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Circular RNAs (circRNAs) play pivotal roles in various biological processes and
disease progression, particularly in modulating drug responses and resistance
mechanisms. Accurate prediction of circRNA-drug associations (CDAs) is
essential for biomarker discovery and the advancement of therapeutic
strategies. Although several computational approaches have been proposed
for identifying novel circRNA therapeutic targets, their performance is often
limited by inadequate modeling of higher-order geometric information within
circRNA-drug interaction networks. To overcome these challenges, we propose
G2CDA, a geometric graph representation learning framework specifically
designed to enhance the identification of CDAs and facilitate therapeutic
target discovery. G2CDA introduces torsion-based geometric encoding into
the message propagation process of the circRNA-drug network. For each
potential association, we construct local simplicial complexes, extract their
geometric features, and integrate these features as adaptive weights during
message propagation and aggregation. This design promotes a richer
understanding of local topological structures, thereby improving the
robustness and expressiveness of learned circRNA and drug representations.
Extensive benchmark evaluations on public datasets demonstrate that G2CDA
outperforms state-of-the-art CDA prediction models, particularly in identifying
novel associations. Case studies further confirm its effectiveness by uncovering
potential drug interactions with the ALDH3A2 and ANXA2 biomarkers.
Collectively, G2CDA provides a robust and interpretable framework for
accelerating circRNA-based therapeutic target discovery and streamlining
drug development pipelines. Our code are archived in: https://github.com/
lizhen5000/G2CDA.
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Introduction

Circular RNAs (circRNAs) are highly stable endogenous non-
coding RNAs resistant to nuclease degradation due to their
covalently closed loop structure (Geng et al., 2020). Numerous
studies indicate that circRNAs play crucial roles in various
biological processes, such as transcriptional regulation, miRNA
sponge effects, and protein interaction modulation (Zang et al.,
2020). In disease research, particularly in cancer, circRNA aberrant
expression is closely linked to tumorigenesis, progression, and drug
resistance (Xu et al., 2020). Mounting evidence indicates that
circRNAs play a crucial role in drug response and resistance
mechanisms (Xie et al., 2020; Ding et al., 2021a; Wang et al.,
2023; Liu et al., 2018). Accurate circRNA-drug association (CDA)
identification is vital for discovering novel therapeutic targets,
uncovering drug response mechanisms, and supporting
personalized therapy. However, experimental CDA identification
is often time-consuming, costly, and inefficient. Thus, developing
efficient computational methods is essential to expedite circRNA
therapeutic target and drug discovery.

Current deep learning methods have shown remarkable
performance in target identification and drug discovery, further
advancing CDA prediction. For instance, Deng et al. introduced
GATECDA, a graph attention auto-encoder framework for
predicting circRNA-drug sensitivity associations (Deng et al.,
2022). Yang et al. developed MNGACDA, a graph auto-encoder
network that integrates multiview techniques and node-level
attention (Yang and Chen, 2023). This model combines multiple
information sources from circRNAs and drugs to form amultimodal
network, uses multiview techniques to learn low-dimensional
embedded representations of circRNAs and drugs, and predicts
their association scores through an inner product decoder. Luo et al.
presented DPMGCDA, which combines a dual perspective learning
mechanism with a pathway masking graph autoencoder to enhance
the modeling of circRNA-drug sensitivity relationships (Luo and
Deng, 2024). Additionally, Huang et al. proposed DeepHeteroCDA,
a computational framework based on a multi-scale heterogeneous
network structure and graph attention mechanism, designed to
more comprehensively capture the complex sensitivity
relationships between circRNAs and drugs (Huang et al., 2025).

In recent years, various innovative drug discovery models have
emerged, offering new methodological support and references for
circRNA therapeutic target discovery and associated drug
development. For example, Zhou et al. proposed the JDASA-
MRD model, which combines deep autoencoders and subgraph
augmentation to infer microbial responses to drugs (Zhou et al.,
2024a). This model captures higher-order neighbor relationships,
constrains local message propagation, and enhances drug and
microbial representations with remarkable performance.
Additionally, Zhou et al. integrated self-supervised strategies and
masking mechanisms to explore miRNA responses to small
molecule drugs (Zhou et al., 2024b). They also noted that
existing drug discovery models often overlook indirectly
connected drug-target pairs and proposed a novel model from a
global-local perspective (Zhou et al., 2024c). Furthermore, Wei et al.
employed multisource prompting with large model technology for
efficient drug repurposing (Wei et al., 2024a). Notably, Wei et al.
used integrated deep learning to accurately identify unknown drug-

target interactions and validated their findings through experiments
(Wei et al., 2024b). Although these models do not directly address
circRNA therapeutic targets, they provide valuable guidance and
references.

Deep learning models like Graph Neural Networks (GNNs)
have shown strong performance in CDA prediction tasks, but they
also present certain limitations. First, conventional GNNs often
rely on shallow feature extraction and struggle to capture higher-
order neighbor information, as deeper message propagation may
lead to the well-known “oversmoothing” problem. However,
higher-order relationships in the circRNA-drug interaction map
frequently encode crucial regulatory mechanisms. Second, many
existing models depend on complex, task-specific feature
engineering pipelines, which can hinder their scalability and
generalizability. Moreover, these models tend to overlook the
structural semantics of the circRNA-drug graph—namely, the
local geometric and topological relationships among
CDAs—thereby limiting their ability to model intricate
interaction patterns. Recent advances in geometric deep
learning have demonstrated that integrating geometric and
topological priors, such as curvature, torsion, and simplicial
structures, into GNN architectures can enhance representation
power in various scientific domains, including protein structure
modeling, drug discovery, and biological network analysis. In
particular, torsion-based geometric features, which reflect how
elements twist or bend in a local topological space, have been
shown to encode important structural signals in molecular graphs
and manifolds. Despite this progress, their application in the
context of circRNA-drug association modeling remains largely
unexplored. To address the aforementioned issues, this study
proposes a novel graph representation learning framework that
explicitly incorporates geometric information to identify potential
CDAs. By embedding an analytic torsion technique into the
message propagation process over the circRNA-drug graph, our
method introduces a new form of local geometric encoding. For
each CDA, the framework constructs a local simplicial complex,
computes its torsion value, and uses it as an adaptive weight to
modulate the message-passing process. This mechanism enhances
the model’s capacity to perceive and utilize higher-order geometric
and topological cues within the interaction graph, thereby
improving its ability to accurately capture potential sensitivity
associations between circRNAs and drugs. As a result, our
approach contributes to more reliable circRNA therapeutic
target discovery and accelerates drug development. Our
contributions are summarized as follows:

1) We propose G2CDA, a novel geometric graph representation
learning framework for circRNA–drug association (CDA)
prediction. Extensive benchmarking demonstrates its strong
ability to identify novel CDAs, offering a promising tool to
accelerate circRNA-based therapeutic target discovery and
drug development.

2) A key innovation of G2CDA is the integration of analytic
torsion into the prediction pipeline. By constructing local
simplicial complexes and computing torsion values, we
transform high-order geometric structures into adaptive,
learnable weights—enabling the model to better capture
complex circRNA–drug interaction patterns.
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3) The computed torsion values are further leveraged as core
weights in the message propagation mechanism of the graph
neural network. This torsion-guided propagation enhances the
model’s focus on geometrically significant substructures,
improving representation learning for both circRNAs
and drugs.

4) We validate the effectiveness of G2CDA through
comprehensive experiments on multiple public datasets,
where it consistently outperforms state-of-the-art methods.
Case studies demonstrate its potential for translational
applications, including the identification of candidate drugs
targeting key biomarkers such as ALDH3A2 and ANXA2.

Materials and methods

This study focuses on identifying potential circRNA–drug
associations (CDAs) to facilitate circRNA therapeutic target
discovery and drug development. To this end, we propose
G2CDA, a novel graph neural network framework that
integrates geometric information to capture higher-order
interactions between circRNAs and drugs for more accurate
CDA prediction. A key innovation of G2CDA is the
introduction of the geometric quantity “torsion,” which
intuitively reflects the local bending or twisting within the
graph structure. By calculating torsion through local simplicial
complexes, the model effectively quantifies subtle structural
perturbations in the interaction network, analogous to how
regulatory influences propagate and modulate biological
networks. This approach converts local geometric information
into learnable weights, enhancing the model’s ability to capture
complex and nuanced relationships between circRNAs and
drugs. Furthermore, during message propagation, the torsion
information guides both the direction and magnitude of message
flow independently of node features, enabling the model to focus
on critical structural regions that are most relevant for accurate
CDA prediction. Together, these innovations contribute to
improved predictive performance. The following sections
provide detailed descriptions of the datasets, methodologies,
and theoretical principles underpinning this approach.

Data preparation

This study evaluated the proposed model and comparative
models using a publicly available dataset from previous work
(Huang et al., 2025). The data, sourced from the circRic database
(Vromman et al., 2021), identifies and annotates circRNAmolecules
across approximately 1,000 human cancer cell lines. The dataset
includes experimental data on circRNA responses to drugs, aiming
to provide a high-confidence circRNA resource for cancer research
and to explore their expression patterns across different cancer
types. After screening and removing low-confidence CDAs,
4314 CDAs remained, involving 271 circRNAs and 218 drugs. A
circRNA-drug graph was constructed for message propagation.
Additionally, 4314 unknown circRNA-drug pairs were randomly
selected as negative samples. This balanced sampling approach
ensures training process stability.

Methods

Model overview

As shown in Figure 1, the G2CDA model workflow comprises
five key modules: constructing the circRNA-drug graph, extracting
CDA-centered subgraphs, calculating CDA torsion, integrating
geometric message propagation, and training and inference.
Module (A) constructs the circRNA-drug graph using known
CDAs from the dataset and initial drug/circRNA representations.
Module (B) extracts all CDA-centered subgraphs. Module (C)
calculates CDA torsion via 1-simplicial complex. Module (D)
fuses these representations to predict drug-circRNA pair scores
through an MLP. Module (E) converts CDA torsion into weights
for message propagation to refine drug and circRNA
representations.

Problem description

This study first constructs a circRNA-drug graph using known
CDAs. Specifically, the graph G is defined as G � 〈VC ,VD,E〉,
where VC ,VD denote the set of circRNAs and drugs nodes,
respectively, and E represents the set of observed CDAs.
A ∈ RN×M is the adjacency matrix of graph G, where N and M
indicate the number of circRNAs and drugs, respectively. Auv

represents the relationship between circRNA u and drug v, where
Auv � 1 indicates an association and Auv � 0 indicates no
association. The initial representation of a circRNA is defined as
H0 � h01, h

0
2, h

0
3,/h0N , and that of a drug as

H0 � h0N+1, h
0
N+2, h

0
N+3,/h0N+M . These initial representations can

be derived from various sources, such as k-mer frequency
characteristics of circRNA sequences and SMILES features of drugs.

Secondly, the study introduces the “analytic torsion” theory,
focusing on the local geometric information of CDAs and
transforming it into learnable weights to guide message
propagation and enhance key region recognition. Specifically, S
represents the simplicial complex, with Suv denoting the
simplicial complex of edge Auv (the edge between circRNA u and
drug v). EachAuv � 1 has a corresponding Suv , and T(Suv) calculates
the resolved torque for Suv . Additionally, Zg is the g-th Hodge
Laplacian, with |Zg | representing its determinant. If Zg has zero
eigenvalues, the determinant is the product of all non-zero
eigenvalues. Bg is the boundary matrix corresponding to Zg , and
γg(p) is the regularization function for Zg eigenvalues.

The study aims to enhance message propagation by leveraging
the local geometric higher-order information of each CDA based on
known CDAs using the “analytic torsion” theory, enabling accurate
identification of potential CDAs from unknown circRNA-
drug pairs.

Graph neural network (GNN)

GNN effectively resolves structural information and has been
widely applied in bioinformatics, including molecular interaction
networks and molecular structure analysis (Cai et al., 2024; Ma
et al., 2024; Wang et al., 2024a; Wang et al., 2024b; Wang et al.,
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2024c; Zhang et al., 2024). This research employs the GNNmodel
to model known CDAs, perform message propagation in the
circRNA-drug graph, and output circRNA and drug
representations. Specifically, the GNN model’s message
propagation involves aggregating and updating information
from circRNA and drug nodes. Let V � VC ∪ VD, va ∈ V , the
aggregation process for circRNAs (or drugs) is defined as
Equation 1:

hia � f hi−1a ,∑
b∈N a( )h

i−1
b ,A, α( ) (1)

where hia represents the representation of node a at layer i, and f
represents the aggregation function. N(a) is the set of neighbors
of node a, and α regulates the weights of the neighbors relative to
their own information. The GNN model then updates the
circRNA (or drug) representation using an activation function
and iterates for a set number of times. This study tested the GCN
(Kipf and Welling, 2016a), GAT (Veličković et al., 2017), and
GIN (Xu et al., 2018) models, incorporating “analytic torque”
into CDA prediction tasks.

Analytic torsion

A simplicial complex S is defined as a collection of multiple
simplices. From the total set of circRNAs and drugs, g+1 nodes are
selected to form a g -simplex πg , denoted as v0, v1,/, vg . For any πg ,
its non-empty subset is defined as a face, which is the boundary of πg

when the dimension is g-1. Geometrically, a g-simplex represents the
convex hull formed by g+1 nodes. According to this theory, 0-, 1-, 2-,
and 3-simplices correspond to vertices, edges, triangles, and
tetrahedrons, respectively.

Given an oriented S with nodes in a predetermined order
v0, v1,/, vg , a g-chain is defined as the sum of g-simplices in S,
denoted as d � ∑cπ

g
c . The set of all g-chains in S forms the g-chain

groupDg . A chain complex is formed by integrating a series of chain
groups and their corresponding boundary operations:
0← ρ0D0← ρ1D1← ρ2D2/← ρg Dg/, where ρg : Dg → Dg−1. The
boundary matrix Bg is derived from ρg . The g-th step is defined
as ρgπ

g � ∑g
j�0(−1)j[v0, v1,/, v̂j,/, vg ], where v̂j indicates the

removal of vj, and ρg−1ρg � 0. Let the adjoint operator of ρg be
δg . The g-th Hodge Laplacian component of S is calculated as

FIGURE 1
G2CDA’s architecture, comprising: (A) construction of the circRNA-drug graph, (B) extracting CDA-centered subgraphs, (C) calculating CDA
torsion, (D) integrating geometric message propagation, and (E) training and inference.
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Δg � δgρg + δg+1ρg+1. Therefore, the g-th Hodge Laplacian matrix of
S is computed as Zg � BT

g Bg + Bg+1BT
g+1.

Therefore, in S, the Hodge Laplacian corresponding to the 1-
simplex is Z0 � B1BT

1 . Then, the highest-order Hodge Laplacian
corresponding to the m-simplex is calculated as: Zm � BT

mBm. The
computation of Zg depends on the simplex relations. For example,
when g = 0, Z0 can be calculated as Equation 2:

Z0 u, v( ) �
d π0

u( ), if u � v;
−1, if u ≠ v and π0

u ⋂ π0
v ;

0, if u ≠ v and π0
ujπ0

v ;

⎧⎪⎨⎪⎩ (2)

where degree(π0
u) denotes the degree of π0

u, π
0
u ⋂ π0

v indicates that
simplices π0

u and π0
v are upper adjacent, and π0

ujπ0
v denotes non-

upper adjacency. Furthermore, the value of Zg(u, v) can be inferred
based on geometric information such as upper adjacency, lower
adjacency, and directional consistency between two g-simplices
(Shen et al., 2025). Specifically, on the circRNA-drug graph, this
can be treated as known geometric information
corresponding to CDAs.

Analytical torsion calculation

Zg is a positive semi-definite matrix with eigenvalues θj{ }. Its
regularization function γg(p) is computed as γg(p) � ∑θj > 0

1
θpj
,

where p is the regularization factor. Then, the analytical torsion
for S can be calculated in logarithmic form as follows:

log T S( ) � 1
2
∑N+M

g�0 −1( )ggγ 1( )
g 0( ) (3)

where γ(1)g (0) represents the first derivative of γg(p) evaluated at
p � 0. Assuming the determinant of Zg is the product of its non-zero
eigenvalues |Zg | � ∏θj > 0θj, then γ(1)g (0) � −log |Zg |. Equation 3
can thus be further transformed as follows:

log T S( ) � 1
2
∑N+M

g�0 −1( )g+2glog Zg

∣∣∣∣ ∣∣∣∣ (4)

For the 1-dimensional simplicial complex S of the circRNA-
drug graph, its analytic torsion T(S) is calculated as T(S) � |Z1| 12,
where Z1 � BT

1B1. For the 2-dimensional simplicial complex, the
analytic torsion is computed as T(S) � |Z1| 12

|Z2 | . The calculation of
analytic torsion depends on the simplicial complex, and the specific
process is illustrated in Figure 1E.

Analytic torsion on CircRNA-Drug network

This study incorporates analytic torsion calculations into
message propagation on the circRNA-drug graph, based on
previous work (Reidemeister, 1935). Within the GNN model,
analytic torsion is transformed into CDA weights for message
aggregation. Equation 4 is formalized as:

hia � sigmod ∑
b∈N a( )⋃a

1����
d a( )√ ����

d b( )√ log T Sa,b( )∣∣∣∣ ∣∣∣∣Whi−1b
⎛⎝ ⎞⎠ (5)

where sigmod( ) is the activation function, N(a) represents the
neighbors of node a, and d( ) indicates node degree. h0b corresponds

to the initial representation of the b-th node on the circRNA-drug
graph, defined as the b-th row of matrix A.

In Equation 5, Sa,b refers to the local simplicial complex
constructed from CDA <a, b>. To determine the local simplicial
complex, one common approach is to extract a subgraph from direct
neighbors. This subgraph includes nodes a, b, all their neighbors,
and all edges (CDAs) between circRNAs and drugs within this
group. A second-order subgraph can be derived from the second-
order neighbors of circRNAs (or drugs). For a 2-dimensional 2-
simplex complex Sa,b, a triangle should be constructed from three
nodes. The model can incorporate higher-order neighbors to
enhance local geometric information. If any circRNA and drug
within the subgraph are associated, g+1 entities can form a g-
simplex. The computation of Sa,b involves the dimension Q of
the simplicial complex and the subgraph order P. When Q and P
are both 1, the message propagation process on the circRNA-drug
graph is illustrated in Figure 1E.

CDA prediction

This study integrates GNN models (e.g., GCN, GAT, GIN) for
torque analysis on the circRNA-drug graph. Once the models complete
the preset number of message propagation processes, the final
representations of circRNAs and drugs are extracted. The study
aims to calculate the probability of edges (associations) between
circRNAs and drugs based on these representations. Let the final
representations of circRNA u and drug v be hu and hv , respectively.
The edge probability for the 〈u, v〉 pair is predicted as Equation 6:

q̂xy � MLP ‖ hu + hv , hu ⊙ hv , hu ‖ hv( )( ) (6)

where MLP denotes a multilayer perceptron, ‖ represents
concatenation, and ⊙ denotes the Hadamard product. The study
employs the binary cross-entropy (BCE) function to compute
the final loss.

Results

Performance comparison

This study systematically evaluates the G2CDA model’s
performance in CDA prediction through comprehensive
comparison experiments. The experimental design includes
multiple benchmark model comparisons. For CDA prediction,
the study selects several state-of-the-art models: GATECDA
(Deng et al., 2022), MNGACDA (Yang and Chen, 2023),
DPMGCDA (Luo and Deng, 2024), and DeepHeteroCDA
(Huang et al., 2025). These models represent the current best
practices in CDA prediction. Additionally, other GNN-based
interaction prediction models are included, such as variational
graph auto-encoders (VGAE) (Kipf and Welling, 2016b), Multi-
view variational graph auto-encoder with matrix factorization
(VGAMF) (Ding et al., 2021b), graph convolutional network
based GCNMDA (Long et al., 2020), and local attention graph
convolutional network (LAGCN) (Yu et al., 2021). Although these
models have not been previously applied to CDA prediction, they
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have demonstrated success in other association prediction tasks.
Furthermore, five classical machine learning algorithms are selected
as benchmark references: Support Vector Machines (SVM),
Random Forest (RF), K Nearest Neighbors (KNN), Extreme
Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost) and
Multilayer Perceptron (MLP). These algorithms, widely used in
supervised learning, provide a performance comparison at the
traditional method level. The multi-dimensional comparison
system ensures the evaluation results are both comprehensive
and reliable by covering both domain-specific and generalized
models. Following established methodologies (Wang et al., 2024d;
Wei et al., 2024c; Feng et al., 2025; Fu et al., 2025; Chen et al., 2024),
we adopted five key metrics: AUC (Area Under the Curve), AUPR
(Area Under the Precision-Recall Curve), Accuracy, Recall, and
F1-score.

According to Table 1, the G2CDA model outperforms all
comparative methods across all evaluation metrics, achieving an
AUC of 94.91%, AUPR of 94.48%, F1-score of 87.06%, accuracy of
87.70%, and recall of 83.03%. This demonstrates its superior
prediction ability and robustness. Traditional machine learning
methods like SVM, RF, KNN, XGBoost, and AdaBoost struggle
to effectively model graph structures and complex nonlinear
relationships, resulting in inferior overall performance. While
generic GNN models such as VGAE, VGAMF, GCNMDA, and
LAGCN can capture some structural information, they lack specific
optimization for CDA prediction, leading to a significant
performance gap. Among task-specific models, DeepHeteroCDA,
MNGACDA, and DPMGCDA show relatively strong performance,
particularly DeepHeteroCDA with an AUC of 92.33%, but they still
underperform the G2CDA model across key metrics. Overall, the
G2CDA model excels not only in prediction accuracy but also in

handling sample imbalance, structural modeling, and multimodal
information fusion, confirming its effectiveness for CDA
prediction tasks.

Performance evaluation

In Table 2, the five - fold cross - validation results show that the
G2CDA model has excellent stability and generalization in CDA
prediction. The model’s average AUC is 94.58% (±0.53%), and
average AUPR is 94.02% (±0.43%), indicating its strong
discriminative ability comparable to top existing models. Notably,
the F1 score (85.97% ± 1.26%) and accuracy (86.67% ± 1.15%) show
fluctuations of less than 1.5 standard deviations, demonstrating the
model’s robustness to data distribution changes. In Fold 1 and Fold
3, the AUC reaches 94.91% and 94.93%, respectively, with the
F1 score surpassing 87%. The recall rate, while fluctuating
between 79.69% and 83.03%, remains consistently above 80%,
highlighting the model’s effectiveness in retaining positive sample
features via its torsion - weight - guided information dissemination
mechanism. These findings confirm that the local - simple - complex
- shape - based torsion counting strategy enhances the model’s
geometric interaction feature capture ability, and the non - original -
feature - dependent attention propagation mechanism offers
significant advantages for modeling complex biological
relationships. This work provides a novel methodological
framework for CDA prediction.

Parameter experiments

This study examines various factors, including GNN encoder
types, GNN layer numbers, hidden layer dimensionalities, output
layer dimensionalities and node initial representations, necessitating
multiple parameter experiments to verify the G2CDA model’s
stability and establish parameter setting guidelines.

Different GNN models were analyzed for their information
transfer and feature extraction capabilities. Three representative
GNN variants were experimented with to adapt to diverse graph
structures and task requirements. GCN, leveraging Laplacian
smoothing, suits homogeneous graphs. GIN, with multilayer
perceptron-like expressiveness, handles complex heterogeneous
graphs. GAT introduces attention mechanisms to enhance
sensitivity to key connections. Comparative experiments among
these encoders confirmed their performance and adaptability under
different graph encoding approaches.

Table 3 evaluates their performance across metrics like AUC,
AUPR, F1-score, Accuracy, and Recall. GCN showed the best overall
performance with an AUC of 94.91%, AUPR of 94.48%, F1 score of
87.06%, and accuracy of 87.70%. GIN had slightly lower accuracy
(86.72%), AUC (94.45%), and AUPR (94.06%), with an F1 score of
85.71% and a significantly lower Recall (79.58%), indicating weaker
positive sample recall. GAT achieved the highest Recall (88.05%),
suggesting its attention mechanism aids positive sample recognition,
but had lower AUC (93.90%) and AUPR (93.41%), showing
shortcomings in overall discriminative ability and stability. In
summary, GCN balanced all five metrics best, maintaining high
accuracy and F1 scores while ensuring good recall and

TABLE 1 Comparison results between G2CDA and other advanced
models (%).

Methods AUC AUPR F1-
score

Accuracy Recall

SVM 86.48 85.47 80.49 79.28 85.50

RF 88.81 88.85 82.04 81.65 83.83

KNN 86.42 87.60 79.26 79.01 80.20

XGBoost 89.97 89.96 82.94 82.52 84.94

AdaBoost 88.52 88.88 82.07 81.55 84.43

VGAE 86.28 87.30 79.88 78.92 82.27

VGAMF 87.40 86.62 81.76 81.04 84.37

GCNMDA 87.78 87.62 81.98 81.19 84.28

GATECDA 88.46 89.29 81.94 81.68 83.16

LAGCN 89.82 90.23 82.85 82.61 84.03

MNGACDA 90.98 91.50 84.13 83.79 85.92

DPMGCDA 90.15 91.73 84.08 84.24 83.25

DeepHeteroCDA 92.33 92.93 85.61 85.20 88.07

MLP 93.53 93.09 86.74 86.59 86.63

G2CDA 94.91 94.48 87.06 87.70 83.03
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generalization, making it the optimal encoder choice. GAT’s high
recall also offers a feasible alternative for applications requiring high
positive sample sensitivity.

Figure 2 assesses the impact of different GNN layer depths on
model performance. Overall, a 2-layer GNN architecture
demonstrates the optimal balance and stability across these
metrics, achieving the highest median scores for AUPR, F1-score,
and Accuracy, while also exhibiting strong and stable performance
in Recall. In contrast, although a 1-layer GNN performs best on the
AUC metric, it shows a notable deficiency in Recall and is generally
not the optimal choice for F1-score and Accuracy. Increasing the
GNN layers to three does not yield significant performance
improvements across most metrics; instead, it may lead to a

slight decrease in some indicators (such as AUC) or exhibit
greater volatility and instability in metrics like F1-score and
Recall, even though its median Recall is marginally higher than
that of the 2-layer model. Thus, the 2-layer architecture optimally
balances performance, supporting the “shallow geometry
perception” design concept.

Figure 3 examines how different GNN hidden layer
dimensionalities affect model performance. As depicted, for the
AUC and AUPR metrics, all tested hidden dimensions exhibit very
similar high performance, with scores generally concentrated
between 94% and 95%, indicating that hidden dimension size has
a minimal effect on these two metrics, although dimensions 64, 128,
and 256 show slightly better stability for AUPR. However, for F1-

TABLE 2 Results of 5-fold cross validation of G2CDA model (%).

Folds/metrics AUC AUPR F1-score Accuracy Recall

1 94.91 94.48 87.06 87.7 83.03

2 93.74 93.63 84.33 85.09 79.69

3 94.93 94.49 87.11 87.76 82.90

4 93.93 93.55 84.81 85.68 79.95

5 94.38 93.95 86.53 87.11 82.60

Average 94.58 ± 0.53 94.02 ± 0.43 85.97 ± 1.26 86.67 ± 1.15 81.63 ± 1.67

TABLE 3 Results of G2CDA with different GNN encoders (%).

Models/metrics AUC AUPR F1-score Accuracy Recall

GCN 94.91 94.48 87.06 87.70 83.03

GIN 94.45 94.06 85.71 86.72 79.58

GAT 93.90 93.41 87.15 86.98 88.05

FIGURE 2
Model performance at different GNN layers.
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score and Accuracy, a hidden dimension of 128 appears to provide
the optimal performance, with median F1-scores around 87.5% and
median Accuracy scores approaching 87.8%–87.9%. Regarding
Recall, while there is a slight upward trend in median scores with
increasing dimensionality (around 83.1% for the 256 dimension),
this is accompanied by greater volatility and the appearance of some
outliers, particularly at the 256 dimension. In summary, while larger
hidden dimensions do not significantly alter AUC or AUPR
performance, a mid-range dimension like 128 seems to offer the
best balance for F1-score and Accuracy, whereas dimensions 64 and

128 also provide good and stable performance for Recall, avoiding
the increased variance potentially introduced by the
largest dimension.

Figure 4 evaluates how varying the output layer dimension
impacts model performance. For AUC, Accuracy, and Recall, the
choice of output dimension within this range appears to have a
minimal impact, with all tested dimensions yielding very similar and
stable high scores; for instance, AUC scores consistently hover
around 94.8%–95%, and Accuracy scores are tightly grouped
around 87.6%–87.8%. In the case of AUPR, dimensions 32 and

FIGURE 3
Model performance at different hidden layer dimensions.

FIGURE 4
Model performance at different output layer dimensions.
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128 demonstrate slightly more stable and marginally higher median
performance (around 94.5%–94.8%) compared to dimensions
16 and 64. For the F1-score, an output dimension of 32 results
in a slightly lower median and increased variability, while
dimensions 16, 64, and 128 offer comparable and slightly better
median performance (around 87.0%–87.2%). Overall, while most
metrics show little sensitivity to the output layer dimension,
dimensions such as 32 or 128 might provide minor advantages in
AUPR stability, and dimensions other than 32 could be preferable
for F1-score, but generally, the model’s performance is robust across
these output dimension variations.

In the CDA modeling task, circRNA and drug features play a
crucial role in the GNN’s ability to understand semantic and graph
structures. To evaluate the impact of different feature representations on
model performance, we use various node feature construction methods
in our experiments. These include Uniform and Normal distributions
for random initialization, which are suitable for scenarios with no prior
knowledge and mainly test the model’s structural learning ability. One-
hot encoding assigns unique identities to nodes, distinguishing them
without providing semantic information. Sim features, based on the
circRNA-drug similarity matrix, leverage domain-specific prior
knowledge to enhance the model’s perception of actual associations.
CircRNA similarity is quantified using two metrics: sequence-based
similarity and GIP (Gaussian interaction profile) kernel similarity (Kipf
andWelling, 2016a; Veličković et al., 2017). Similarly, drug similarity is
evaluated from two perspectives:structural similarity and GIP kernel
similarity. The comprehensive similarity matrices for circRNAs and
drugs are obtained by merging the respective similarity matrices.
Position features use the adjacency matrix to represent nodes’
positions in the graph structure, emphasizing the role of structural
connectivity relationships.

The experimental results in Figure 5 demonstrate the crucial role
of node features in GNN models. Position features (using the
adjacency matrix) achieve the best overall performance, with the

highest AUC (94.91%), AUPR (94.48%), and Accuracy (87.70%),
indicating that structural information significantly impacts model
accuracy and stability. One-hot encoding and Normal initialization
also show strong performance, particularly in F1 and Recall. The
F1 score of One-hot reaches 87.17%, suggesting that clearly
distinguishing node identities aids the model’s discriminative
ability. In contrast, Uniform initialization performs the weakest
across all metrics, especially with a Recall of only 53.09%, indicating
a lack of effective structural or semantic information that limits the
model’s learning ability. Sim features, based on biomolecular
similarity, perform better than random initialization but not as
well as Position features, indicating that domain knowledge can
enhance the model’s representation and generalization capabilities.

In summary, incorporating structural information (e.g.,
adjacency matrix) and semantic similarity (e.g., Sim features) is
vital for improving graph neural network performance. Simple
random initialization struggles to achieve excellent performance
without prior knowledge. These findings provide important
guidance for future model design and feature construction.

Ablation experiments

The resolving torsion module, a core innovative component of
our model, significantly enhances the representation of graph
structures. It captures higher-order node relationships by
modeling local graph regions with simplicial complexes. We
further integrate topological torsion values into edge weights,
strengthening the model’s sensitivity to local geometric and
topological features. This method boosts the graph neural
network’s modeling dimensions and improves its expressiveness
and discriminative power in complex graph data.

To validate this model’s contribution, we designed an ablation
study. By removing torsion weights or replacing them with simple

FIGURE 5
Performance comparison across initialization methods.
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edge similarity metrics, we observed performance changes across
multiple evaluationmetrics. Results in Figure 6 show that the torsion
module substantially improves overall model performance. For
example, in GCN models, AUC increases from 93.64% to
94.91%, AUPR from 93.11% to 94.48%, and F1 from 86.29% to
87.06%. These improvements highlight how torsion-derived
topological information enhances the model’s discriminative and
generalization abilities. Although GAT and GINmodels showminor
changes in Recall after incorporating torsion, their F1 scores and
accuracy improve, indicating torsion weights play a key role in
capturing local structural differences and enhancing feature
expression.

In summary, the torsion module is crucial for improving the
model’s ability to understand and utilize higher-order graph
relationships, making it a key factor in enhancing model
performance.

Case analysis

To validate the constructed model’s real - world biomedical
applicability, a case study was conducted. circRNAs were selected
from databases, and their potential drug interactions were predicted
using the trained model. This assessed the model’s accuracy in
identifying circRNA - drug associations and its utility in studying
disease mechanisms and screening new drugs.

ALDH3A2 (aldehyde dehydrogenase 3 family member A2), a
key human enzyme encoding fatty aldehyde dehydrogenase, is
mainly found in peroxisomes and the endoplasmic reticulum. It
oxidizes medium - and long - chain aliphatic aldehydes to fatty acids,
playing a crucial role in lipid metabolism and cellular antioxidant
responses (Rizzo and Carney, 2005). Highly expressed in liver, skin,
and brain tissues, it is vital for skin barrier function and nervous
system performance. ALDH3A2 loss - of - function or mutation can
cause Sjögren - Larsson syndrome, an autosomal recessive disorder
with symptoms like ichthyosis, mental retardation, and spastic
paralysis. Using the trained model, drugs related to
ALDH3A2 were predicted, and the top 20 candidates with the
highest model evaluation scores are listed in Table 4.

ANXA2 (Annexin A2), a calcium-dependent phospholipid-
binding protein, is widely expressed in various human tissues,
particularly in epithelial and vascular endothelial cells (Wang

et al., 2019). Located in the cytoplasm, inner cell membrane, and
extracellular environment, it participates in processes like
membrane transport, cytoskeletal remodeling, and fibrinolytic
system regulation. ANXA2 also acts as a co-receptor for tissue
fibrinogen activator and fibrinogen, influencing fibrinogenesis
and thrombolysis. Its abnormal expression is linked to diseases,
especially cancers, where it is associated with tumor invasion,
metastasis, and drug resistance, making it a potential tumor
marker and therapeutic target. Additionally, ANXA2 plays roles
in viral infections, autoimmune diseases, and inflammatory
responses, highlighting its broad biomedical and clinical
significance. Using the trained model, we predicted drugs related
to ANXA2, and the top 20 candidates based on model evaluation
scores are listed in Table 5.

ASPH (Aspartate Beta-Hydroxylase) is a protein encoded by the
human ASPH gene and belongs to the 2 - ketoglutarate - dependent
dioxygenase family (Hou et al., 2018). It plays a role in various
biological processes, particularly in cell migration and cancer. Using
the trained model, we predicted drugs related to ASPH. The top
20 candidates with the highest model evaluation scores are listed
in Table 6.

CALD1 (Caldesmon 1), encoded by the CALD1 gene, is a
human-encoded regulatory protein related to actin and is

FIGURE 6
Comparison of GNN models with and without Torsion (“w/t” refers to the model without the “Torsion” component).

TABLE 4 Top 20 predicted drugs with potential associations with ALDH3A2.

Drugs Evidence Drugs Evidence

SNX-2112 Confirmed YK 4–279 Confirmed

MP470 Confirmed BX-795 Confirmed

CP724714 Confirmed GSK690693 Confirmed

Axitinib Confirmed CH5424802 Confirmed

CCT018159 Confirmed Navitoclax Confirmed

AMG-706 Confirmed TPCA-1 Confirmed

KIN001-055 Confirmed BHG712 Confirmed

Cetuximab Confirmed XMD8-92 Confirmed

UNC0638 Confirmed Temozolomide Unconfirmed

Olaparib Confirmed Embelin Unconfirmed
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expressed in various tissues, particularly functional in smooth
muscle and non-myocytes (Cheng et al., 2021). It plays key roles
in cytoskeletal remodeling, cell migration, and muscle contraction,
making it crucial in multiple biological processes, especially in
cancer. We used our trained model to predict drugs related to
CALD1, and the top 20 drug candidates based on model evaluation
scores are listed in Table 7.

The experimental results regarding the four specific circRNAs
showed that most drug associations predicted by the model were
validated in existing databases, confirming the model’s accuracy and
reliability in identifying potential circRNA-drug relationships.
These findings not only enhance the model’s applicability to real-
world data but also validate its potential biomedical applications,
particularly in circRNA function research and drug discovery.

Conclusion

To address the computational demands of the proposed geometric
modeling approach, an empirical evaluation was performed to quantify

the time necessitated by local structural extraction and the computation
of torsion-based geometric features. The results indicate that the initial
phase, involving the extraction of 1-hop, 2-hop, and 3-hop subgraph
structures for each circRNA-drug pair, is relatively efficient, requiring
approximately 0.326 s per pair. However, the subsequent phase of
geometric feature computation, which includes the construction of
simplicial complexes and the calculation of torsion features, demands a
significantly greater processing time, averaging approximately 905 s.
This substantial increase in computational duration underscores the
considerable overhead associated with the incorporation of higher-
order geometric information. While this computational cost is
considered acceptable for datasets of moderate size, particularly
given the concomitant improvements in predictive performance, it
may pose scalability challenges when the model is applied to large-scale
or real-time biomedical knowledge graphs. Consequently, future
research will focus on exploring more efficient approximation
techniques or parallelization strategies to reduce the time required
for geometric encoding.

circRNA plays a crucial regulatory role in the cellular
microenvironment, with its aberrant expression frequently linked to
disease progression, including cancer. Additionally, circRNA is widely
involved in regulating cellular drug resistance, making the study of
circRNA–drug associations (CDAs) vital for therapeutic target
discovery and drug development. While existing graph neural
network-based methods have advanced CDA prediction, they often
overlook important geometric information inherent in the local
structures around known CDAs, which limits their predictive power.
In this study, we propose a novel graph representation learning
framework that integrates geometric information through a resolved
torsion technique. By identifying each CDA’s local simplicial complex
and computing its torsion value as an edge weight during message
propagation, our model effectively captures higher-order geometric
interactions within the circRNA–drug network. This innovation
enables enhanced perception of subtle structural perturbations,
thereby improving the accuracy of unknown CDA identification
beyond existing methods. Despite these advancements, the model
has limitations. For example, the current approach may face
challenges in scalability when applied to extremely large or
heterogeneous datasets, and the reliance on local simplicial

TABLE 5 Top 20 predicted drugs with potential associations with ANXA2.

Drugs Evidence Drugs Evidence

Camptothecin Confirmed Midostaurin Confirmed

Bortezomib Confirmed CP724714 Confirmed

Tipifarnib Confirmed CHIR-99021 Confirmed

Salubrinal Confirmed YM201636 Confirmed

Tamoxifen Confirmed Afatinib Confirmed

Vinblastine Confirmed GSK429286A Confirmed

KIN001-055 Confirmed GSK690693 Confirmed

Embelin Confirmed Ruxolitinib Confirmed

Docetaxel Confirmed Cetuximab Confirmed

Nilotinib Confirmed Gemcitabine Unconfirmed

TABLE 6 Top 20 predicted drugs with potential associations with ASPH.

Drugs Evidence Drugs Evidence

Elesclomol Confirmed Zibotentan Confirmed

Temsirolimus Confirmed Gemcitabine Confirmed

KIN001-055 Confirmed TAK-715 Confirmed

Parthenolide Confirmed Embelin Confirmed

CCT018159 Confirmed Vinblastine Confirmed

Temozolomide Confirmed Tipifarnib Confirmed

Tamoxifen Confirmed Dasatinib Confirmed

Salubrinal Confirmed CEP-701 Confirmed

AS605240 Confirmed Midostaurin Confirmed

BIRB 0796 Confirmed Bicalutamide Unconfirmed

TABLE 7 Top 20 predicted drugs with potential associations with CALD1.

Drugs Evidence Drugs Evidence

AS605240 Confirmed Nilotinib Confirmed

Camptothecin Confirmed KIN001-055 Confirmed

Bortezomib Confirmed Docetaxel Confirmed

CP724714 Confirmed selumetinib Confirmed

S-Trityl-L-cysteine Confirmed Salubrinal Confirmed

17-AAG Confirmed Epothilone B Confirmed

Tipifarnib Confirmed Axitinib Confirmed

CI-1040 Confirmed Temsirolimus Confirmed

PD-0325901 Confirmed PD-173074 Unconfirmed

Ruxolitinib Confirmed Embelin Unconfirmed
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complexes assumes sufficient data quality and completeness. Future
work will focus on extending the model’s applicability to broader
datasets, integrating multi-omics information, and exploring adaptive
geometric encoding strategies to further enhance predictive
performance. Overall, our findings demonstrate that incorporating
torsion-based geometric information is a promising direction for
advancing circRNA–drug association prediction, with potential to
accelerate therapeutic target discovery and drug development.
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