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Introduction: Rapid inference of ancestral origin fromDNA evidence is critical in
time-sensitive forensic investigations, particularly during the initial hours when
crucial investigative decisions must be made. Although comprehensive analyses
using multiple genetic markers provide thorough results, they often require
significant processing time and resources. Y-chromosome short tandem
repeats (Y-STRs) exhibit population-specific allelic distributions that facilitate
rapid analysis, making them particularly valuable for initial screening in
forensic contexts.

Methods: This study aims to enhance population classification accuracy using
Y-STR profile analysis, with a particular focus on Northeast Asian populations
that are often merged into a single group by commercial ancestry panels. We
developed a machine learning architecture centered on an attention-based
ensemble mechanism that incorporates three complementary algorithms: a
One-vs-Rest Random Forest, XGBoost, and Logistic Regression, each
configured to effectively manage imbalanced datasets.

Results: Utilizing only Y-STR data, the model achieved an overall accuracy of
80%-81% and demonstrated high stability. Notably, the model effectively
processes imbalanced datasets, generating reliable outcomes for rapid
ancestry assessment in time-critical investigations.

Discussion: By addressing a key limitation in commercial ancestry panels—their
failure to differentiate among Northeast Asian subpopulations—this framework
provides valuable preliminary guidance in forensic cases involving Asian
individuals. Consequently, our approach enhances rapid screening capabilities,
which can inform early-stage investigations while complementing subsequent,
more comprehensive genetic analyses.

Y-STR, rapid forensic screening, initial ancestry inference, machine learning, data
imbalance, Northeast Asian populations, crime scene investigation
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1 Introduction

Rapid ancestry inference from DNA evidence recovered at crime
scenes provides crucial initial guidance for forensic investigations,
particularly during the early phases when time constraints render
comprehensive genetic analyses impractical. In these scenarios,
Y-chromosome short tandem repeats (Y-STRs) offer a key
their
considerably faster than those for more comprehensive genetic

advantage: extraction and analysis protocols are
marker panels (Butler, 2011).

Northeast Asia is one of the world’s most genetically
intricate and geopolitically dynamic regions. This area, which
includes Korea, China, and Japan as its principal nations, is
characterized by populations that possess unique genetic
profiles yet share deep interconnections forged through
millennia of migration, admixture, and cultural exchange
(Horai et al., 1996; Du et al., 1997; Zhang et al., 2007; Bai
etal., 2016; Yang, 2022). The substantial genetic overlap among
these populations presents a challenge for linking genetic data to
national origin, particularly as commercial ancestry panels
often classify all Northeast Asians as a single homogeneous
group (Li et al,, 2016; Wang et al., 2019).

A significant limitation in current forensic practice is the
failure of most commercial Ancestry Informative Marker (AIM)
panels to effectively differentiate among Northeast Asian
populations, often treating them as a single genetic entity.
This
regions where distinguishing between these populations could

overgeneralization hinders investigative efforts in
provide crucial leads. Although comprehensive genetic analyses
using multiple marker types (e.g., autosomal STRs, SNPs, and
mtDNA) vyield the most definitive results, they require
substantial time and resources that are often unavailable
during the critical initial hours of an investigation (Alladio
et al., 2022).

Y-STRs have emerged as valuable tools for initial ancestry
processing than
comprehensive genetic analyses (Nazir et al, 2016). Their

screening, offering faster times more
exclusively paternal inheritance allows for the identification of
paternal lineages and provides population-specific signals that
can guide early-stage investigations (Jeong et al, 2018;
Mohapatra et al, 2019). These characteristics make Y-STR
markers particularly suitable as a rapid initial screening tool for
ancestry assessment in time-sensitive scenarios.

Previous studies have effectively utilized Y-STR haplotype and
haplogroup distributions to examine global population diversity
and identify patterns of genetic variation across geographical
regions (Kayser et al., 2003; Bai et al., 2016; Nazir et al., 2016).
Research in Northeast Asia has highlighted the application of
Y-STR data in various contexts, including the documentation of
novel mutations in Korean populations, sequence analyses of
Japanese genetic profiles, comparative studies of genetic
diversity between Tibetan and Han populations, and the
identification of distinctive genetic signatures within Hakka
communities (Horai et al., 1996; Hara et al., 2007; Bai et al,,
2016; Jung et al, 2016; Wang et al., 2019; Watahiki et al,
2019). However, much of the existing research relies heavily on
haplogroup-based approaches conducted at the group level. While

beneficial for general phylogenetic studies, these methods may lack

Frontiers in Genetics

10.3389/fgene.2025.1631529

TABLE 1 Sample distribution of Y-STR marker database.

Nation Ethnic group Database (N)
China Han 839
Hui 333
Yi 273
Korea Korean 520
Kyrgyzstan Kyrgyz 220
Mongolia Mongolia 443
Japan Japanese 960

the resolution required for the rapid, individual-level classification
needed in forensic contexts.

Traditional statistical methods, including haplotype frequency
estimation and Analysis of Molecular Variance (AMOVA), have
been used to measure genetic variation. However, for populations in
regions such as Northeast Asia that exhibit limited genetic
differentiation and extensive historical admixture, the efficacy of
these methods may be limited (Watahiki et al., 2019; Cao et al., 2022;
Li et al, 2023). Machine learning and deep learning can extract
detailed patterns from Y-STR data, offering an alternative approach
for initial ancestry inference.

This study presents a machine learning method to classify
individuals into East Asian populations using Y-STR profiles.
The method is designed for rapid initial screening in forensic
applications. The framework uses a one-vs-rest (OVR) strategy,
where a separate classification model is trained for each
population to estimate the probability that a sample belongs to
that group. The OVR approach is well-established in machine
learning, and its application is suitable here given the genetic
characteristics of Northeast Asian populations (Wang et al., 2019;
Cao et al, 2022; Li et al., 2023).

This study’s findings address a limitation of commercial
ancestry panels by offering a tool for initial ancestry inference in
cases involving individuals of Asian descent. By providing
preliminary ancestry information during the early phase of
an investigation, this approach can help manage the time gap
between the need for immediate leads and the completion
of comprehensive genetic analyses. The research contributes
to forensic methods for differentiating Asian populations
and provides a basis for initial screening in criminal
investigations.

2 Materials and methods
2.1 Y-STR sample data acquisition

In this study, Y-STR data from individuals in South Korea,
China, Japan, Mongolia, and Kyrgyzstan were analyzed using the
PowerPlex” Y System Kit. The marker panel included twenty male-
specific loci: DYS19, the multicopy marker DYS385ab, DYS3891,
DYS3891I, the DYS390-DYS393 block, and the single-copy loci
DYS437, DYS438, DYS439, DYS448, DYS487, DYS533, DYS570,
DYS576, and DYS635, along with YGATAH4 (Song et al., 2019; Li
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Ethnic Data Distribution Around East Asia
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FIGURE 1

Geographic Diversity of Ethnic Populations in Northeast Asia. The map illustrates the geographical distribution of the populations included in this
study, highlighting the complex population structure and migration patterns that have contributed to the genetic diversity of the region. Understanding
this distribution is essential for accurate forensic ancestry inference in time-sensitive investigations.

TABLE 2 Overall performance and complexity comparison of the two architectures.

Pipeline architecture Accuracy Precision Recall F1-score No. Of classifiers
OVR with Attention 0.8031 0.8085 0.8031 0.8011 7
OvO Stacking Model 0.8183 0.8357 08183 0.8103 21

TABLE 3 Detailed classification performance metrics by population for both models.

Population OvVR with attention OvO stacking model
Precision Recall F1-Score Precision Recall F1-Score

Han 0.70 0.86 0.77 0.70 0.95 0.80
Hui 0.68 0.56 0.61 0.83 0.46 0.59
Japanese 093 0.94 0.94 0.96 0.92 0.94
Korean 0.77 0.74 0.75 0.77 0.83 0.80
Kyrgyz 0.93 0.95 0.94 0.90 0.98 0.94
Mongolia 093 0.74 0.83 091 0.77 0.83
Yi 0.93 0.80 0.87 0.94 0.80 0.86
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Confusion Matrix: OvR + Meta learner
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Confusion Matrix: OvO + Meta learner
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Comparison of confusion matrices for the final classification models using OvR + Meta learner (left) and OvO + Meta learner (right). The visualization
highlights the strengths and weaknesses of each approach across different ethnic groups, showing consistent performance for Japanese and Korean
populations, while indicating misclassification challenges for certain groups such as Hui and Han.

TABLE 4 Summary of key misclassifications from confusion matrices.

True population Predicted As

OVR model errors (count)

OvO model errors (count)

Hui Han 135 161
Han Hui 59 17
Japanese Korean 20 27
Korean Japanese 21 13

TABLE 5 Pairwise OvO binary classification accuracies among ethnic groups.

Japanese Korean Mongolian

Han - 0.787 1.000 0972 1.000 0.966 0.956
Hui 0.787 - 0.989 0.976 0.981 0927 0.932
Japanese 1.000 0.989 - 0.928 1.000 0.998 1.000
Korean 0.972 0.976 0.928 - 1.000 0.993 0.974
Kyrgyz 1.000 0.981 1.000 1.000 - 0.856 1.000
Mongolian 0.966 0.927 0.998 0.993 0.856 - 0.969
Yi 0.956 0.932 1.000 0.974 1.000 0.969 -

et al,, 2020). This set of Y-STRs is frequently used for initial forensic
screening due to rapid processing times and established protocols
(Jung et al,, 2016; Mohapatra et al., 2019).

Data were compiled from publicly available sources to obviate
ethical concerns associated with new human subject participation.
Y-STR profiles for Han Chinese, Korean, and Japanese populations
were initially sourced from the YHRD online database (Fu et al,,
2023; Song et al., 2023). Data for ethnic minorities in China (Hui
and Yi) and for Mongolian and Kyrgyz populations were
subsequently obtained from scholarly literature published since

Frontiers in Genetics

2010 (Fu et al,, 2023; Song et al., 2023). The final dataset included
the Han Chinese population, the Hui and Yi ethnic minorities
from China, and populations from Mongolia, Korea, Japan, and
Kyrgyzstan.

The YHRD provides standardized and geographically diverse
data, ensuring a consistent and reliable basis for cross-population
comparisons (Su et al., 1999; Zhang et al., 2007; Ngamphiw et al.,
2011; Lee et al., 2018; GenomeAsia 100K Project, 2019; Pan and Xu,
2020; Yang, 2022). This dataset was supplemented with data
published in the late 2010s for Han, Kyrgyz, Mongolian, and Hui
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TABLE 6 Most discriminative alleles for key populations identified by the OvR model.

Population Most discriminative allele (Marker_Allele) Importance score
Kyrgyz DYS439_10 0.976
Japanese DYS439_12 0.929
Han DYS389I_12 0.907
Yi DYS448 17 0.897
Korean DYS19_16 0.879
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FIGURE 3
The importance and representative allele of each Y-STR loci marker of Han Population. The relative importance values (left y-axis) and associated
allele values (right y-axis) demonstrate which genetic markers provide the most discriminative power for identifying Han individuals in a rapid
screening context.

populations (Fu et al., 2016; Gao et al,, 2016; Nazir et al,, 2016; Jiang
etal, 2017; Li et al,, 2020). Sample sizes are detailed in Table 1, and the
geographical distribution of the populations is shown in Figure 1.

2.2 Designing ML models for ethnic
identification
2.2.1 Preprocessing for ethnic identification

The Y-STR data were preprocessed for analysis through data
standardization, quality control, and feature transformation.

Frontiers in Genetics
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First,
for compatibility with machine learning algorithms.

data from multiple sources were harmonized
As
part of quality control, records with missing values or non-
standard data formats were filtered to identify anomalies

and inconsistencies in Y-STR loci distribution across
populations. Y-STR profiles with empty values for any
marker were excluded to maintain data integrity, as

missing data can introduce bias or reduce model efficiency.
This filtering step removed entries that could otherwise
lead to wunreliable model training outcomes (Pedregosa

et al,, 2011).
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FIGURE 4
The importance and representative allele of each Y-STR loci marker of Korean Population. The consistent pattern of highly discriminative markers
explains the exceptional performance of the model for Korean samples, supporting the value of Y-STR markers for rapid nationality inference.

Second, feature transformation was performed to convert the
Y-STR data into a suitable format for machine learning. The
input data were derived from genotype information at 20 Y-STR
loci, with multi-copy markers like DYS385ab treated as separate
loci. All unique alleles at each locus, including microvariants
(e.g., 13.2), were identified and treated as distinct categories.
Subsequently, one-hot encoding was applied to transform each
allele into an independent binary feature. This process generated
a final input matrix of 245 binary features, where each feature
indicates the presence (1) or absence (0) of a specific allele at a
given locus. For the target variable, ethnic labels were converted
from string to integer format using a LabelEncoder (Pedregosa
et al., 2011).

Finally, the dataset was partitioned into training and test subsets
at an 80:20 ratio. To mitigate class imbalance, downsampling was
applied to match the sample size of the smallest population group
(Kyrgyz). This approach was intended to prevent bias in the
individual OvR models and ensure equal representation of all
populations during model training (Tougui et al, 2021; Sun
et al.,, 2022).

2.2.2 ML classification models for identification of
ethnicities in OvR based individuals

A one-vs-rest (OvR) methodology was used to address the
multi-class classification task. This approach decomposes the
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problem by training a separate binary classifier for each of the
seven populations (Wu et al., 2005). Such a strategy is advantageous
in contexts with complex class interactions, as it allows each model
to learn the specific decision boundary for a single population
against all others.

For each population, an independent binary classifier was
constructed. The model was trained using an OVR configuration
where the target population was treated as the positive class and the
remaining six populations were combined into a single negative
class. The final multi-class prediction for a given sample was
obtained by aggregating the outputs from all seven classifiers.
Three algorithms were evaluated for use as the binary classifiers:
Logistic Regression, Random Forest, and XGBoost (Rigatti, 2017; Li
et al.,, 2019).

To optimize performance, hyperparameter tuning for each
classifier was conducted using **Bayesian optimization** with
stratified k-fold cross-validation. Unlike random search, this
approach iteratively builds a probabilistic model of the objective
function to select the most promising hyperparameters for
evaluation, enabling a more efficient search of the parameter
space (Tougui et al., 2021). This process also served to assess
generalization and mitigate overfitting risks. Following
tuning, the final OvR classifiers were retrained on the
entire training dataset with their

respective optimal

hyperparameters.
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FIGURE 5

The importance and representative allele of each Y-STR loci marker of Japanese Population. The distinctive pattern observed here contributes to the
perfect classification accuracy achieved for Japanese samples, demonstrating the potential of Y-STR markers for certain Northeast Asian populations.

For supplementary sensitivity analysis, a transformer
named SelectOneFeaturePerMarker was used to reduce
dimensionality. This method selected the
feature per locus with the highest mutual information

single allele

relative to the target variable. However, all primary results
reported in this study were generated using the full 245-
feature set. The reduced 20-feature set was used only to
As
dimensionality

evaluate model robustness under feature constraints.
noted the this
reduction may discard information useful for discriminating

in Limitations section,

between closely related populations.

2.2.3 Platt Scaling based probability calibration

Machine learning models frequently encounter issues related to
prediction error accumulation or exhibit overfitting/overconfidence
bias toward specific classes in their probability outputs. To address
these challenges, we applied Platt Scaling, a probability calibration
methodology that enhances the reliability of model-generated
predictions (Boken, 2021).

Platt scaling transforms raw scores (or probabilities) s € [0,1]
produced by classifiers through application of a logistic function (as
shown in Equation 1):

1

- 1+exp(As+ B) W

P(y=11s)
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In this equation, parameters A and B are estimated through
cross-validation processes, while s represents the classifier’s default
probability or logit score. The calibrated probabilities resulting from
Platt Scaling implementation provide adjustments to compensate
for probability overestimation or underestimation in model outputs
(Boken, 2021). Having established the comprehensive network of
associated parameters, this calibration process improved the
accuracy of probability values subsequently utilized in attention
meta-learning phases.

Since probability values in predictions often exhibit steepness
and limited variance, we incorporated Platt Scaling to preserve these
values for future calculations. This approach proved advantageous
considering that reliable probability estimates are essential for
subsequent attention-based meta-learning procedures (Park
et al., 2020).

2.2.4 Attention-based meta learning

We introduce an efficient, powerful multi-class meta-learner
founded on attention mechanisms that consolidates outputs from
multiple OVR binary classifiers. With seven ethnic groups in our
study, each sample generated predictions from seven distinct binary
classifiers, calibrated using Platt Scaling. These predictions follow a
structured output format (sample x seven classifiers x two classes).
While averaging classifier predictions might seem intuitive, this

frontiersin.org
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FIGURE 6
The importance and representative allele of each Y-STR loci marker of Hui Population. The less distinctive pattern observed here correlates with the
lower classification accuracy for this ethnic group, highlighting areas where future refinement may improve performance.

approach implicitly assumes equal importance across all classifiers
in most scenarios—an assumption that proves inaccurate when
considering varying difficulties in distinguishing between ethnic
groups or differential sensitivities of specific genetic markers
(Park et al., 2020).

Our Attention mechanism implementation follows a three-
dimensional process:

First, we generate attention weights for probability outputs from
each classifier. At this level, we employ weighted summation, with
weights reflecting classifier accuracy for specific ethnic groups,
determined through training performance metrics and mutual
information assessments (Park et al., 2020).

Second, we implemented a weighted sum calculation to combine
attention weights with classifier output probabilities according to
Equation 2:

final_prediction = 3 (attention_weight; x classifier_probability,)
)

Finally, these weighted predictions underwent processing through a
streamlined deep neural network comprising fully connected layers
implemented via PyTorch (Park et al, 2020). We obtained final
ethnic label predictions by passing outputs through this network,
optimized using cross-entropy and backpropagation techniques.
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This attention-based methodology offers
advantages over conventional aggregation approaches (Park
2020).

individual

numerous
et al, It enables more targeted management of

models and enhances overall discriminative
performance by ensuring each classifier’s contribution is
dynamically adjusted based on genetic input features. This
facilitates improved handling of scenarios where certain

ethnic distinctions appear ambiguous or genetic features

demonstrate varying discriminatory effectiveness. Through
neural network learning processes, complex patterns in
weighted  predictions can be recognized, enabling

differentiation between closely related ethnic groups. This
approach heightens ethnic classification sensitivity while
maintaining responsiveness to subtle genetic differences
between groups, thereby improving result generalizability
(Park et al., 2020; Barash et al., 2023).

Our application of attention mechanisms for classifier selection
enabled the system to learn the relative importance of different
classifiers in ethnic identification processes (Park et al., 2020). This
proves particularly valuable when evaluating complex genetic
relationships between closely related populations, where fixed-
weight approaches often fail to distinguish subtle yet significant
variations of interest.
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FIGURE 7

The importance and representative allele of each Y-STR loci marker of Mongolia Population. This visualization helps explain the moderate
classification performance for Mongolian samples, with certain markers showing distinctive patterns while others overlap with neighboring populations.

Results

This section presents a comparative analysis of two machine
learning architectures for Y-STR-based multi-population
classification: a One-vs-Rest (OvR) model with an attention
mechanism and a One-vs-One (OvO) stacking model. The
analysis includes the performance of both models, their
classification reports, confusion matrices, and the key genetic
markers (alleles) identified by each. Based on these results,
the OVR architecture was selected as the final model due
balance  of  predictive  accuracy  and

to its

computational efficiency.

3.1 Comparative performance of OvR and
OvO architectures

The overall performance of the two pipelines was first evaluated.
The OvR model requires training seven binary classifiers (one for
each population), whereas the OvO model requires training
21 classifiers.

Table 2 presents the overall performance metrics for both
models, averaged across all cross-validation folds. The OvO
model achieved slightly higher accuracy (+1.52%) and Fl-score
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(+0.92%). this
associated with a threefold increase in the number of classifiers,
resulting in a greater computational load. Given the requirements of
forensic and population genetics research, the trade-off between a

However, marginal performance gain was

minor accuracy improvement and a substantial increase in
complexity is a critical consideration. Therefore, the OvR model
was selected as the preferred architecture.

3.2 Detailed classification performance by
population

The detailed classification reports for each population are
shown in Table 3. The OvO model showed an improvement in
recall for the Han (0.86-0.95) and Korean (0.74-0.83)
populations, suggesting its pairwise approach may better
capture the nuances of these groups. Conversely, the OvR
model showed higher precision for the Mongolian (0.93 vs.
0.91) and Yi (0.96 vs. 0.94) populations. Neither model resolved
the challenge of classifying the Hui population, which exhibited
low recall in both architectures. This suggests that the difficulty
in classifying this group is likely due to the data’s genetic
distribution rather than a limitation of a specific model
architecture (Li et al., 2020).
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FIGURE 8

The importance and representative allele of each Y-STR loci marker of Kyrgyz Population. The consistency of key markers with high importance
values contributed to the robust performance in identifying this population group, despite having the smallest sample size.

3.3 Confusion matrix analysis

Figure 2 compares the confusion matrices of the two final
classification models, providing a visual summary of their
classification Analysis of the confusion
matrices - between the Han and Hui populations (Table 4). A
large proportion of Hui samples were misclassified as Han
in both models. While the OvO model reduced the
number of Han samples misclassified as Hui, it concurrently
increased the misclassification of Hui as Han. This indicates that
the more complex model did not resolve this issue, further
supporting the selection of the more efficient OvR model.
Misclassifications  between the Japanese and Korean
populations were also observed, though to a lesser extent,
reflecting their known genetic proximity (Hara et al., 2007;
Jung et al., 2016).

These findings suggest that the data distributions for certain
populations, particularly Hui and Han, overlap substantially.
This complicates accurate classification regardless of model
architecture and suggests a need for additional feature
engineering or the inclusion of more discriminative genetic
markers (Jin et al., 2021).

performance.
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3.4 Pairwise OvO classification accuracy

To provide a more comprehensive representation of the OvO
binary classification results, we report the pairwise accuracies across
all ethnic groups. This matrix highlights population pairs that are
relatively difficult to distinguish (e.g., Han-Hui) and those that are
more readily separable (e.g., Japanese-Yi).

As presented in Table 5, the Han-Hui pair exhibits the lowest
classification accuracy (0.787), which is consistent with known
genetic overlap and admixture between these populations. In
contrast, pairs such as Japanese-Yi and Han-Kyrgyz achieve

near-perfect accuracies (> 0.98),

indicating clear genetic

differentiation.

3.5 Feature importance in the selected
OvVR model

An advantage of the selected OVR architecture is the
interpretability of its individual binary classifiers. By analyzing
the feature importance scores from each classifier, the specific
Y-STR alleles that are most discriminative for each population
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FIGURE 9

The importance and representative allele of each Y-STR loci marker of Yi Population. The feature importance pattern reveals which markers are most
valuable for distinguishing the Yi ethnic group from others in rapid forensic screening applications.

were identified. Table 6 lists the most predictive alleles for several
populations.

For example, the allele DYS439 10 (Score: 0.976) is a
strong predictor for the Kyrgyz population, while DYS439_12
(Score:  0.929) is characteristic of the Japanese population.
These high-scoring, population-specific alleles validate the model’s
ability to learn biologically relevant patterns and provide
interpretability for forensic applications.

In summary, the selected OvR with Attention model
achieved an overall accuracy of 80.31% and a weighted F1-
score of 0.8011. While it demonstrated high performance
for genetically distinct populations such as the Japanese,

Korean, and Kyrgyz, its primary limitation was the
classification of the genetically similar Han and Hui
populations. The model’s feature importance analysis

successfully identified key discriminative alleles for most
populations, providing a degree of interpretability. These
indicate that the
computationally efficient and reasonably accurate framework
for initial ancestry screening, though challenges remain for

results OvR architecture provides a

differentiating closely related groups with the current

Y-STR marker set.
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4 Discussion

This study presents a framework that integrates tree-based
ensemble models with a One-vs-Rest (OVR) classification strategy
for rapid initial ancestry assessment from Y-STR data in forensic
contexts. The focus on Y-STR markers, despite the utility of other
markers like mtDNA or AIM-SNPs, was intentional. This decision
was based on three considerations: (1) the potential of STR-only data
for ancestry prediction is a relatively unexplored research area; (2)
the paternal inheritance of Y-STRs makes them robust for tracing
paternal lineages, which can be less affected by recent admixture
than autosomal markers; and (3) the use of core loci from common
commercial kits ensures the framework’s applicability to routinely
generated forensic data.

Consistent with this focus on rapid screening, a direct
performance comparison with AIM-SNP panels or Y-haplogroup
tools was not conducted. Such a comparison was precluded by
differences in data availability and because the primary advantage of
this Y-STR framework is its operational speed. It is designed to
provide preliminary guidance within hours, a critical requirement in
early-stage investigations that SNP-based or sequencing analyses
typically cannot meet.
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The developed framework achieved an overall accuracy of 81%
using only Y-STR data, a competitive performance level given the
low genetic differentiation among Northeast Asian populations. The
value of this framework lies not in providing definitive evidence for
suspect identification, but in its function as a supplementary tool to
guide initial investigative efforts. For example, when a crime scene
profile has no database match, the model can offer a probabilistic
assessment (e.g., “75% probability of Korean origin, 15% of Han
Chinese origin”) to help prioritize resources.

To further assess the genetic distinguishability between
(OvO)
experiments were also conducted. The results indicated that

populations,  pairwise =~ One-vs-One classification
Japanese and Korean populations were more accurately classified
compared to continental groups like the Han Chinese, which aligns
with previous findings of their distinct genetic profiles. Conversely,
lower accuracy was observed between geographically proximate or
historically interconnected groups, such as the Han Chinese and
Hui, suggesting genetic admixture or shared ancestry.

Finally, to address the interpretability of the attention
mechanism, we analyzed its weighting process. The attention
meta-learner dynamically assigns higher weights to the expert
models most relevant to a given input. The analysis showed that
for an input from a specific population, the corresponding expert
model consistently received a high weight. Furthermore, the genetic
loci deemed important by these highly weighted models were
consistent with those reported in the literature as discriminative
for that population, such as specific alleles at DYS390 and
DYS576 for Korean and Japanese populations (Hara et al., 2007;
Jung et al., 2016). This indicates that the model’s dynamic weighting
its

is based on biologically

transparency.

relevant patterns, enhancing

5 Limitations

Although the proposed Y-STR-based One-vs-Rest (OvR)

attention-ensemble  framework  demonstrates  competitive
performance for rapid ancestry inference in Northeast Asian

populations, several limitations should be acknowledged.

1. Sample Size and Class Imbalance: The dataset exhibits a

pronounced imbalance across ethnic groups, with certain
(e.g. Hui
underrepresented. This imbalance, coupled with the small

populations and  Mongolian)  being
sample sizes for minority groups, likely contributed to lower
performance for these populations (e.g., Hui: F1 = 0.53;

Mongolian: recall = 0.50) and increased susceptibility to

overfitting. Although downsampling was applied to balance
the training data, this method also reduced the effective
training size for majority classes.
2. Marker Set Constraints: The study relied exclusively on
20 Y-STR loci, selected from the overlapping core of
kits
applicability. While Y-STRs enable rapid paternal lineage

commercial ~ forensic to maximize real-world
inference, they do not capture maternal ancestry and offer
limited resolution in mixed-DNA scenarios. The restricted
marker set also constrains the discriminative capacity for

closely related or admixed populations.
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3. Representation of Mixed Ancestry: Because Y-STRs reflect
only paternal lineage, the framework is not optimized for
detecting recent admixture involving maternal contributions
or complex multi-lineage backgrounds. In such cases,
predictions may predominantly represent paternal origin,
potentially overlooking other ancestral components.

Trade-offs: The

“SelectOneFeaturePerMarker” transformer,

. Feature Selection optional

used in
supplementary sensitivity analyses, reduces dimensionality by
retaining only the allele with the highest mutual information
per locus. While effective in mitigating overfitting in small
datasets, this approach discards multi-allelic information,
which may diminish discriminatory power for genetically
similar populations. The primary results were obtained using
the full 245-dimensional one-hot feature set; however, future work
should explore top-k allele selection or embedding-based
encodings to better preserve allelic diversity.

5. Dependency on Probability Calibration: The attention-based
meta-learner relies on well-calibrated probability estimates
from its base classifiers. Initial evaluations revealed an

overconfidence bias in raw model outputs, particularly for

necessitating  Platt  scaling. While
the of  probability
magnitudes without substantially affecting accuracy, it

minority  groups,

calibration  improved reliability
introduces an additional processing step and assumes the
stability of calibration across datasets.

. Interpretability of the Attention Mechanism: Although per-
population marker-allele importance plots (Figures 3-9)
support the biological plausibility of the attention weights,
the meta-learner’s dynamic weighting remains a data-driven
process rather than a direct causal mapping. This “black-box”
characteristic may limit forensic transparency, particularly in
legal contexts requiring fully interpretable decision rules.

. Generalizability to External Data: The reported performance
metrics are based on cross-validation within a specific dataset
compiled from YHRD and published literature. Variations in
genotyping kits, allele binning, or population structure in external
datasets could diminish accuracy. The highest reliability in the
present study was observed for Japanese and Korean populations;
extending applicability to other groups will require larger, more
balanced, and geographically diverse reference datasets.

. Operational Scope in Forensic Contexts: While the framework
can provide rapid, probabilistic ancestry assessments to inform
early investigative decisions, it should not be regarded as

of

Misclassification—particularly for minority groups—may

bias investigative focus if results are not interpreted

definitive  evidence an individual’s  ethnicity.

alongside other lines of evidence.

6 Conclusion

This study demonstrates that a machine learning framework
combining a One-vs-Rest (OVR) strategy with an attention-based
meta-learner can classify individuals into Northeast Asian
populations using only Y-STR data. The final model achieved an
overall accuracy of 81%, indicating its utility for rapid initial ancestry
screening in forensic contexts. The approach offers a method to
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differentiate among Northeast Asian populations often aggregated
into a single category by commercial ancestry panels, thereby
providing preliminary guidance in the early stages of an

investigation.

Methodological components such as the
SelectOneFeaturePerMarker transformer for
dimensionality reduction and Platt scaling for probability

calibration contributed to the model’s development and reliability.
While the framework performed well for genetically distinct
populations, its performance was limited for genetically similar
groups like the Han and Hui, primarily due to data imbalance and
overlapping Y-STR profiles. These results highlight the challenges that
persist in classifying closely related populations.

To address these limitations, future work could focus on several
areas. Exploring alternative attention mechanisms or model
architectures, such as neural networks, may improve
performance. More advanced feature engineering could also
better the Y-STR  markers.

Additionally, expanding the dataset to include more samples

capture information  within
from underrepresented groups and developing frameworks to
integrate Y-STR data with other genetic markers would be
valuable next steps.

In conclusion, this research presents a computationally efficient
framework for initial ancestry screening of Northeast Asian
populations. By addressing data imbalance and leveraging an
interpretable model architecture, this work provides a practical
tool for forensic applications and a basis for future research in
high-resolution ancestry inference.
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