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Introduction: Low temperature is a key environmental factor that threaten
sweetpotato growth and development. In-depth studies on the gene functions
underlying cold resistance are important for genetic engineering in sweetpotato.

Methods: The IbXTH16 gene was cloned using a homologous cloning approach.
Its expression was detected in sweetpotato leaves subjected to low-temperature
stress and brassinosteroid treatment. Subsequently, the IbXTH16 gene was
introduced into sweetpotato variety Lizixiang to generate IbXTH16-overexpressing
plants, thereby enabling the functional validation of the IbXTH16.

Results and discussion: The IbXTH16 gene was cloned from the cold-tolerant
variety LHS21. Its 879 bp coding sequence encoded a 292 aa protein with a
molecular weight of 32.983 kDa and a pI of 8.47. The 2039 bp genomic sequence
of IbXTH16 contained two exons and one intron. The IbXTH16 protein was
localized in the cell membrane. IbXTH16 was strongly induced by 4°C and
brassinosteroid. IbXTH16 positively regulates cold tolerance of sweetpotato by
activating the BR and proline pathways.
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1 Introduction

Low temperature is a key environmental factor that threaten crop growth and development
worldwide (Peng et al., 2014; Shi et al., 2018). Sweetpotato, Ipomoea batatas (L.) Lam., an
important cash crop, serves as both a staple food and a bioenergy resource (Zhang et al., 2019).
As sweetpotato is native to tropical America, it exhibits sensitivity to low temperature,
highlighting the importance of enhancing cold tolerance to ensure sustained productivity
(Jin et al., 2017; Yu et al., 2022). The development and cultivation of low-temperature tolerant
sweetpotato varieties hold significant importance for addressing temperature-related challenges
and ensuring global food security. Therefore, in-depth studies on the gene functions underlying
cold resistance are important for genetic engineering in sweetpotato.

The xyloglucan endotransglycosylase/hydrolase (XTH) superfamily is an important
protein widely present in plants, mainly catalyzing the endohydrolysis of the β-
1,4 glycosidic bond of xyloglucan and the self-connection of the xyloglucan molecule
(Rose et al., 2002; Morales-Quintana et al., 2020). The XTH superfamily has been reported
to participate in diverse biological processes of plants such as fruit maturation and drought
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response (Miedes et al., 2010; Wu et al., 2022; Han et al., 2023). In
cold stress, AtXTH21 positively modulated the freezing stress
resistance and XTH19 mutant exhibited reduced freezing
tolerance in Arabidopsis (Shi et al., 2014; Takahashi et al., 2021).
In sweetpotato, under cold treatment, only IbXTH02 and IbXTH12
of the XTH family were downregulated expression (Zhang et al.,
2023). However, XTHs’ function on cold stress of sweetpotato
remain largely unknow.

Brassinolide (BR) refers to a group of polyhydroxy steroids that
include BR and its structural analogs (Kim and Russinova, 2020). As a
type of steroid hormone, BR is ubiquitously distributed across various
plant tissues (Xu et al., 2020). Previous studies have demonstrated that
the exogenous application of BR can enhances plant cold tolerance.
Specifically, treatment with 2 mg L-1 BR significantly mitigated leaf
surface damage in rice plants, improving their resistance to cold stress
(Wang et al., 2020). Under exogenous BR treatment, mangoes
exhibited an increased proportion of unsaturated fatty acids in cell
membranes, which enhanced membrane fluidity and consequently
improved cold tolerance (Li et al., 2012). In addition to exogenous BR
treatment, endogenous BR signalling pathways in plants also play a
crucial role in regulating cold tolerance. The homologous protein CES
of brassinosteroid enhanced expression, which acts as a positive
regulatory factor in BR signal transduction, can directly interact
with downstream CBF proteins and activate the transcription of
CBF1 and CBF3, contributing to enhancing plant cold tolerance
(Eremina et al., 2016). Overexpression of the BR receptor BRI1, a
key activator of BR signalling, has been shown to improve the cold
tolerance of tomato plants (Wang et al., 2022). Conversely, BIN2, a
negative regulator of BR signalling in Arabidopsis, negatively regulates
plant cold tolerance by modulating the activities of BZR1 and
phosphorylated ICE1 (Ye et al., 2019).

Proline serves as a critical osmotic regulatory compound that is
ubiquitously present in plants and plays a protective role under low
temperature stress conditions (Kidokoro et al., 2022; Kim et al., 2024).
Specifically, proline helps maintain the stability of biological
membranes and various enzymes while regulating the acid-base and
redox balance within the cytoplasm (Takagi, 2008; Hayat et al., 2012).
In Arabidopsis, the content of proline increases with prolonged
exposure to 4°C low temperature treatment (Kaplan et al., 2007). In
cucumber, the ICE1 enhances the cold tolerance of transgenic plants by
promoting the accumulation of free proline (Liu et al., 2010). In Rosa
multiflora, RmZAT10 specifically binds to and activates the promoter
of RmP5CS, thereby regulating proline biosynthesis and positively
influencing cold resistance (Luo et al., 2022).

In this study, a XTH superfamily gene IbXTH16 was cloned and
characterized from sweetpotato. The IbXTH16 gene was introduced
into the sweetpotato variety Lizixiang to verify its function. Functional
analysis showed that overexpression of IbXTH16 enhanced cold
tolerance of sweetpotato by activating the BR and proline pathways.

2 Materials and methods

2.1 Plant materials

The sweetpotato cold-tolerant variety Liaohanshu21 (LHS21)
was employed to clone the IbXTH16 gene. The sweetpotato variety
LHS21 and cold-susceptible variety Sushu28 (SS28) were employed

to analyze the expression level of IbXTH16. The sweetpotato variety
Lizixiang was used to identify the function of IbXTH16.

2.2 Cloning and sequence analysis

Total RNA for cDNA generation (TRIzol reagent, CWBIO,
Beijing, China) and genomic DNA (Easy Pure Plant Genomic
DNA Kit, Trans Gen, Beijing, China) were isolated from the leaves
of LHS21 according to Fan et al. (2024). The coding sequence (CDS),
genome sequence, and promoter region of IbXTH16 were obtained
based on a homologous cloning approach. Phylogenetic analysis was
performed with MEGA 11.0 software. The genomic structure of
IbXTH16 was analyzed by GSDS 2.0 (http://gsds.gao-lab.org/). The
cis-acting regulatory elements of the IbXTH16 promoter region were
analyzed by PlantCARE (https://bioinformatics.psb.ugent.be/
webtools/plantcare/html/). All primers in this study were showed
in Supplementary Table S1.

2.3 Subcellular localization

The CDS of IbXTH16 (without the stop codon) was integrated
into the pCAMBIA1300-GFP vector according to Zhang et al.
(2020). The pCAMBIA1300-IbXTH16-GFP was introduced into
Agrobacterium tumefaciens strain GV3101 and transiently
inoculated into Nicotiana benthamiana leaf hypodermal cells.
After 48 h of infection, the GFP signals were observed using a
confocal fluorescence microscope (LSM880, Zeiss, Jena, Germany).

2.4 Expression analysis

The four-week-old in vitro-grown LHS21 or SS28 plants was
treated with cold (4°C) or 100 mM BR for 0, 1, 3, 6, 12, 24 h and the
expression of IbXTH16 was quantified with Real-time quantitative
polymerase chain reaction (RT-qPCR) (SYBR Green Master Mix,
YEASEN, Shanghai, China). Expression of IbXTH16 in leaf, root, and
stem tissues four-week-old in vitro-grown LHS21 was quantified with
RT-qPCR. The IbACTIN was used as the internal control.

2.5 Production of transgenic
sweetpotato plants

The CDS of IbXTH16 (without the stop codon) was integrated
into the pCAMBIA1300 vector according to Fan et al. (2024). The
pCAMBIA1300-IbXTH16 was introduced into A. tumefaciens
strain EHA105, and then infected Lizixiang embryogenic
suspension cultures as described by Yu et al. (2007). The
transgenic plants were identified with PCR (LA Taq, TaKaRa,
Tokyo, Japan) and RT-qPCR.

2.6 Cold tolerance analysis

4-week-old IbXTH16-overexpressing sweetpotato plants and
wide type (WT) with the same status were subjected to cold
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treatment after a week of acclimatization. The cold treated leaves of
the IbXTH16-overexpressing sweetpotato plants and WT were
used to determine the superoxide dismutase (SOD) (SOD-1-W,

Cominbio, Suzhou, China) and peroxidase (POD) activities (POD-
1-Y, Cominbio), proline (PRO-1-Y, Cominbio) and
malondialdehyde (MDA) contents (MDA-1-Y, Cominbio)

FIGURE 1
Sequence analysis and subcellular localization of IbXTH16. (A) Phylogenetic tree of IbXTH16 and XTH family of Arabidopsis. The IbXTH16 cloned in
this study is marked in red. (B) Comparison of IbXTH16 and AtXTH16 genomic structures. (C) Diagrammatic representation of the IbXTH16 promoter. (D)
Subcellular localization of IbXTH16 in N. benthamiana leaf hypodermal cells. Bars = 10 μm.
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according to manufacturer’s instructions. The BR content and
relative electrical conductivity were determined by Norminkoda
Biotechnology Co., Ltd (Wuhan, China). The expression of
IbDWF4, IbDET2, IbBRI1, IbBES1, IbBEE3, IbBIN2, IbP5CR,
IbP5CS, IbP5CDH, and IbPDH were quantified with RT-qPCR.

2.7 Statistical analysis

Data are analyzed using one-way ANOVA followed by post-hoc
Tukey’s test or Student’s t-test at P < 0.05 or P < 0.01.

3 Results

3.1 Cloning and sequence analysis of
IbXTH16 and its promoter

To identify potential regulators of cold resistance in sweetpotato,
we cloned IbXTH16 gene from cold-tolerant variety LHS21. Its 879 bp
CDS encoded a 292 aa protein with a molecular weight of 32.983 kDa
and a pI of 8.47 (Supplementary Table S2). Phylogenetic analysis
showed that IbXTH16 shared the closest relationship with
AtXTH16 among Arabidopsis homologs (Figure 1A). The 2039 bp
genomic sequence of IbXTH16 contained two exons and one intron,
which was different from the three exons and two introns ofAtXTH16
(Figure 1B). The 800 bp IbXTH16 promoter region contained a low-
temperature response element LTR and an ABA-response element

ABRE (Figure 1C). To examine the subcellular location of IbXTH16,
the IbXTH16-GFP fusion protein was conducted by transiently
expressing in N. benthamiana leaf epidermal cells. The results
showed that IbXTH16-GFP was localized in the cell
membrane (Figure 1D).

3.2 Expression analyses of IbXTH16 in
sweetpotato

To study the potential role of IbXTH16 in cold resistance of
sweetpotato, the expression level of IbXTH16 was analyzed. RT-
qPCR assay showed that the expression level of IbXTH16 in
LHS21 was much higher than that in SS28 (Figure 2A). Tissue-
specific expression assay revealed that the expression level of
IbXTH16 was relatively high in the roots of in vitro-grown
LHS21 plants (Figure 2B). The expression of IbXTH16 was
significantly induced by 4°C and 100 mM BR (Figures 2C,D).

3.3 Overexpression of IbXTH16 enhances
cold tolerance in sweetpotato

To investigate whether IbXTH16 contributes to cold tolerance in
sweetpotato, this genewas transferred into sweetpotato variety Lizixiang
via A. tumefaciens-mediated method, and 12 IbXTH16-overexpressing
lines (OX-1 to OX-12) were generated (Figures 3A–F). There was no
significant difference in the phenotype of sweetpotato storage roots

FIGURE 2
Expression analyses of IbXTH16 in sweetpotato. (A) Expression of IbXTH16 in cold-tolerant variety LHS21 and cold-susceptible variety SS28 under
4°C. (B) Expression of IbXTH16 in 4-week-old in vitro-grown LHS21. (C) Expression of IbXTH16 in cold-tolerant variety LHS21 after different time points (h)
under 4°C. (D) Expression of IbXTH16 in cold-tolerant variety LHS21 after different time points (h) in response to 100 mM BR. Different lowercase letters
indicate differences at P < 0.05 based on one-way ANOVA followed by post-hoc Tukey’s test. ** indicates a significant difference at P <
0.01 according to Student’s t-test.

Frontiers in Genetics frontiersin.org04

Yu et al. 10.3389/fgene.2025.1629260

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1629260


between overexpression lines and WT (Figure 3G). IbXTH16 exhibited
increased expression level in the overexpression lines comparedwith the
WT (Figure 3H). Three overexpression lines (OX-2, OX-7, and OX-12)
with higher expression levels of IbXTH16 were selected for further
study. Furthermore, the overexpression and WT plants were treatment
at 4°C and restored at 25°C. The degree of wilting in the overexpression
lines at 24 h and 48 h under cold stress was lower compared to that of
WT (Figures 4A–C). Additionally, the overexpression lines recovered
more rapidly than WT when returned to 25°C (Figure 4D). These
results indicated that IbXTH16 functions as a positive regulator of cold
tolerance in sweetpotato.

3.4 IbXTH16 alters the contents of
components and expression of genes
related to stress response

To further explore how IbXTH16 mediate the cold tolerance
in sweetpotato, the contents of stress response-related
components were measured. Under 4°C treatments for 24 h
and 48 h, higher SOD and POD activities, higher proline and
BR contents, and lower relative electrical conductivity and MDA
content were found in the overexpression lines relative to WT
(Figures 5A–F). In BR biosynthesis and signalling pathway, key

FIGURE 3
Production of the IbXTH16-overexpressing sweetpotato plants. (A) Lizixiang embryonic suspension cultures. (B) Screening of hygromycin-resistant
embryogenic calli. (C) Regeneration of the IbXTH16-overexpressing plantlets. (D) Whole IbXTH16-overexpressing plants. (E) PCR identification of the
IbXTH16-overexpressing plants. Lane M, DNA marker; Lane P, plasmid pCAMBIA1300-IbXTH16 (positive control); Lane WT, Lizixiang (negative control);
LaneW, water (negative control); OX-1-OX12, IbXTH16-overexpressing plants. (F) IbXTH16-overexpressing plants grown in a field. (G) Storage roots
from WT and IbXTH16-overexpressing plants. (H) Expression analysis of IbXTH16 in the overexpression plants by RT-qPCR. ** indicates a significant
difference at P < 0.01 according to Student’s t-test. Bars = 1 cm.
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enzyme genes IbDWF4 and IbDET2 and positive regulatory
factors IbBRI1, IbBES1, and IbBEE3 in the transgenic plants
were upregulated under 4°C treatment (Figures 6A–E), while
negative regulatory factor IbBIN2 was downregulated
(Figure 6F). In proline biosynthesis and signalling pathway, key
enzyme genes IbP5CR and IbP5CS in the transgenic plants were
upregulated under 4°C treatment (Figures 6G,H), while
degradation pathway IbP5CDH and IbPDH were downregulated
(Figures 6I,J). These results indicated that IbXTH16 positively
regulates cold tolerance of sweetpotato by activating the BR and
proline pathways.

4 Discussion

4.1 IbXTH16 positively regulates cold
tolerance of sweetpotato

Many crops are well-suited for growth in tropical or subtropical
regions (Chinnusamy et al., 2007). However, the average minimum

temperature of most land areas on Earth is <0°C (Rihan et al., 2017).
Low temperatures adversely affect crop growth and development,
limiting their geographical distribution (Pearce, 2001; Ding et al.,
2019). Sweetpotato is an important crop for ensuring national food
security, but it is vulnerable to yield reductions caused by low-
temperature damage (Jin et al., 2017; Yu et al., 2022). Genetic
engineering has emerged as an effective strategy for enhancing
sweetpotato’s tolerance to cold stress (Jin et al., 2017; 2021; 2022;
Yu et al., 2022). Nevertheless, the function of XTH in cold stress of
sweetpotato remains to be further studied. In this study, a novel
IbXTH16 gene was cloned from the cold-tolerant variety LHS21
(Figure 1). The plant cell membrane serves as a crucial barrier for
maintaining stable cellular metabolism and also plays a key role in
sensing low temperatures (Zhang et al., 2019). After plants are
exposed to low temperatures, the permeability and fluidity of their
cell membranes decline, activating cold-response genes (Muratan,
1997). The localization of IbXTH16 in the cell membrane and the
induction of IbXTH16 by cold suggest that IbXTH16 might serve as
a signalling molecule in cold tolerance of sweetpotato (Figures 1D,
2C). The expression of IbXTH16was induced by the BR (Figure 2D),

FIGURE 4
4°C treatment assays of the WT and IbXTH16-overexpressing sweetpotato plants. (A) Phenotype before 4°C treatments. (B) Phenotype after
treatment at 4°C for 24 h. (C) Phenotype after treatment at 4°C for 48 h. (D) Phenotype after recovery at 4°C for 24 h. Bars = 1 cm.

Frontiers in Genetics frontiersin.org06

Yu et al. 10.3389/fgene.2025.1629260

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1629260


and its overexpression enhanced cold tolerance in sweetpotato
(Figure 4). Therefore, IbXTH16 is believed to be involved in the
cold tolerance of sweetpotato.

4.2 IbXTH16 activates the biosynthesis of
SOD and POD

Under low-temperature stress, plants accumulate excessive
reactive oxygen species (ROS), which can be detrimental to plant
cells (Guo et al., 2022; Mittler et al., 2022). The ROS scavenging
system can detoxify ROS by enhancing the activity of ROS-
scavenging enzymes, such as SOD and POD, preventing
oxidative damage to plant cells (Gill and Tuteja, 2010; Bose
et al., 2014; Choudhury et al., 2017). In Zoysia japonica,
overexpression of ZjICE1 conferred cold tolerance in

transgenic plants by increasing SOD, POD, and proline
contents, as well as decreasing MDA content (Zuo et al.,
2019). In Betula platyphylla, overexpression of BpERF13
improved the cold tolerance of transgenic plants by binding to
cis-elements of SOD and POD and increasing SOD and POD
contents (Lv et al., 2020). In this study, the SOD and POD
contents were significantly increased in the transgenic plants
under 4°C (Figures 5A,E). It is suggested that overexpression of
IbXTH16 enhances cold tolerance by activating the biosynthesis
of SOD and POD in transgenic sweetpotato. Previous reports
have indicated that the plant hormone ABA is also involved in the
cold tolerance of plants (Huang et al., 2017;Ma et al., 2018; Li
et al., 2021). The IbXTH16 promoter region contained an ABA-
response element ABRE (Figure 1C). However, whether the
XTH16 gene regulates cold tolerance in sweetpotato via the
ABA pathway requires further investigation.

FIGURE 5
Analyses of components in the WT and IbXTH16-overexpressing sweetpotato plants. (A) SOD activity. (B) Proline content. (C) Relative electrical
conductivity. (D) MDA content. (E) POD activity. (F) BR content. ** indicates a significant difference at P < 0.01 according to Student’s t-test.
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4.3 IbXTH16 positively regulates BR
signalling pathway and proline
accumulation

BR signalling not only participates in plant growth and
development, but also has been reported in plant resistance to
low temperature (Kinoshita et al., 2005; Vriet et al., 2012).
In the initial phase when plants are exposed to cold stress, the
activity of BIN2 kinase is suppressed, while OST1 kinase is
activated, this synergistic regulation stabilizes ICE1, thereby
enhancing the expression of CBF and improving the cold
tolerance of plants (Barrero-Gil and Salinas, 2018; Ye et al.,
2019). In Arabidopsis, compared with the WT, the cold
resistance of overexpressing BRI1 plants was enhanced,

while that of mutant BRI1 plants was decreased (Eremina
et al., 2016). In this study, the transgenic plants showed a
significant increase in BR content, which might be due to the
overexpression of IbXTH16 increasing the BR biosynthesis of
transgenic plants, thus conferring cold tolerance (Figure 5F).
Interestingly, the BR content in the transgenic plants was
significantly decreased after restoring the room temperature
(Figure 5F). The BR biosynthetic pathway involves the
participation of a series of genes (Zhao and Li, 2012). In
this study, the expression levels of BR biosynthesis and
signalling pathway-related positive regulatory factors were
significantly upregulated, while negative regulatory factor
was significantly downregulated (Figures 6A–F). More
proline accumulation can protect plants from low-temperature

FIGURE 6
Expression analyses of BR and proline-related genes in the WT and IbXTH16-overexpressing sweetpotato plants under 4°C. (A) IbDWF4. (B) IbDET2.
(C) IbBRI1. (D) IbBES1. (E) IbBEE3. (F) IbBIN2. (G) IbP5CR. (H) IbP5CS. (I) IbP5CDH. (J) IbPDH. * and ** indicate significant differences at P < 0.05 and P <
0.01 according to Student’s t-test.
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stress and ROS damage (Ghosh et al., 2022; Kidokoro et al., 2022).
In this study, the proline biosynthesis-related genes were
significantly upregulated, while degradation pathway-related
genes were significantly downregulated (Figures 6G–J).
Collectively, these findings suggest that IbXTH16 positively
regulates cold tolerance of sweetpotato by activiting BR
signalling pathway and proline accumulation (Figure 7).

5 Conclusion

Overexpression of the cloned IbXTH16 gene increased cold
tolerance of sweetpotato by activating the BR and proline
pathways. This study for the first time sheds light on the
important role of IbXTH16 in cold tolerance. IbXTH16 has the
potential to increase cold tolerance in sweetpotato and
other plants.
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