearly DAI values, indicating consistency in genotype
responses to drought stress over time (Figure 5). The highest
correlations were observed between consecutive years, such as
2020–2021 (r = 0.89) and 2021–2022 (r = 0.91), suggesting that
genotypic drought susceptibility rankings remained relatively stable
in sequential growing seasons. The correlation between 2019 and
later years gradually decreased (2019–2022: r = 0.61), indicating
potential environmental variability or shifts in drought response
dynamics over time.

FIGURE 9
Mean performance and stability of genotypes.
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3.7 DAI isoline curves and genotypic
classification

The scatter plots reveal a concentration of genotypes with
lower yield BLUP values, while some genotypes with higher yield
performance are spread across the plots. The curved isolines,
color-coded as blue (SD0), red (SD1), and orange (SD2), provide
a reference for identifying genotypes with higher yield stability
across conditions. The positioning of genotypes relative to these
isolines highlights differences in drought resilience across years.

The classification of genotypes based on their adaptation
across different years is summarized in Figure 6,
Supplementary Table S1. The table categorizes genotypes into
four adaptation groups—very well-adapted, well-adapted,
adapted, and unadapted—for each year. This classification
highlights variations in genotype performance over time,
offering insights into adaptation trends and resilience.

Notably, several genotypes were consistently classified as very
well-adapted across multiple years, demonstrating strong

adaptability and stability under varying conditions. These include
J222.A and J295.A, which remained very well-adapted for four
consecutive years, while J496.C and J463.A maintained this status
across 3 years. Additionally, J211.A, J324.A, J587.B, J230.A, and
J247.A were classified as very well-adapted for 2 years, indicating
their potential for stable performance in diverse environments.

Conversely, some genotypes were classified as very well-adapted
only in specific years, suggesting potential environmental influences
or GEI. In 2019, J022.A, J177.A, J188.A, J456.C, J497.C, and J587.A
were uniquely identified as very well-adapted. In 2020, J218.A was
classified in this category, whereas in 2021, J009.C, J653.C, and
Rambo4 were uniquely recognized as very well-adapted. In 2022,
J191.A and J514.A were the only genotypes categorized as very well-
adapted. This analysis underscores the importance of identifying
stable, high-performing genotypes for long-term breeding and
genetic improvement programs. The consistent classification of
certain genotypes across multiple years suggests their robustness,
while the year-specific classification of others highlights potential
interactions with environmental factors.

FIGURE 10
Performance of genotypes with respect to the ideal genotype.
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3.8 Principal components and
environmental relations

The GGE biplot (Figure 7), which integrates both genotype main
effects (G) and GEI into a single analysis using PC1 and PC2,
explained 76.49% of the total variation. The biplot provided a clear
separation between environments based on treatment conditions,
distinguishing drought and control treatments. Notably, most
environments clustered by treatment, except for UC19, which
was positioned closer to the drought environments. This spatial
proximity in the biplot may be attributed to the reduced
environmental contrast between treatments in 2019.

3.9 Which-won-where biplot analysis

The which-won-where biplot identified two mega-
environments, each favoring specific genotypes (Figure 8). J463.A
emerged as the most adapted genotypes in the mega environment
formed by UC20, UC21, and UC22 as indicated by the position of

the genotype in the vertex of the polygon. Genotype J222.A being in
the same mega-environment as J463, they share similar adaptation
patterns. Genotype J496.C is a winner in the mega-environment
formed by the environments CV19, CV20, and UC19.

3.10 Mean performance and stability
of genotypes

Figure 9 shows clear differences in mean performance and
stability among the genotypes. The single-arrowed Average
Environment Coordination (AEC) abscissa points toward higher
mean performance, whereas genotypes positioned in the opposite
direction have lower yield potential. The variability of a genotype is
indicated by its position along the AEC ordinate, which passes
through the biplot origin and is perpendicular to the AEC abscissa.
Stability is determined by proximity to the AEC abscissa, with more
stable genotypes positioned closer to it. Among the genotypes,
J463.A had the highest mean yield performance, followed by
J222.A, J295.A, and J496.C. Despite its high yield potential,

FIGURE 11
Comparison of genotypes J222.A, and J463.A.
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J463.A also exhibited greater variability. Therefore, genotypes such
as J222.A and J295.A, which combined good stability with high yield
potential, are promising candidates for selection. J191.A and J188.A
were the least stable and lowest-yielding genotypes, indicating poor
adaptability across environments.

3.11 Ranking genotypes relative to the
ideal genotype

The GGE biplot ranking analysis (Figure 10) provides a visual
assessment of the mean performance and stability of genotypes
relative to an ideal genotype. The ideal genotype, represented by
the center of the concentric circles, serves as a reference for
identifying the most desirable accessions. Genotypes closer to
this point exhibit both high yield and stability, while those farther
away show either lower performance or greater variability.
Among the 24 genotypes, J222.A is closest to the ideal
genotype, indicating its superiority in both yield potential and
stability across environments. Other promising genotypes
include J295.A and J496.C, which show a favorable balance of
performance and stability. In contrast, J191.A and J188.A are
positioned farther from the ideal point, suggesting greater
variability and lower desirability for selection.

3.12 Comparison of specific genotypes and
environments

In comparison of two specific genotypes, both J222.A and J463.A
are high yielding but J222.A is more stable compared to J463.A
(Figure 11). In terms of performance of genotypes in the
environment, in general J222.A can be recommended when
environment is drought prone, whereas J463.A can be
recommended in stress-free normal environments (Figure 12).
GGE biplot suggests UC20 and UC21 as better environments in
terms of discriminating ability and representativeness (Figure 13).

3.13 Mean performance and interaction
effects based on AMMI and ANOVA

The AMMI analysis showed significant effects of genotype (G),
environment (E), and their GEI on biomass yield (p < 0.001;
Table 5). Among these, the environment contributed the most to
the total variation, followed by GEI. The interaction was further
partitioned using interaction principal component axes, with the
first two components explaining 56.11% (IPCA1) and 17.86%
(IPCA2) of the interaction sum of squares, respectively. Mean
performance and IPCA scores for each genotype and

FIGURE 12
Comparison of genotypes J222.A and J463.A, based on environments.
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environment are presented in Table 6. Genotypes with higher mean
yield and lower absolute IPCA scores were considered stable and
broadly adapted. For example, J222.A and J295.A had relatively high
yields and IPCA1 values near zero (Figure 14), indicating high and

stable performance. In contrast, J463.A exhibited the highest mean
yield but also high positive IPCA1 (37.13) and IPCA2 (17.98) scores
(Figure 15; Table 6; Supplementary Figure S6), suggesting strong
interaction with specific environments and lower stability. Among

FIGURE 13
Ranking environments based on discriminating ability and representativeness for yield data.

TABLE 5 Analysis of variance (ANOVA) from AMMI model for genotype-by-environment interaction (GEI) of biomass yield on BLUP-predicted values.

Source of variation d.f Sum of squares (SS) Mean SS F-value P-value

Genotypes 23 13,429,905 583,909 2.41 <0.001

Environments 7 54,182,532 7,740,362 31.98 <0.001

Interactions 161 38,967,120 242,032

IPCA 1 29 21,865,873 753,996 7.81 <0.001

IPCA 2 27 6,960,918 257,812 2.67 <0.001

Residuals 105 10,140,330 96,575

Note: The analysis was conducted using 24 genotypes evaluated across 8 environments, defined as combinations of two treatments (CV, and UC) across 4 years (2019–2022). IPCA, terms

represent interaction principal components from the AMMI, model, which partition the GEI, sum of squares.
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environments, UC21 had the highest mean yield (2,869 g plant-1),
followed by CV19 (2,221 g plant-1), while CV22 was the least productive
(881 g plant-1) (Table 6). CV19 (IPCA1: 35.33, IPCA2: 29.45) exhibited
a contrasting interaction pattern and CV22 had negative values for both
IPCA1 and IPCA2, indicating poor adaptability and low yield potential.
Three AMMI biplots illustrate different aspects of GEI. The genotype
mean performance versus IPCA1 biplot (Figure 14) highlights
genotypes combining high yield and stability - those near the origin
on the y-axis are considered stable. The IPCA1 versus IPCA2 biplot
(Figure 15) visualizes crossover interactions, where proximity between
genotype and environment points suggests positive interaction, and
positioning in opposite quadrants indicates specific adaptation. The
genotype mean performance versus IPCA2 biplot (Supplementary
Figure S6) captures residual interaction effects not explained by
IPCA1 and helps identify genotypes with high yield and low
variability in IPCA2. Together, the AMMI ANOVA (Table 5), mean
and interaction scores (Table 6), and the three biplots (Figures 14, 15)
support the identification of stable, high-performing genotypes such as
J222.A and J295.A, as well as specifically adapted genotypes like J463.A.
Environments such as UC21 and CV19 demonstrated strong
discriminatory ability and interaction patterns, making them
particularly informative for genotype evaluation and selection.

4 Discussion

The positively skewed distribution of raw dry biomass yield
(Supplementary Figure S2) suggests that while most genotypes
exhibit low to moderate yield, certain genotypes produce
exceptionally high biomass. The removal of low-yielding outliers
(Supplementary Figure S3) improved the robustness of subsequent
analyses, ensuring that extreme values did not disproportionately
affect the results.

The results of the Shapiro-Wilk test (Table 2) confirm that the yield
data were not normally distributed. The QQ plot (Supplementary
Figure S4) visually reinforces this deviation, particularly at the lower
and upper quantiles. This non-normality likely stems from inherent
genetic variation among genotypes, environmental influences, and the
distribution characteristics of biomass yield data. While statistical
transformations such as log or square root transformations could
potentially normalize the data, we opted to use BLUP estimates,
which account for spatial and environmental variation, eliminating
the need for additional transformations. This approach provides
unbiased predictions for genotype performance under different
environmental conditions.

To further refine yield data, a TPS regression model was applied
to account for spatial variation in the field. The TPS model used
spatial coordinates (row and column) as independent variables and
yield values as the response variable. The residuals from the TPS
model were extracted and added to the mean yield per plot to
generate TPS-adjusted values. This correction ensured that spatial
biases were minimized and that the final dataset more accurately
represented true genetic differences among genotypes.

The repeatability estimates (Table 3) provide insights into the
consistency of genetype performance for biomass yield across
different environments. Notably, the higher repeatability values
observed in 2019 suggest that genetic differences among
genotypes were more consistently expressed under the conditions

of that year. In contrast, lower repeatability values in subsequent
years and under drought conditions indicate a greater influence of
environmental variability on yield expression. These findings
highlight the need for multi-environment trials to effectively

TABLE 6 Mean biomass yield performance (g plant-1) and interaction
principal component axis (IPCA) scores for each environment and each
genotype included in the AMMI analysis.

Environment or
Genotype

S.N. Mean IPCA1 IPCA2

Environment

CV19 1 2,221 −35.33 29.46

CV20 2 1895 −15.02 −13.16

CV21 3 1,587 −8.62 −22.14

CV22 4 881 −3.62 −23.03

UC19 5 1,674 −21.58 6.94

UC20 6 1942 14.39 4.64

UC21 7 2,869 36.70 22.02

UC22 8 2064 33.09 −4.72

Genotype

J009.C 1 1868 2.77 0.94

J022.A 2 2076 5.69 9.22

J177.A 3 1800 −10.86 8.54

J188.A 4 1,374 −35.43 −2.56

J191.A 5 1,250 25.33 −15.48

J211.A 6 2081 −10.60 4.20

J218.A 7 1894 0.34 −7.32

J222.A 8 2,400 0.63 10.15

J230.A 9 1954 −5.36 −13.31

J247.A 10 1823 12.43 −13.50

J251.C 11 1914 8.02 5.09

J295.A 12 2,186 −1.97 8.47

J323.A 13 1814 6.82 2.85

J324.A 14 1966 10.65 12.55

J326.A 15 1,647 −4.12 −15.32

J456.C 16 1854 −9.22 11.26

J463.A 17 2,388 37.13 17.99

J496.C 18 2,188 −18.21 5.82

J497.C 19 1928 −10.52 0.93

J514.A 20 1,648 3.91 −17.79

J587.A 21 1887 −9.83 0.26

J587.B 22 2016 −5.50 8.72

J653.C 23 1,611 4.48 −17.49

Rambo4 24 1830 3.43 −4.24
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assess genotype performance and to distinguish genetic effects from
environmental noise in the evaluation of drought resilience.

The correlation analysis among drought tolerance indices provides
valuable insights into their interrelationships and reliability in selecting
stress-resilient genotypes (Figure 4). Across all years, MP, GMP, and
STI consistently exhibited strong positive correlations, reaffirming their
utility in identifying high-yielding genotypes under drought stress. In
contrast, SSI was negatively correlated with resilience traits, suggesting
that it effectively differentiates susceptible from tolerant genotypes. The
year-to-year variability in TOL’s correlation with yield indices
underscores its dependence on environmental conditions, further
emphasizing the necessity of multi-year evaluations. The strong and
consistent correlations among MP, GMP, and STI suggest their
potential integration with genomic selection in breeding programs
for drought resilience.

The temporal stability of the Drought Adaptation Index (DAI) was
assessed through correlation analysis across years (Figure 5). Strong
positive correlations between consecutive years indicate that DAI is a
reliable index for evaluating genotypic drought response across multiple
growing seasons. However, the gradual decline in correlation from
2019 to 2022 (r = 0.61) suggests that environmental variability,
management practices, or GEI may have influenced drought response.

These findings underscore the importance of long-term trials to ensure
robust selection under diverse environmental conditions.

The DAI isoline curves provide a visual representation of yield
stability across drought and control conditions (Figure 6). The
classification of genotypes into very well-adapted, well-adapted,
adapted, and unadapted groups enables precise differentiation of
genotypic performance. The clustering of genotypes with lower
BLUP values suggests that most genotypes exhibit moderate to low
yield stability, while a select few demonstrate superior performance. The
shifts in C1 isolines across years further reinforce the influence of
environmental variability on yield stability, reinforcing the necessity for
multi-year evaluations when selecting drought-resilient genotypes.

The GGE and AMMI biplots provide critical insights into GEI
(Figure 7). The clustering of environments in the GGE biplot indicates
distinct genotype performance patterns between drought and control
treatments, with the exception of UC19, which aligned more closely
with drought environments. The “Which-Won-Where” analysis
identified specific genotypes, such as J222.A and J295.A, as
consistently high-performing across multiple environments. The
mean performance and stability biplot further supports this
classification, highlighting J222.A and J295.A as stable, high-yielding
genotypes suitable for breeding programs, whereas J463.A exhibited

FIGURE 14
Biplot of genotype mean performance (yield as BLUP-predicted value) versus first interaction principal component (IPCA1) scores.
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high yield potential but greater variability. The ranking of genotypes
relative to the ideal genotype reinforces J222.A as a prime candidate for
selection due to its balance of yield potential and stability.

The AMMI biplot analysis (Figures 14, 15; Supplementary
Figure S6) further corroborates these findings, showing that
genotypes with long vectors, such as J463.A exhibited strong
GEI, while genotypes like J222.A and J295.A demonstrated high
yield as well as greater stability across environments. The
ANOVA results (Table 5) confirm that environmental effects
were the dominant source of variation, followed by GEI. The
high-yielding environment UC21 and the low-yielding
environment CV22 highlight the impact of external factors on
biomass productivity (Table 5).

This study demonstrates the utility of DAI as a robust and reliable
index for selecting drought-resilient switchgrass genotypes. Compared
to conventional indices, DAI offers a more comprehensive assessment
of genotype performance under variable water availability conditions -
drought and water available control. Additionally, our findings suggest
that integrating DAI with genomic selection could further enhance the
efficiency of breeding programs. Future research should explore the

application of DAI in multiple locations with contrasting climatic
conditions for multiple years, and investigate the physiological
mechanisms underpinning drought resilience in high-
performing genotypes.

While this study provides valuable insights into drought adaptation
in switchgrass, several limitations should be acknowledged. First, the
study was conducted in a single location, limiting its applicability to
broader environmental conditions. Future research should validate the
DAI across multiple geographic regions with contrasting climates to
assess its robustness. Second, while BLUP-based predictions improve
selection accuracy, incorporating genomic selectionmodels could further
enhance breeding efficiency by identifying molecular markers associated
with drought adaptation. Third, the study focused primarily on biomass
yield as an indicator of drought resilience, but additional physiological
and root traits should be evaluated to gain a deeper understanding of
adaptation mechanisms. Lastly, long-term studies extending beyond the
four-year trial period would provide more comprehensive insights into
genotype stability and environmental interactions over time.

Overall, this study provides a strong foundation for improving
switchgrass adaptation to drought stress, with implications for

FIGURE 15
Biplot of first interaction principal component (IPCA1) scores versus second interaction principal component (IPCA2) scores.
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optimizing biomass yield and stability in bioenergy and forage
production systems. By integrating BLUP-based selection strategies
with multi-environment evaluation metrics, we offer a robust
framework for sustainable crop improvement. Further validation in
diverse environments and incorporation of genomic data will enhance
the applicability of DAI in accelerating breeding efforts for climate-
resilient switchgrass cultivars.

5 Conclusion

This study introduces and validates the Drought Adaptation
Index (DAI) as a novel selection tool for identifying simultaneously
high yielding as well as drought-resilient switchgrass genotypes. By
using BLUP predicted biomass yield under drought stressed and
well-watered conditions, the DAI provides a precise and reliable
method for assessing drought adaptation.

The main findings of this research include: (i) The DAI
effectively differentiated switchgrass genotypes into categories
of very well-adapted, well-adapted, adapted, and unadapted,
providing breeders with a nuanced understanding of drought
resilience across diverse genotypes, (ii) BLUP based yield
estimates improved the accuracy of drought tolerance
assessment by accounting for environmental and spatial
variation in field trials, (iii) The comparison with multiple
drought indices, including SSI, STI, GMP, and YSI, alongside
the DAI, offered a comprehensive evaluation of stress tolerance
mechanisms in switchgrass, (iv) Analysis of genotype stability
across years provided valuable insights for breeding strategies,
addressing the critical need for sustainable biomass production
under variable climate conditions, and (v) The methodology
developed in this study offers a robust framework for
improving switchgrass adaptation to drought stress, with
potential applications in breeding programs focused on
enhancing both biomass yield and stress adaptation.

In summary, the DAI represents a significant advancement in
switchgrass breeding strategies, offering a powerful tool for selecting
genotypes that combine high yield potential with drought tolerance. This
approach has broad implications for optimizing switchgrass for bioenergy
production and forage applications, contributing to the development of
more sustainable and climate-resilient agricultural systems. Future
research should focus on validating the DAI across a wider range of
environments and integrating it with genomic selection strategies to
accelerate genetic gains in switchgrass improvement programs.
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Spatial plots for each year from 2019 through 2022. CV and UC represent
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SUPPLEMENTARY FIGURE 2
Histogram of raw dry biomass yield (g plant-1) before the removal of yield
data rows below 50 g plant-1. CV and UC represent drought and control
fields, respectively.

SUPPLEMENTARY FIGURE 3
Histogram of raw dry biomass yield (g plant-1) after the removal of yield
data rows below 50 g plant-1. CV and UC represent drought and control
fields, respectively.
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QQ plot of data after outlier removal.

SUPPLEMENTARY FIGURE 5
Distribution of BLUP predicted values.
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value) versus second interaction principal component
(IPCA2) scores.
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