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Editorial on the Research Topic
Computational genomics and precision medicine

1 Introduction

Misdiagnosis has been reported among the leading causes of death, along with cancer,
heart disease, and respiratory diseases (Toker et al., 2024). A fair amount of literature has
been published in impactful peer-reviewed journals, which discuss medication error and
delayed treatment, and is accessible through authentic resources (e.g., PubMed) (Ahmed
et al., 2020). One of the most trending subjects in life sciences, which addresses these issues
and contributes to providing personalized treatment to patients, is genomic and precision
medicine (Ahmed, 2020). It involves patient engagement, analyzing medical records to
examine provided diagnoses and treatment outcomes, and investigating the genomic profile
to understand disease mechanisms and propose better treatments (Ahmed, 2022).
Furthermore, it promotes integrating and analyzing different kinds of patient data (e.g.,
clinical, sociodemographic, behavioral, biomedical image, and multi-omics) to form
multimodal data to discover important risk factors and biomarkers, which could be
used to prevent and predict diseases (Singh et al., 2025). This Research Topic focuses
on gathering the most up-to-date knowledge on recent advances in analytical approaches,
including deep and machine learning models for identifying disease-associated genes and
rare variants, and predicting the best treatment outcomes for genomic and precision
medicine. Successfully achieving the goals of this Research Topic, we were able to publish
five interesting peer-reviewed articles.

In, “SAFE-MIL: a statistically interpretable framework for screening potential targeted
therapy patients based on risk estimation”, Guan et al. set out to construct a generalizable
framework for risk assessment of treatment failure for Non-Small Cell Lung Cancer (NSCLC)
patients receiving epidermal growth factor receptor tyrosine kinase inhibitor-based treatment.
Currently, patients with NSCLC who have the same target gene mutation experience vastly
different treatment outcomes, largely due to varying mutation abundance levels and drug
sensitivity that existing models don’t account for, leading to black boxes and misalignment
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with Food and Drug Administration (FDA) standards, weakening the
clinical applicability of machine learning (ML)-driven drug prediction
models. This study utilized three independent patient cohorts,
implementing clinical and genomic data (SNVs, indels, mutation
abundance levels) to create drug effectiveness labels. Unsupervised
k-means clinically similar patient clustering and a multi-instance
learning model were used, incorporating a custom Hosmer-
Lemeshow-based test for loss function. SAFE-MIL predicted risk
scores at a lower prediction error compared to baseline models,
along with identifying a mutation abundance threshold (0.479),
stratifying patients into risk categories. This model excels in
assessing treatment for many patients facing stratification problems
in the clinical context.

In, “Multi-fusion strategy network-guided cancer subtypes
discovering based on multi-omics data”, Liu et al. aimed to develop
Self-supervised Multi-fusion Strategy Network (SMMSN): a dual, self-
supervised, multi-omics multi-fusion-based model that identifies
cancer subtypes. Past methods excel in feature-level representation
but are lacking in patient-patient molecular profile similarity analysis,
and this absence of structural insights limits clinical precision. Here,
Stacked Autoencoder Network (SAE) was employed to learn
expression patterns for each omics type (mRNA, DNA methylation,
miRNA) while Graph Convolutional Networks (GCN) were used to
learn structure-based representations from K-nearest neighbor (KNN)
networks, followed by multi-omics fusion incorporating error
reconstruction and adaptive weighting, which funneled into dual
self-supervised learning to generate clustering probability
distributions. This study utilized 8 independent datasets, with
labeled data from kidney cancer, Alzheimer’s, and low-grade
glioma, while unlabeled datasets included glioblastoma, breast,
kidney, lung, and colon cancer. Clustering accuracy was ultimately
higher for SMMSN than for any other comparable multi-view
clustering algorithm or deep learning (DL)-based method, as tested
on the three labeled datasets (SMMSN scoring ACCs of 85.34, 68.83,
and 65.80, respectively). SMMSN’s methodology applies to many
cancers, enhancing tailored treatment and predictive prognosis.

In, “MSFN: a multi-omics stacked fusion network for breast cancer
survival prediction”, Zhang et al. incorporated a novel Multi-omics
Stacked FusionNetwork (MSFN)methodology to predict breast cancer
survival risk in a cohort of 1,048 patients. Breast cancer has become the
most prevalent cancer in the world, and survival risk is an important
step in treatment recommendations, but previous single-omics-reliant
methods are limited in their accuracy potential, and current DL
methods are incompatible with multi-omics. MSFN constructed
patient similarity networks using similarity network fusion to
connect similarity between patients with correlation of multi-omics
data (gene expression and copy number variation data), then
constructed a Residual Graph Convolutional Network (ResGCN) to
extract prognostic information, further feeding results into
AdaboostRF for survival prediction. Ten-fold cross-validation results
demonstrated the accuracy of MSFN (AUC of 0.9787 and accuracy of
0.991) as compared to previous methods, and when excluding native
features from MSFN, further succeeding in different survival cohorts.
MSFN is therefore superior in both short and long-term survival
prediction, aiding clinical decision-making.

In, “Integrative multi-omics summary-based mendelian
randomization identified key oxidative stress-related genes as
therapeutic targets for atrial fibrillation and flutter”, Chen et al.

integrated a summary statistics-based approach onmulti-omics data
for a more comprehensive understanding of the connection between
Oxidative Stress (OS) and Atrial fibrillation (AF). Currently, it is
known that OS is implicated in the pathogenesis of AF, but
knowledge is limited in the exact contributions of OS and the
causal interaction with AF. GWAS was integrated with multiple
SNP-based Quantitative Trait Loci (QTL) studies (methylation,
gene, and protein-based). Summary-based Mendelian
Randomization (SMR) analyzed if SNPs’ association to omics
traits had an impact on AF risk, employing the HEIDI test to
eliminate linkage and pleiotropy as confounders, while also
incorporating Bayesian co-localization to confirm shared causal
variants. Importantly, the TTN gene was found to play a
protective role in AF, and methylation at two CpG sites was
associated with increased TTN expression and thereby lower AF
risk; ALAD and APOH were important proteins associated with a
lower risk of AF. The SMR approach proves valuable in elucidating
the contributions of OS-related genes in the landscape of AF while
eliminating potential confounders, leading to novel causal
relationships.

In, “Prognostic value of four immune-related genes in lower-grade
gliomas: a biomarker discovery study”, Wang et al. aimed to investigate
the relationship between multiple immune-related genes (IGG) and
low-grade glioma (LGG), leveraging past methods thatmainly focused
on single gene relationships to LGG. Although there have been
significant advancements in the treatment of LGGs, they tend to
recur and develop drug resistance, necessitating the discovery of
innovative biomarkers that elucidate precise pathological
mechanisms. IGGs obtained from the ImmPort database were
intersected with the DEG profile between RNA-seq-based control
samples and the glioblastoma patient samples, yielding statistically
significant DEGs, validated experimentally by qRT-PCR on case vs.
control cell lines. Univariate Cox regression analysis and LASSO were
employed to identify the most prognostic genes in their contribution
to the survival of LGG patients, validated using an external cohort.
Conclusively, a 4-gene prognostic model was constructed using
KLRC3, MR1, PDIA2, and RFXA, further developing a nomogram
based on these biomarkers to predict survival rates, demonstrating
great potential for clinical uptake in the assessment of survival, risk
stratification, and tailored treatments.

Author contributions

ZA: Writing – original draft, Writing – review and editing. RT:
Writing – review and editing. AK: Writing – review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

We are grateful to the Frontiers, Frontiers in Genetics,
and editorial staff for their endless support in the

Frontiers in Genetics frontiersin.org02

Ahmed et al. 10.3389/fgene.2025.1631668

https://doi.org/10.3389/fgene.2024.1466825
https://doi.org/10.3389/fgene.2024.1378809
https://doi.org/10.3389/fgene.2024.1447872
https://doi.org/10.3389/fgene.2024.1403587
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1631668


preparation, study Research Topic, peer-review processes,
editing, press, and publication process involved in this
Research Topic. We thank the honorable reviewers for
their time and constructive suggestions to the authors
for the possible quality and scientific improvements to
their studies.

Conflict of interest

The authors declare that the research was conducted without
any commercial or financial relationships that could potentially
create a conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Ahmed, Z. (2020). Practicing precision medicine with intelligently integrative clinical
andmulti-omics data analysis.Hum. genomics 14 (1), 35. doi:10.1186/s40246-020-00287-z

Ahmed, Z. (2022). Precision medicine with multi-omics strategies, deep phenotyping,
and predictive analysis. Prog. Mol. Biol. Transl. Sci. 190 (1), 101–125. doi:10.1016/bs.
pmbts.2022.02.002

Ahmed, Z., Mohamed, K., Zeeshan, S., and Dong, X. (2020). Artificial intelligence
with multi-functional machine learning platform development for better healthcare and
precision medicine. Database J. Biol. databases curation 2020, baaa010. doi:10.1093/
database/baaa010

Singh, K., Usman, S., Zeeshan, S., Yanamala, N., Bhise, V., Nichols, M., et al. (2025).
“Bioinformatics and AI/ML approaches using multi-omics data to accelerate
diagnosis and delivery of precision care for patients with rare diseases,” in
Methods in cell biology (MCB): 2D and 3D cellular screening models and AI
guided analysis. Editors O. Kepp and G. Kroemer (Academic Press), Vol. 204.
doi:10.1016/bs.mcb.2025.03.018

Toker, D. E., Nassery, N., Schaffer, A. C., Yu-Moe, C. W., Clemens, G. D., Wang, Z.,
et al. (2024). Burden of serious harms from diagnostic error in the USA. BMJ Qual. &
Saf. 33 (2), 109–120. doi:10.1136/bmjqs-2021-014130

Frontiers in Genetics frontiersin.org03

Ahmed et al. 10.3389/fgene.2025.1631668

https://doi.org/10.1186/s40246-020-00287-z
https://doi.org/10.1016/bs.pmbts.2022.02.002
https://doi.org/10.1016/bs.pmbts.2022.02.002
https://doi.org/10.1093/database/baaa010
https://doi.org/10.1093/database/baaa010
https://doi.org/10.1016/bs.mcb.2025.03.018
https://doi.org/10.1136/bmjqs-2021-014130
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1631668

	Editorial: Computational genomic and precision medicine
	1 Introduction
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


