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Introduction: Cognitive impairment in older adults poses a significant global
public health concern, with environmental metal exposure emerging as a major
risk factor. However, the combined effects of multiplemetals and themodulatory
roles of demographic variables remain insufficiently explored.

Methods: This study analyzed data from four NHANES cycles (1999–2000,
2001–2002, 2011–2012, 2013–2014), comprising 1,230 participants aged ≥ 60
years. Urinary concentrations of nine metals and creatinine were quantified in
conjunction with demographic variables. Cognitive status was classified using
data-driven quartile thresholds on the Digit Symbol Substitution Test, CERAD
Word-Learning Test, and Animal Fluency tests. Six machine learning algorithms
were trained and evaluated using sensitivity (SN), specificity (SP), accuracy (ACC),
Matthews correlation coefficient (MCC) and AUC.

Results: The eXtreme gradient boosting (XGBoost) model demonstrated superior
performance across all metrics (SN = 0.78, SP = 0.84, ACC = 0.81, MCC = 0.62,
AUC = 0.90), and was selected for subsequent interpretation. SHAP analysis
identified educational level, age, race/ethnicity, and creatinine as primary
predictors. Elevated thallium and molybdenum levels and reduced barium
levels also contributed to cognitive risk. Ultimately, a user-friendly webserver
was deployed for the predictive model and is freely accessed at http://bio-
medical.online/admxp/.

Discussion: The associated webserver enables accessible risk screening and
underpins precision prevention strategies in aging populations.
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1 Introduction

Cognitive impairment in older adults constitutes a significant and escalating global
public health challenge, with profound implications for quality of life and healthcare
provision (Javitt, 2023; Petersen et al., 2018). A growing body of evidence implicates
environmental metal exposure as a contributor to cognitive decline. For example, Gao et al.
demonstrated that aluminum exposure induces cognitive deficits by promoting abnormal
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tau phosphorylation via activation of the ERK signaling pathway
(Gao et al., 2025). Similarly, Li et al. reported that elevated urinary
levels of barium, cadmium, lead, and tungsten were associated with
diminished cognitive scores, whereas higher levels of molybdenum,
cobalt, strontium, and thallium correlated positively with cognitive
performance among older adults in the United States (Li et al., 2025).
These findings highlight the complex, metal-specific effects of
environmental exposure on cognitive health. However, most
existing studies have focused on the individual metals, thereby
overlooking potential synergistic or antagonistic interactions
among multiple metals that may jointly influence cognitive
function (Wang et al., 2022; Qing et al., 2024; Li et al., 2023).

Urinary metal concentrations have emerged as valuable
biomarkers for assessing both acute and chronic metal exposure,
owing to their noninvasive collection and ability to reflect total body
burden (Qing et al., 2024; Price, 1982; Martinez-Morata et al., 2023).
Shafie and Ashour provided a comprehensive review of advanced
colorimetric and fluorometric techniques for urinary cadmium
detection, thereby underscoring the relevance of urinary
biomarkers for monitoring metal toxicity in vulnerable
populations, particularly children (Shafie and Ashour, 2025). In a
subsequent study, Domingo-Relloso et al. found that elevated
urinary levels of arsenic, cobalt, copper, uranium, and zinc
correlated with associated with poorer performance on cognitive
tests and an elevated risk of dementia among older adults
(Domingo-Relloso et al., 2024).

Large-scale population-based investigations have further
substantiated the link between environmental metal exposure and
adverse cognitive outcomes. Wu et al. analyzing NHANES
2011–2014 data, reported that urinary cadmium was negatively
associated with cognitive performance, whereas selenium exerted
a protective effect (Wu et al., 2024). Similarly, Liu et al. undertook a
cross-sectional study in China and found that elevated plasma levels
of iron and zinc were positively associated with cognitive function,
whereas higher nickel and lead levels were inversely associated with
cognitive performance (Hong et al., 2024).

Despite recent advances, the interactive effects of multiple
urinary metals, as well as the modulatory roles of demographic
factors (e.g., age, sex, education), remain inadequately explored.
Moreover, predictive models that integrate such
multidimensional variables to identify individuals at risk of
cognitive dysfunction are limited. To address these gaps, this
study aimed to construct a predictive model for cognitive
impairment in older adults by integrating urinary metal
profiles with demographic characteristics derived from
NHANES data. A suite of machine learning algorithms and
SHAP (SHapley Additive exPlanations) interpretation
techniques were employed to improve model transparency and
predictive accuracy. Additionally, an accessible online analysis
platform was developed to enable users to input urinary metal
concentrations and demographic variables for estimating the risk
of cognitive dysfunction. This platform facilitates routine
cognitive health monitoring and may serve as an early
screening tool for high-risk populations, offering advantages
over conventional neuropsychological assessments in terms of
convenience and scalability. Ultimately, the study advances
precision prevention of cognitive decline and informs targeted
intervention strategies for aging populations.

2 Materials and methods

2.1 Sample collection

We obtained demographic, questionnaire, and laboratory data
from four NHANES cycles (1999–2000, 2001–2002, 2011–2012, and
2013–2014), merged records via the unique participant identifier,
and restricted our sample to participants aged 60 years or older with
at least one completed cognitive assessment. In the 1999–2000 and
2001–2002 cycles, only Digit Symbol Substitution Test (DSST)
scores were available, whereas the 2011–2012 and
2013–2014 cycles additionally incorporated the CERAD Word-
Learning Test and Animal Fluency Test (AFT). Each participant’s
laboratory profile comprised ten urinary markers, including
creatinine (mg/dL) and nine metals quantified in ng/mL (Barium,
Cadmium, Cobalt, Cesium, Molybdenum, Lead, Antimony,
Thallium, and Tungsten). This panel provides a comprehensive
assessment of metal exposure. These procedures yielded four
harmonized analytic cohorts for subsequent predictive
modeling (Figure 1).

We classified cognitive function using data-driven quartile
thresholds, given the absence of universally accepted cut-offs for
CERAD, AFT, or DSST scores. Previous NHANES-based studies
similarly defined cognitive impairment as scores within the lowest
quartile for each test, and multiple investigations have utilized the
25th percentile of DSST raw scores to identify low performers
(Wang et al., 2022; Gong et al., 2021). Accordingly, in each of
the four age-eligible (≥ 60 years) NHANES cohorts (1999–2000,
2001–2002, 2011–2012, 2013–2014), participants scoring below the
25th percentile on any administered test were classified as
“cognitively impaired”, whereas those above the 75th percentile
were classified as having normal cognitive function. This
classification approach yielded 651 cognitively impaired and
579 cognitively normal individuals (total N = 1,230), which were
carried forward as our positive and negative sets. Then the dataset
was randomly partitioned into training and testing sets using an 8:
2 ratio for the development and evaluation of machine
learning models.

2.2 Measurement of urinary metals levels

Urinary metal concentrations were measured using inductively
coupled plasma mass spectrometry (ICP-MS), a highly sensitive
analytical technique capable of detecting trace elements at
concentrations as low as parts per trillion. Urine samples were
prepared by diluting them in a 1:9 ratio with 2% (v/v) double-
distilled, concentrated nitric acid containing iridium and rhodium as
internal standards. These internal standards help correct for
potential signal drift and matrix effects during analysis, ensuring
accurate quantification of metal concentrations. The prepared
samples were then introduced into the ICP-MS instrument,
where the high-temperature argon plasma ionizes the sample,
and the resulting ions are separated and detected based on their
mass-to-charge ratios. This method allows for precise and
simultaneous quantification of multiple metals in biological
samples, making it particularly suitable for biomonitoring studies
involving trace metal exposure.
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2.3 Machine learning algorithms

Machine learning techniques have become integral to
biomarker discovery and disease diagnosis, offering advanced
capabilities for analysing complex biological data (Zhou et al.,

2025; Yang et al., 2024; Kang et al., 2020; Liu XW. et al., 2024;
Yang Z. et al., 2023; Nayarisseri et al., 2021; Levin et al., 2017; Liu
et al., 2024b; Sun et al., 2022; Pan et al., 2024). In this study, six
machine learning algorithms, including Gaussian Naive Bayes
(GNB), Random Forest (RF), K Nearest Neighbors (KNN),

FIGURE 1
The workflow for the study. (A) data collection and processing flow, (B) predictive modeling process.
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Support Vector Machine (SVM), Lasso and eXtreme Gradient
Boosting (XGBoost) were employed to estimate the risk of
cognitive dysfunction. All models were trained on the training
dataset and their performance evaluated on the hold-out testing
dataset. During model training, five-fold cross-validation was
employed, and hyperparameter optimization was performed
using the GridSearchCV function from the scikit-learn library.
The optimal hyperparameter configurations and their
corresponding search ranges for each model are summarized
in Supplementary Table S1.

2.4 Evaluation of machine learning model

Model performance was assessed using multiple evaluation
metrics (Pham et al., 2023a; Pham et al., 2023b; Zou et al., 2023),
including sensitivity (SN), specificity (SP), accuracy (ACC), and
Matthew’s correlation coefficient (MCC), as defined in Equation 1.

SN � TP

TP + FN

SP � TN

TN + FP

ACC � TP + TN

TP + TN + FN + FP

MCC � TP*TN − FP*FN�������������������������������������
TN + FP( ) TN + FN( ) TP + FP( ) TP + FN( )√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where TP, TN, FP, and FN denote the numbers of true positives, true
negatives, false positives, and false negatives, respectively. Moreover,
the area under the receiver operator curve (AUC) and receiver
operating characteristic curve (ROC) analysis were used to access
model performance (Zulfiqar et al., 2023; Chen et al., 2024).

2.5 Interpretable methods of prediction
model based on SHAP

SHAP analysis provides an explanation framework for
individual predictions (Lundberg and Lee, 2017; Yang H.
et al., 2023; Wang et al., 2023). It originates from the Shapley
value concept in cooperative game theory. The objective is to
elucidate a given instance prediction by quantifying each feature
contribution. In this study, SHAP is primarily employed to rank
model variables by importance within the developed framework.
SHAP can effectively interpret each variable contribution to the
model and mitigate the enduring “black box” issue in
machine learning.

2.6 Statistical analysis

In the baseline analysis, categorical variables (“Gender,” “Race/
Ethnicity,” “Education Level,” and “Marital Status”) were compared
between cognitive impairment and normal cognition groups using
Pearson’s chi-square test, while continuous variables were assessed
via the Wilcoxon rank-sum test. For these continuous measures,
group-specific means and standard deviations were calculated. All
statistical analyses were conducted using R (version 4.4.1), ensuring

consistent implementation of chi-square and nonparametric testing
procedures commonly employed in NHANES-based studies.

3 Results

3.1 Baseline characteristics

We analysed data from 1,230 participants (579 cognitively normal
and 651 cognitively impaired) and observed that key demographic
factors. As shown in Table 1, sex, race/ethnicity, education level, marital
status, and age were all significantly associated with cognitive status
across cohorts. Higher educational level demonstrated the strongest
association (p = 4.45E-64), reflecting large-scale evidence that extended
years of schooling confer resilience against cognitive decline. Among
urinary biomarkers, creatinine, barium, cadmium, lead, antimony, and
thallium exhibited significant between-group differences. These
observations align with prior NHANES-based analyses linking
elevated urinary heavy metals to impaired performance on speeded
cognitive tests (Wang et al., 2022). These results underscore that
integrating demographic variables and urinary metal profiles
markedly improves the predictive accuracy of models designed to
identify older adults at high risk for cognitive impairment.

3.2 Evaluation and comparison of model

All models were trained on an identical training dataset and
evaluated on a common testing dataset using the features sets
summarized in Table 1. As shown in Figure 2A and detailed
Table 2, the XGBoost model outperformed all other algorithms
across all evaluation metrics. Specifically, XGBoost achieved a SN of
0.78, representing a 28% improvement over KNN, and a SP of 0.84,
representing a 23% increase relative to KNN. Compared with the RF
model, which ranked second in ACC and MCC, XGBoost improved
ACC by 5% and MCC by 9%. The ROC and AUC values are
presented in Figure 2B, where the XGBoost model demonstrates the
best predictive performance, achieving an AUC of 0.90, at least 2.5%
higher than the other models. Therefore, the predictive model based
on XGBoost was ultimately selected for subsequent analyses.

3.3 Visualization of feature importance

Following the initial analysis, SHAP was applied to interpret the
XGBoost-based predictive model. Permutation feature importance
analysis provided insights into the relative significance of all
variables within the model (Liu et al., 2023). As shown in
Figure 3A, the top ten contributing variables were identified, with
Education level, Age, Race/Ethnicity, Gender and Creatinine
emerging as the most influential features for predicting impaired
cognitive function. Furthermore, the associations between the top
ten variables and predicted cognitive impairment risk were
validated. The SHAP summary plot (Figure 3B) illustrates the
overall effect of heavy metals and baseline variables on cognitive
impairment risk, ranked in descending order of feature importance.
In this context, a positive SHAP value indicates a positive association
between feature value and impaired cognitive risk, with larger values

Frontiers in Genetics frontiersin.org04

Ren et al. 10.3389/fgene.2025.1631228

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1631228


corresponding to greater contribution. Among demographic
characteristics, educational level exhibited an inverse association
with cognitive impairment risk, whereas age demonstrated a positive
association. Additionally, the cognitive impairment risk was higher
in men than in women. Overall, demographic factors emerge as the
primary influences on cognitive dysfunction.

The SHAP analysis identified a significant positive correlation
between urinary creatinine levels and the risk of cognitive
impairment. This finding aligns with previous research indicating

that elevated urinary albumin-to-creatinine ratio (UACR) is
associated with an increased risk of cognitive decline, even at low
UACR levels (Teng et al., 2025; Liu et al., 2024c; Ahmed et al., 2024).
Renal dysfunction, as indicated by abnormal creatinine levels, may
contribute to cognitive impairment through various mechanisms,
such as the accumulation of neurotoxic substances due to impaired
kidney function, leading to neuronal damage and cognitive decline.

Additionally, the SHAP analysis revealed a positive association
between high urinary levels of thallium and molybdenum and the

TABLE 1 Characteristics of the study population.

Characteristics Overall (n = 1,230) Cognitive normal (n = 579) Cognitive impairment (n = 651) P value

Gender 7.61E-06

Male 609 247 362

Female 621 332 289

Race/Ethnicity 1.75E-23

Mexican American 159 43 116

Other Hispanic 101 27 74

Non-Hispanic White 587 364 223

Non-Hispanic Black 279 96 183

Other Race 104 49 55

Education Level 4.45E-64

Less Than 9th Grade 238 14 224

9-11th Grade 173 51 122

High School Grad/GED 273 135 138

Some College or AA degree 284 179 105

College Graduate or above 258 199 59

Refused 1 1 0

Don’t Know 3 0 3

Marital Status 3.67E-06

Married 704 376 328

Widowed 259 88 171

Divorced 147 68 79

Separated 29 8 21

Never married 68 27 41

Living with partner 21 11 10

Refused 2 1 1

Age 69.84 (7.10) 67.72 (6.20) 71.73 (7.32) 5.21E-22

Creatinine (mg/dL) 104.77 (67.61) 97.98 (63.50) 110.81 (70.56) 9.30E-04

Barium (ng/mL) 1.63 (3.10) 1.61 (2.00) 1.65 (3.82) 2.55E-04

Cadmium (ng/mL) 0.52 (0.67) 0.45 (0.44) 0.59 (0.81) 7.59E-04

Cobalt (ng/mL) 0.53 (1.63) 0.53 (1.80) 0.53 (1.46) 1.56E-01

Cesium (ng/mL) 4.87 (3.23) 4.99 (3.43) 4.76 (3.03) 4.32E-01

Molybdenum (ng/mL) 50.79 (47.12) 50.98 (51.56) 50.62 (42.83) 8.95E-02

Lead (ng/mL) 0.87 (1.26) 0.72 (0.73) 1.01 (1.58) 2.20E-02

Antimony (ng/mL) 0.09 (0.19) 0.09 (0.23) 0.09 (0.14) 2.56E-02

Thallium (ng/mL) 0.16 (0.14) 0.17 (0.12) 0.16 (0.14) 1.89E-02

Tungsten (ng/mL) 0.11 (0.27) 0.11 (0.31) 0.11 (0.22) 3.70E-01

AFT Score 16.49 (6.14) 20.85 (4.92) 12.74 (4.34) 3.08E-88

CERAD Score 24.44 (7.50) 29.72 (4.27) 20.00 (6.70) 5.97E-83

DSST score 44.90 (20.55) 61.37 (12.46) 29.34 (13.26) 1.35E-159
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risk of cognitive impairment. This observation is consistent with
prior studies demonstrating that exposure to multiple heavy metals,
including thallium and molybdenum, is linked to decreased
cognitive performance (Fu et al., 2024). These metals may exert
neurotoxic effects through mechanisms such as oxidative stress,
inflammation, and direct neuronal toxicity, ultimately leading to

cognitive deficits (Zhang et al., 2024). Conversely, we found that low
urinary barium level was associated with an increased risk of
cognitive impairment. This finding is supported by research
indicating that lower barium concentrations, in conjunction with
higher exposure to other metals like lead and cadmium, may
exacerbate neurotoxic effects and contribute to cognitive decline
(Li et al., 2025). These results suggest that barium may have a
protective or antagonistic role in the context of multi-metal
exposure, and its deficiency could enhance the toxicity of other
metals, negatively impacting cognitive function.

3.4 Webserver implementation

To facilitate researchers access, a user-friendly webserver was
deployed for our predictive model, freely accessed at http://bio-
medical.online/admxp/. The server’s homepage is presented in
Figure 4. The step-by-step instructions for using the webserver are

FIGURE 2
Performance comparison of different prediction models. (A) SP, SN, MCC and ACC, (B) the ROC and AUC.

TABLE 2 Performance comparison of six models on the testing dataset.

Method SN SP ACC MCC

GNB 0.64 0.83 0.73 0.47

KNN 0.50 0.61 0.55 0.11

RF 0.78 0.75 0.76 0.53

SVM 0.68 0.59 0.64 0.27

Lasso 0.75 0.79 0.77 0.54

XGBoost 0.78 0.84 0.81 0.62

FIGURE 3
The SHAP summary plot. (A) ranking of feature importance, with demographic features in red and urinarymarkers in blue, (B) the SHAP summary plot
of all variables and cognitive impairment risk.

Frontiers in Genetics frontiersin.org06

Ren et al. 10.3389/fgene.2025.1631228

http://bio-medical.online/admxp/
http://bio-medical.online/admxp/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1631228


as follows: users can input the relevant characterization indicators into
the input box or use the sample input provided by the “Example”
button. They can then click the “Submit” button to obtain prediction
results. A resulting score greater than 0.5 indicates cognitive
dysfunction, while a score of 0.5 or below indicates normal
cognitive function.

4 Discussion

In this study, we demonstrated that integrating urinary metal
biomarkers with demographic characteristics markedly improves
the prediction of cognitive impairment in older adults. By applying
XGBoost on harmonized NHANES data and interpreting the model
with SHAP and permutation feature importance, we identified
educational level, age, race/ethnicity, and Gender as the foremost
determinants of cognitive decline risk, with elevated levels of
cadmium, lead, thallium, and other heavy metals exerting
additional contributory effects. The superior performance of the
XGBoost model (AUC = 0.90, SN = 0.78, SP = 0.84) underscores its
utility for early, non-invasive screening, outperforming traditional
neuropsychological tests in scalability and objectivity.

Moreover, the deployment of a user-friendly web server provides an
accessible platform for researchers and clinicians to estimate individual
risk profiles in real time, facilitating routine cognitive healthmonitoring
and guiding precision prevention strategies. Our findings highlight the
critical role of socio-environmental factors in geriatric cognitive health

and advocate for multifactorial risk assessment frameworks. Future
work should validate this model in longitudinal cohorts, explore
additional environmental exposures and genetic moderators, and
assess the impact of targeted interventions—such as educational
programs or heavy-metal chelation—on attenuating cognitive
decline. Collectively, this integrative approach lays the groundwork
for personalized screening and intervention paradigms to mitigate the
growing burden of age-related cognitive disorders.

Despite the promising findings, several limitations should be
acknowledged. First, the cognitive assessments used in this study
were limited to individuals aged 60 years and older, in accordance
with the NHANES protocol. Consequently, the predictive model
developed herein is applicable only to this demographic, thereby
limiting its generalizability to younger populations.

Second, although the integration of demographic characteristics
with urinarymetal biomarkers offers a robust predictive framework, the
relatively limited sample size and feature set restricted the use of deep
learning methodologies. Deep learning models generally require large-
scale datasets to achieve optimal performance. The current sample size
may be inadequate for training complex deep neural networks without
incurring the risk of overfitting or reduced generalizability.

Third, the exclusive reliance on NHANES data for both model
training and evaluation constitutes a limitation. Although cross-
validation techniques were employed to mitigate overfitting, the lack
of external validation on independent cohorts limits the ability to
assess the model’s generalizability across diverse populations
and settings.

FIGURE 4
The homepage for the webserver.
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Fourth, the use of NHANES data across multiple survey cycles
introduces potential cohort effects and temporal variability. Despite
efforts to harmonize variable definitions and apply consistent
preprocessing procedures, unmeasured temporal shifts in
participant characteristics, exposure sources, or laboratory
methodologies may have influenced the results. For example,
temporal changes in public health policies, industrial emissions,
or dietary habits could affect urinary metal concentrations.
Furthermore, periodic revisions to NHANES laboratory protocols
or cognitive assessment procedures may introduce inter-cycle
variability. Although integrating data from multiple cycles
enhances generalizability, temporal dynamics remain a potential
source of bias.

In summary, despite the aforementioned limitations, this study
provides valuable insights into the early prediction of cognitive
impairment in older adults and establishes a foundation for
future research.
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