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Department of Gynecology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University,
Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China

Introduction: This study aims to identify differentially expressed genes (DEGs) in
endometrial carcinoma (EC) through bioinformatics analysis and investigate their
roles in early diagnosis and prognosis.

Methods: EC-related gene datasets were retrieved from the NCBI and analyzed
using R packages to screen for DEGs. Primers were designed for selected DEGs,
and their expression levels were validated via gPCR. Logistic regression, survival
analysis, Cox proportional hazards models, and random forest models were
employed to evaluate associations between DEGs and clinical outcomes.
Results: Bioinformatics analysis identified significantly upregulated genes (Erb-
B2, PIK3CA, CCND1, VEGF, KIT) and downregulated genes (PTEN, E-cadherin,
p53). Logistic regression revealed Erb-B2 as a protective factor against poor
prognosis, whereas E-cadherin and P53 were risk genes. Clinical markers CA125,
CA199, and IL-9 also emerged as prognostic risk factors. Survival analysis
demonstrated significant divergence between good and poor prognosis
groups (P < 0.05), with HR < 1 for Erb-B2 and p53 (protective effects) and
HR > 1 for E-cadherin, CA125, CA199, and IL-9 (risk effects). The random
forest model highlighted CA199 as a pivotal prognostic biomarker, while
decision tree analysis enabled effective patient stratification based on
CA125 and CA199 thresholds.

Conclusion: The identified DEGs and clinical indicators hold significant potential
for improving early diagnosis and prognostic evaluation in EC. These findings
provide novel biomarkers and theoretical foundations for precision medicine,
guiding risk stratification and personalized therapeutic strategies.

bioinformatics analysis, diagnosis, prognosis, endometrial carcinoma, biomarkers

1 Introduction

Endometrial carcinoma (EC), one of the three most prevalent malignancies in the
female reproductive system, has demonstrated a rising global incidence, posing a significant
threat to women’s health and quality of life (Cai et al., 2021). Early diagnosis and accurate
prognostic evaluation are critical for improving survival outcomes in EC patients, as they
enable clinicians to tailor individualized therapeutic strategies while avoiding overtreatment
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TABLE 1 General information.

10.3389/fgene.2025.1631060

Good prognosis (n = 129) Poor prognosis (n = 73) X2
Hypertension Yes 59 (45.74) 30 (41.1) 0.407 0.523
No 70 (54.26) 43 (58.9)
Diabetes Yes 63 (48.84) 43 (58.9) 1.894 0.169
No 66 (51.16) 30 (41.1)
Reproductive history Yes 73 (56.59) 33 (45.21) 2.422 0.12
No 56 (43.41) 40 (54.79)
Family history Yes 21 (16.28) 15 (20.55) 0.58 0.446
No 108 (83.72) 58 (79.45)
Smoking Yes 13 (10.08) 8 (10.96) 0.039 0.844
No 116 (89.92) 65 (89.04)
Alcohol Consumption Yes 39 (30.23) 21 (28.77) 0.048 0.827
No 90 (69.77) 52 (71.23)
POLE mutation 15 3 10.737 0.013
Molecular typing microsatellite instability 30 15
copy number low 38 13
copy number high 46 42
Age (year) 46.02 + 13.28 48.59 + 12.42 -1.363 0.174

or undertreatment. However, current diagnostic modalities for
early-stage EC are limited by invasiveness, low patient
acceptance, and the frequent absence of overt symptoms in early
phases, leading to underdiagnosis. Although existing prognostic
markers hold clinical utility, their predictive capacity for
individual outcomes remains insufficient to meet the demands of
precision medicine (Zheng et al.,, 2025). The rapid advancement of
genomic technologies has unlocked substantial potential for
bioinformatics in cancer research (Zeng et al, 2021). By
systematically mining and analyzing large-scale gene expression
datasets, bioinformatics approaches can identify differentially
expressed genes (DEGs) associated with tumorigenesis,
progression, and prognosis. These DEGs may serve as potential
biomarkers, offering novel avenues for early detection and
prognostic stratification in EC (Yang et al, 2025). This study
aims to leverage bioinformatics tools to screen DEGs with
significant expression alterations in EC and investigate their roles
in early diagnosis and prognostic evaluation. The findings are
expected to provide scientific evidence and theoretical support
for advancing precision diagnostics and therapeutics in EC.

2 Materials and methods
2.1 General characteristics

A total of 202 patients diagnosed with EC between January
2017 and January 2020 were retrospectively enrolled and stratified

into a good prognosis group (n = 129) and a poor prognosis group
(n = 73) based on clinical outcomes. No significant differences in

Frontiers in Genetics 02

baseline demographic or clinical characteristics were observed
between the groups (P > 0.05; Table 1). However, there was a
difference in the distribution of each type between the good
prognosis group and the poor prognosis group (P = 0.013;
Table 1), and the CNH type accounted for a higher proportion
in the poor prognosis group (57.53% vs. 35.66%) This study was
approved by the Ethics Committee of The Affiliated Taizhou
People’s Hospital of Nanjing Medical University, and written
informed consent was obtained from all participants or
their families.

Inclusion criteria comprised: (1) diagnosis of EC confirmed by
postoperative pathological examination in accordance with the
guidelines from the Diagnosis and Management of Endometrial
Cancer (Braun et al,, 2016); (2) availability of comprehensive clinical
records; (3) stringent quality control (QC) of analytical data; (4)
complete gene expression profiles covering all targets of interest
without significant missing values or outliers; and (5) signed
informed consent forms. Exclusion criteria included: (1)
concurrent malignancies; (2) prior neoadjuvant therapies (e.g.,
chemotherapy, radiotherapy) that might alter tumor gene
expression profiles; (3) suboptimal sample quality; and (4)
incomplete follow-up data.

2.2 Bioinformatics analysis
The Gene Expression Omnibus (GEO) dataset GSE120490,
comprising EC patient samples, was downloaded from the

National Center for Biotechnology Information (NCBI) using the
GEOquery package in R. Raw data were preprocessed and
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TABLE 2 Primer sequences.

Erb-B2  Forward 5'GTGAGGCGGGGTGAAGTCCT 3’

5'GGCATCGCTCCGCTAGGTGT 3’

Reverse

PIK3CA Forward 5'GACAATGAATTAAGGGAAAA 3’
Reverse 5'TGTAGAAATTGCTTTGAGCT 3’
CCND1I Forward 5'TCATTTCCAATCCGCCCTCC 3’
Reverse 5'CCTCCTCCTCTTCCTCCTCCTC 3’
VEGF Forward 5'CATCTTCAAGCCGTCCTGTG 3’
Reverse 5'CTCGCTCTATCTTTCTTTGGTC 3’
KIT Forward 5'GCTAGAGCCGGAACGTGGAACA 3’
Reverse 5'AGGAGCAGCAGAACGAAGAGGAAA 3’
PTEN Forward 5'AAAGACACTACGATGCTGCCAAAT 3/
Reverse 5'GCCCTTCCCAGCCTTACAAT 3/
E-cadherin Forward 5'CCAGCTTGGGTGAAAGAGTGA 3’
Reverse 5'TTGCTAGGGTCTAGGTGGGTTAT 3’

normalized, followed by gene identifier (ID) matching and
differential expression analysis using the stringr, limma, and
tidyverse packages. Gene Ontology (GO) enrichment analysis was
performed with the clusterProfiler, org. Hs.e.g.,.db and enrichplot
packages. Unsupervised dimensionality reduction using PCA was
performed to verify the intrinsic expression differences between
tumor tissue and normal tissue, while excluding technical batch
effects. To further quantify the association between gene expression
and sample grouping, a supervised dimensionality reduction model
was constructed using partial least squares discriminant analysis
(PLS-DA) (Mallardo et al., 2024). Using ‘tumor vs. normal’ or ‘good
prognosis vs. poor prognosis’ as the dependent variable and DEGs
expression level as the independent variable; Calculate R Y (model
interpretability) and Q> (predictive ability) through 10 fold cross
validation to verify the reliability of the model. To refine biomarker
candidates, feature selection was conducted via Least Absolute
Operator  (LASSO)
minimizing overfitting while identifying genes with the strongest

Shrinkage and  Selection regression,

prognostic relevance.

2.3 Indicator detection and follow-up

Lavage fluid in the uterine cavity was collected from patients and
labeled for subsequent processing. Total cellular RNA was extracted
using an RNA extraction kit (Tiangen Biotech Co., Ltd., China) and
reverse-transcribed into complementary DNA (cDNA) with a
reverse transcription (RT) kit. Primers were designed for target
genes identified through prior screening, and quantitative
polymerase chain reaction (qQPCR) was performed using the
synthesized ¢cDNA as the template. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) served as the endogenous reference
gene, while peripheral blood mononuclear cells (PBMCs) from
healthy individuals undergoing routine physical examinations in
our hospital were used as controls. Relative gene expression levels >
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2-fold compared to controls were defined as significant
upregulation. Primer sequences are listed in Table 2. Genes
exhibiting significant upregulation or downregulation (>2-fold
change) relative to healthy controls were assigned a binary value
of 1, while others were coded as 0. Postoperative follow-up was
conducted for 5 years, with patients experiencing recurrence or
mortality classified into the poor prognosis group, and the
remaining cases categorized into the good prognosis group.
Peripheral venous blood samples (6 mL) were routinely collected
from fasting patients preoperatively and centrifuged to isolate serum
for subsequent analysis. Complete blood count parameters,
including hemoglobin (Hb), white blood cell count (WBC), red
blood cell count (RBC), and platelet count (PLT), were measured
using an automated hematology analyzer. Serum levels of
carbohydrate antigen 125 (CA125), carbohydrate antigen 199
(CA199), and interleukin-9 (IL-9)
chemiluminescence immunoassay

were quantified via
(CLIA) following

standardized protocols.

2.4 Statistical methods

Data processing and analyses were performed using SPSS
Statistics 27.0 and R software version 4.4.3. Normally distributed
continuous variables were expressed as mean + standard deviation
(x % s), while categorical variables were presented as n (%).
Intergroup comparisons were conducted using independent
samples t-tests (for continuous variables) and chi-square tests
(for categorical variables). Multivariate binary logistic regression
analysis was employed to identify independent risk factors, using
variance inflation factor for collinearity screening. For gene feature
selection, LASSO regression was implemented via the glmnet
package in R. Kaplan-Meier (K-M) survival curves and Cox
proportional hazards regression forest plots were generated using
the forestplot, survminer, and survival packages in R. Random forest
randomForestSRC,
ggRandomForests, pdp, and GGally packages to evaluate variable

models were constructed with the
importance and partial dependence. Statistical significance was

defined as a P < 0.05.

3 Results
3.1 DEG screening

As shown in Figure 1, box plots (Figure 1A) and principal
component analysis (PCA) plots of the GEO dataset GSE120490
(n = 145 samples) revealed no significant batch effects or inter-
sample variability (P > 0.05). PCA analysis showed that the
GSE120490 samples were clustered into two main clusters
(Figure 1B), and the dataset included tumor tissue and normal
tissue data. Further analysis confirmed that this grouping was driven
by sample type (PCA1 contribution rate of 32.7%), rather than
technical batch effects. Meanwhile, after correcting for batch effects
using the SVA package in R language, the grouping trend remained
significant, indicating biological differences. This is consistent with
the inherent differences in gene expression profiles between tumor
tissue and normal tissue. The PLS-DA (Figure 1C) score plot shows
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FIGURE 3
GO enrichment analysis. (A) Enriched biological processes; (B) Enriched mol

complete separation of tumor and normal tissue samples on the first
principal component (explanatory power 41.2%) (R* Y = 0.89, Q* =
0.82), indicating a strong explanatory power of gene expression for
sample types. Volcano plot (Figure 2A) was used to screen DEGs
based on the statistical difference of gene expression level only,
which was used to distinguish the abnormal expression genes in
tumor tissues from normal tissues, and did not involve the
association analysis with clinical prognosis outcome; The core
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ecular functions; (C) Enriched cellular components.

genes related to prognosis were gradually screened through lasso
regression (Section 2.2) and multiple regression (Section 2.5).
Differential expression analysis (adjusted P < 0.05) identified
178 significantly upregulated genes, 200 downregulated genes,
and 23,142 non-DEGs (Figure 2B). GO enrichment analysis
demonstrated distinct functional annotations across biological
processes  (BP), (MF),
components (CC) (Figure 3).

molecular functions and cellular
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3.2 LASSO regression for feature
gene screening

The 378 significant DEGs were subjected to LASSO regression to
identify key predictive features. During variable selection, the penalty
coefficient () was systematically compressed across all 378 initial
predictors. Optimal A (A = 0.013) was determined via cross-
validation, minimizing the mean squared error while balancing
model parsimony and goodness-of-fit. This process yielded a refined
predictive model incorporating eight genes: Erb-B2, CCNDI, PIK3CA,
VEGF, KIT, PTEN, E-cadherin, and p53 (Figure 4).

3.3 Comparison of gene expression and
clinical indicators between groups

Based on qPCR results, gene expression changes were assessed
by comparing each group’s data with healthy controls. Independent
samples t-tests revealed significant differences in the expression of
Erb-B2, PIK3CA, VEGF, KIT, PTEN, E-cadherin, and p53 (P < 0.05),
whereas CCNDI showed no significant variation (P > 0.05).
Similarly, tumor markers CA125 and CA199, RBC, and the
inflammatory cytokine IL-9 exhibited statistically significant
intergroup differences (Table 3).

3.4 Subgroup analysis results

To explore the associations between molecular subtypes, clinical
indicators, gene expression, and prognosis, subgroup analyses were
performed based on four molecular subtypes of endometrial
(EC): POLE mutation (POLE),
instability (MSI), copy number low (CNL), and copy number

carcinoma microsatellite

high (CNH).No statistically significant differences were observed
in clinical indicators [TIME, CA125, CA199, hemoglobin (Hb), red
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blood cell count (RBC), platelet count (PLT), white blood cell count
(WBC), and interleukin-9 (IL-9)] among the four molecular
subtypes (all P > 0.05; Table 4). Differential expression patterns
of key genes (identified via LASSO regression) were observed across
molecular subtypes, with two genes showing statistically significant
associations. The proportion of ERBB2-positive cases varied
significantly among subtypes (P = 0.0151),the CNL subtype had
the lowest ERBB2 positivity (19%), while the POLE subtype showed
the highest (50%); VEGF positivity also differed significantly across
subtypes (P = 0.0103). The CNL subtype had the lowest VEGF
positivity (17.5%), whereas the MSI subtype showed the highest
(46.2%). For other genes (PIK3CA, CCNDI, KIT, PTEN,
E-cadherin, p53), no
expression distribution were observed across subtypes (all P >

statistically significant differences in

0.05), though trends were noted (e.g, CCNDI positivity was
highest in MSI (56.4%) and lowest in POLE (30%); Table 4).
Prognostic outcomes (good vs. poor) showed a trend across
subtypes, though not statistically significant (P = 0.2721). The
CNL subtype had the highest proportion of good prognosis cases
(73%), while the CNH subtype had the lowest (57.8%). This is
consistent with prior observations that CNH is overrepresented in
group (57.53% vs. 35.66%

the poor prognosis in good

prognosis group).

3.5 Multivariate binary logistic
regression analysis

Factors demonstrating significant differences underwent
collinearity diagnostics, revealing a variance inflation factor
(VIF) > 5 for the gene PTEN and the clinical indicator RBC,
indicating substantial multicollinearity. These variables were
subsequently excluded from further analysis. Multivariate binary
logistic regression analysis of the remaining factors identified Erb-B2

as a protective factor against poor prognosis in EC patients, while
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TABLE 3 Differential gene expression and clinical indicator analysis.

Significance Good prognosis (n = 129) Poor prognosis (n = 73)

Erb-B2 Yes 12 (9.30) 57 (78.08) 98.059 <0.001
No 117 (90.7) 16 (21.92)

PIK3CA Yes 47 (36.43) 43 (58.90) 9528 0.002
No 82 (63.57) 30 (41.10)

CCNDI Yes 55 (42.64) 38 (52.05) 1.665 0.197
No 74 (57.36) 35 (47.95)

VEGF Yes 34 (26.36) 31 (42.47) 5543 0.019
No 95 (73.64) 42 (57.53)

KIT Yes 39 (30.23) 45 (61.64) 18.935 <0.001
No 90 (69.77) 28 (38.36)

PTEN Yes 107 (82.95) 14 (19.18) 78.921 <0.001
No 22 (17.05) 59 (80.82)

E-cadherin Yes 97 (75.19) 16 (21.92) 53.686 <0.001
No 32 (24.81) 57 (78.08)

p53 Yes 84 (65.12) 11 (15.07) 46.873 <0.001
No 45 (34.88) 62 (84.93)

CA125(U/mL) 50.14 + 3.48 52.25 + 271 ~4.484 <0.001

CA199(U/mL) 55.08 + 3.03 58.36 + 3.3 ~7.144 <0.001

Hb(g/L) 132,07 + 10.08 133.27 + 9.96 -0.812 0418

RBC(x10"/L) 491 + 0.06 423 +0.33 23.067 <0.001

PLT (x10°/L) 205.13 + 8.5 207.28 + 8.19 -1.751 0.081

WBC(x10°/L) 458 +0.39 465+ 0.3 -1.266 0.207

IL-9 (ng/L) 89.3 + 8.73 103.2 + 6.32 ~11.946 <0.001

TABLE 4 Results of multivariate binary logistic regression analysis.

Standard error 95% ClI
Lower limit Upper limit

Erb-B2 -3.57 0.889 16.118 <0.001 0.028 0.005 0.161

PIK3CA -0.353 0.768 0.212 0.646 0.703 0.156 3.162

VEGF -0.361 0.818 0.195 0.659 0.697 0.14 3.465

KIT -0.318 0.804 0.157 0.692 0.728 0.151 3.516

E-cadherin 2207 0.841 6.881 0.009 9.088 1.747 47.277

P53 2515 0.955 6.936 0.008 12.372 1.903 80.434

CA125 0.364 0.139 6.825 0.009 1.439 1.095 1.89

CA199 0.371 0.136 7.485 0.006 1.449 1.111 1.891

IL-9 0.258 0.08 10.316 0.001 1.294 1.106 1.515
Constant -65.329 17.709 13.609 <0.001 0
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TABLE 5 Cox proportional hazards regression results.

10.3389/fgene.2025.1631060

Project Regression coefficient Lower confidence interval Upper confidence interval
CA125 0.02 1.03 0.96 11
CA199 0.06 1.06 0.99 113

IL-9 0.02 1.02 1 1.05
Er-bB2 -0.01 0.99 0.59 1.66
E-cadhein 0.04 1.04 0.65 1.67
P53 -0.22 0.8 05 1.27
Survival Curves by Group with Log - rank Test
Strata == 0 == 1
1.00+
= 0.751
%
©
Qo
2
o 0.50+
©
2
2
3 Log-rank
@ 0.251 .
p =0.022
0.00+1
0 10 20 30 40 50 60
Time
Number at risk
%O 129 118 110 100 93 88 80
n1{ 73 68 59 49 45 37 33
0 10 20 30 40 50 60
Time (month)
FIGURE 5

Kaplan-Meier survival curves for endometrial carcinoma (EC) patients. Note: 0 = good prognosis group; 1 = poor prognosis group.

E-cadherin3 and p53 emerged as risk factors for adverse outcomes.
Clinical markers CA125, CA199, and IL-9 were also significantly
associated with increased risk of poor prognosis (Table 5).

3.6 Survival analysis results
To verify the clinical effectiveness of prognostic grouping,

K-M survival analysis was conducted. The results showed
that the 5-year survival rate of the good prognostic group

Frontiers in Genetics

(62.0%-100%) was significantly higher than that of the poor
prognostic group (45.2%-100%). The Log rank test confirmed
that there was a statistically significant difference in survival
curves between the two groups, which proves that the initial
prognostic grouping has clinical significance. (P < 0.05;
Figure 5). Cox proportional hazards regression analysis
incorporating factors identified by logistic regression revealed
hazard ratios (HR) < 1 for Erb-B2 and p53, indicating protective
effects, while E-cadherin exhibited an HR > 1, signifying
increased risk. Clinical markers CA125, CA199, and IL-9 also

07 frontiersin.org
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TABLE 6 Subgroup analysis results.

POLE mutation Microsatellite

10.3389/fgene.2025.1631060

Copy number low

Copy number high

instability
TIME 47.20 £ 21.15 44.18 £ 19.92 45.40 + 19.79 45.88 + 19.68 0.093 0.964
CA125 51.42 + 3.37 51.52 £ 3.25 50.39 * 3.60 50.94 + 3.26 1.006 0.391
CA199 56.58 + 3.19 55.76 + 3.83 56.45 + 3.51 56.33 + 3.41 0.365 0.778
Hb 131.41 + 11.84 132.93 +10.72 134.36 + 9.16 131.14 £ 10.05 1.342 0.262
RBC 4.74 £ 0.28 4.61 £ 0.42 4.70 £ 0.39 4.65 £ 0.37 0.61 0.609
PLT 208.73 + 10.56 205.96 + 8.03 204.26 + 8.77 206.73 + 8.04 1.474 0.223
WBC 4.67 £ 0.44 4.59 £ 0.39 4.54 + 0.35 4.65 £ 0.34 1.168 0.323
1L-9 96.27 + 11.19 93.46 + 10.81 93.92 + 10.27 94.76 + 10.30 0.288 0.834
ERBB2 Yes 5 (50%) 16 (41%) 12 (19%) 36 (40%) 0.0151*
ERBB2 No 5 (50%) 23 (59%) 51 (81%) 54 (60%)
PIK3CA Yes 5 (50%) 12 (30.8%) 30 (47.6%) 43 (47.8%) 0.2811*
PIK3CA No 5 (50%) 27 (69.2%) 33 (52.4%) 47 (52.2%)
CCND1 Yes 3 (30%) 22 (56.4%) 23 (36.5%) 45 (50%) 0.1351°*
CCND1 No 7 (70%) 17 (43.6%) 40 (63.5%) 45 (50%)
VEGF Yes 3 (30%) 18 (46.2%) 11 (17.5%) 33 (36.7%) 0.0103*
VEGF No 7 (70%) 21 (53.8%) 52 (82.5%) 57 (63.3%)
KIT Yes 5 (50%) 22 (56.4%) 19 (30.2%) 38 (42.2%) 0.0616*
KIT No 5 (50%) 17 (43.6%) 44 (69.8%) 52 (57.8%)
PTEN Yes 5 (50%) 22 (56.4%) 42 (66.7%) 52 (57.8%) 0.573*
PTEN No 5 (50%) 17 (43.6%) 21 (33.3%) 38 (42.2%)
E-cadherin Yes 2 (20%) 23 (59%) 36 (57.1%) 52 (57.8%) 0.1481°
E-cadherin No 8 (80%) 16 (41%) 27 (42.9%) 38 (42.2%)
P53 Yes 3 (30%) 18 (46.2%) 34 (54%) 40 (44.4%) 0.4754*
P53 No 7 (70%) 21 (53.8%) 29 (46%) 50 (55.6%)
Prognostic outcomes Good 6 (60%) 25 (64.1%) 46 (73%) 52 (57.8%) 0.2721*
Prognostic outcomes Poor 4 (40%) 14 (35.9%) 17 (27%) 38 (42.2%)

“Indicates row Fisher exact test.

showed HR > 1, correlating with elevated risk of adverse
outcomes (Table 6; Figure 6).

3.7 Construction of random forest model

A random forest model was constructed using the screened
clinical indicators and genetic markers. Feature importance analysis
revealed that CA199 exhibited relatively prominent positive
importance in the model, suggesting its potential role as a key
variable in correlation analyses or predictive modeling. Random
forest feature importance ranking: CA199 (0.035)>IL-9 (0.028)
>CA125 (0.022)>Erb-B2 (0.018); The decision tree is based on
clinically detectable indicators to construct a hierarchical rule
(Figure 7C) when CA199 > 56.8 U/mL (the clinical routine
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detection threshold is about 37 U/mL), the risk of poor prognosis
is 2.3 times higher than below the threshold (68.7% vs. 29.4%); If
both CA199 > 56.8 U/mL and CA125 > 51.2 U/mL are met, the risk
of poor prognosis further increases to 72.3% (much higher than the
overall poor prognosis rate of 36.1%) In contrast, E-cadherin, p53,
and Erb-B2 displayed balanced but lower importance scores,
indicating weaker contributions to outcome prediction.
Directional importance analysis demonstrated variability in the
magnitude and direction of variable impacts across events.
CA199 showed higher positive importance for Event two (poor
prognosis, represented by longer blue bars), whereas IL-9 exerted
notable negative importance for Event 1 (favorable prognosis,
indicated by longer red bars).

The decision tree diagram illustrated branching rules based on

thresholds of CA125 and CA199 levels. Starting from the root node,
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Random Forest model outputs (A) Feature importance plot; (B) Variable importance plot; (C) Decision tree; (D) Variable interaction matrix.

data partitioning proceeded through sequential splits determined by

—0.473) between Erb-B2 and

strong negative correlation (r =

their

interconnected

roles

these biomarkers, ultimately forming terminal leaf nodes for

outcome classification. Interaction matrix analysis highlighted
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4 Discussion

EC, one of the most common malignancies in the female
reproductive system, poses a significant threat to patient health.
Beyond causing debilitating symptoms such as abnormal vaginal
bleeding, discharge, and pain that severely impair quality of life, EC
progression often involves local invasion and distant metastasis,
markedly increasing complications and mortality risks (Gao et al.,
2025). EC,
comprehensive staging surgery, extrafascial hysterectomy, and

Current surgical interventions for including
laparoscopic procedures, yield variable prognoses influenced by
tumor stage, histopathological subtype, and therapeutic approach
(Cao et al., 2025). Given this severe disease burden and complex
clinical management and prognostic landscape, our study employed
bioinformatics to identify DEGs in EC and further constructed Cox
proportional hazards and random forest models, providing
clinicians with comprehensive and precise tools to better
understand patient conditions and improve prediction of
poor prognosis.

Through bioinformatics analysis, this study first screened
significant DEGs, then selected feature genes via LASSO
with the

prognosis of EC patients. The results suggest a potential

regression, and investigated their associations
unique regulatory mechanism for Erb-B2 in EC, hypothesizing
that Erb-B2 may delay disease progression and improve
prognosis by activating certain tumor-suppressive signaling
pathways or inhibiting the expression of proteins involved in
tumor cell invasion and metastasis (Ye et al., 1996). Subsequent
research could validate its specific mechanisms through cellular
function experiments and explore whether enhancing Erb-B2
expression or activity could lead to the development of novel
therapeutic strategies. In contrast, E-cadherin3 and p53,
identified as risk genes, exhibited abnormal expression that
negatively impacted EC prognosis. As a member of the cell
adhesion molecule family, downregulated E-cadherin3 may
disrupt intercellular junctions, enabling tumor cells to breach
the basement membrane and undergo invasion and metastasis
(Adzraku et al., 2023). Additionally, p53 showed an odds ratio
(OR) of 12.372, indicating a strong association with EC
prognosis, consistent with Bourdon’s findings (Bourdon,
2007). p53 is a critical tumor-suppressor gene in humans.
Under normal physiological conditions, p53 protein responds
to intracellular stress signals such as DNA damage (Wang et al.,
2023), regulating the expression of downstream target genes to
induce cell cycle arrest, DNA repair, or apoptosis, thereby
maintaining genomic stability (Liu et al., 2024). However,
during tumorigenesis, p53 frequently undergoes mutation
(Kennedy and Lowe, 2022), and mutant p53 not only loses its
original tumor-suppressive functions but may also acquire new
pro-cancer functions (Chen et al., 2022). In EC, the high OR
value of p53 suggests widespread mutation, with mutant p53
potentially worsening prognosis through multiple pathways.
Clinically, CA125, CA199, and IL-9, identified as risk factors
for poor prognosis, align with previous research on tumor
markers and inflammatory cytokines in tumor progression
(Zhao et al., 2021). The molecular subtyping analysis of our
EC cohort, based on TCGA classification (POLE mutation, MSI,
CNL, and CNH), revealed critical associations between subtype-
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specific characteristics, key gene expression, and clinical
outcomes, enriching our understanding of EC heterogeneity.
Notably, the CNL subtype exhibited the highest proportion of
favorable prognosis (73%), consistent with prior observations
that CNL is associated with better clinical outcomes due to its
lower genomic instability and reduced aggressive features
(Onoprienko et al., 2024). These indicators not only reflect
tumor burden but may also participate in regulating the
tumor microenvironment (Kartikasari et al., 2021). Therefore,
dynamic monitoring of their levels can help clinicians timely
assess treatment efficacy and adjust interventions.

Survival and random forest models constructed using the
selected genes and clinical indicators demonstrated promising
clinical utility. Survival curves showed significant differences in
survival outcomes between EC patients with good and poor
prognoses, providing an intuitive basis for initial clinical
prognostic assessment. If there is a lack of K-M analysis to
validate the effectiveness of grouping, the subsequent association
analysis of the model for ‘prognostic grouping’ will lose its clinical
basis. Therefore, K-M analysis is a key validation step that connects
clinical grouping with statistical models. Clinically, CA19-9 could
serve as a core indicator for prognostic evaluation in EC patients.
Regular monitoring of its levels, combined with CA125 and IL-9,
would enable dynamic assessment of disease progression and
treatment response. Patients with abnormally elevated marker
levels require close vigilance for poor prognosis risks and prompt
treatment adjustments. Meanwhile, genetic testing for Erb-B2, p53,
and E-cadherin in newly diagnosed EC patients can clarify their
genetic status. For those with Erb-B2 overexpression or p53
mutation, targeted therapies (e.g, anti-Erb-B2
monoclonal antibodies) could be considered; for patients with

combined

E-cadherin expression loss, strategies to restore its function, such
as immunomodulatory therapy, warrant exploration.

From a clinical practice perspective, the results of the random
forest model have clear translational value: (1) CA199, CA125, and
IL-9 are all routine serum testing indicators in clinical practice,
which can be carried out in primary hospitals For preoperative
patients, these three indicators can be used to quickly screen high-
risk populations, and more intensive postoperative follow-up is
recommended as a priority. (2) For patients with high levels of
CA199 and CA125, preoperative neoadjuvant therapy (such as
chemotherapy combined with anti angiogenic drugs) can be
considered to reduce tumor burden and postoperative recurrence;
(3) Although the importance of Erb-B2 is relatively low, its inclusion
in the model as a target for approved targeted drugs (such as
trastuzumab) provides a basis for precise stratification and
targeted therapy. For example, for patients with Erb-B2 positive
and CA199 normal, postoperative combined anti-Erb-B2 treatment
can further reduce the risk of recurrence and avoid overtreatment
(Wang et al., 2022).

5 Conclusion

In conclusion, this study successfully identified key DEGs through
bioinformatics analysis and constructed a Cox proportional hazards
model and a random forest model, providing important genetic targets
and theoretical evidence for the early diagnosis and prognostic
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assessment of EC. These findings empower clinicians to predict
prognosis more accurately and develop personalized treatment plans.
However, this single-center study may produce selection bias,
necessitating further validation through in wvitro and in vivo
experiments targeting these key genes (Erb-B2, p53 and E-cadherin)
to explore innovative therapeutic strategies and improve treatment
outcomes and quality of life for EC patients.
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