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The convergence of natural language processing (NLP) and genomics has given
rise to a new class of transformer-based models—genome large language
models (Gene-LLMs)—capable of interpreting the language of life at an
unprecedented scale and resolution. These models represent a revolution in
the field of bioinformatics since they use only raw nucleotide sequences, gene
expression data, and multi-omic annotations, leveraging self-supervised
pretraining to decipher complex regulatory grammars hidden within the
genome. This survey presents a comprehensive overview of the Gene-LLM
lifecycle, including stages such as raw data ingestion, k-mer or gene-level
tokenization, and pretext learning tasks like masked nucleotide prediction and
sequence alignment. We specify their wide range of applications, spanning
crucial downstream activities such as finding the enhancer or promoter,
modeling the chromatin state, predicting the RNA–protein interaction, and
creating synthetic sequences. We further explore how Gene-LLMs have
created an impact on functional genomics, clinical diagnostics, and
evolutionary inference by analyzing recent benchmarks, including CAGI5,
GenBench, NT-Bench, and BEACON. We also highlight recent advances
encoder–decoder modifications and the incorporation of positional
embeddings, a feature specific to living organisms, which may enhance both
interpretability and translational potential. Finally, this study outlines a pathway
toward federated genomic learning, multimodal sequence modeling, and low-
resource adaptation for rare variant discovery, establishing Gene-LLMs as a
cornerstone technology for the responsible and proactive future of biomedicine.
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1 Introduction

The initiation of large language models (LLMs) has brought about a transformation in
AI, allowing machines to recognize and produce human-like language with a high degree of
accuracy. Initially designed for natural language processing (NLP) operations such as
sentiment analysis, summarization, and translation, LLMs have since acquired the ability to
process structured sequence data, thus opening new frontiers in genomics and
computational biology. Genomics—a highly detailed study of living beings’
DNA—generates enormous amounts of complex sequence data that require
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sophisticated analytical frameworks. Due to their strong ability in
finding patterns and learning context, LLMs have been quite
successful in revealing valuable information about biology from
primitive genomic sequences. This study deals with the structure,
tokenization strategies, pretraining methodologies, and application
workflows behind the emergence of genomic LLMs, thus
emphasizing their transformative place in cutting-edge biological
research and precision medicine.

1.1 Contribution and novelty of this survey

Previous surveys, like Consens et al. (2025a), which focus on
large language models for the genome, and Szałata et al. (2024),
which examine transformer applications in single-cell omics, have
been highly informative. However, there are numerous aspects in
which our study differs from those works. We uniquely integrate
detailed encoder–decoder architectural explanations with the
complete whole genome sequencing (WGS) laboratory and
bioinformatics workflow, creating a unified view from raw data
acquisition to model-enabled clinical interpretation. We link
architectural choices directly to genomic tasks and clinical
applications, showing how encoder, decoder, and hybrid models
align with specific stages in the WGS pipeline. Moreover, we bridge
research and clinical utility by framing model design in the context
of regulatory genomics, diagnostics, and patient-specific treatment
planning. Then, wemap genomic datasets and benchmarks to model
capabilities and downstream applications, helping practitioners
identify optimal data–model–task alignments. Although the
primary focus is on genome-scale models, we also provide a brief
overview of single-cell RNA-based foundation models and note
opportunities for their integration with genome-wide LLMs in
future research.

1.2 Scope clarification

This survey focuses on transformer-based, genome-scale
language models trained primarily on DNA, RNA, and multi-
omic data derived from whole-genome sequencing workflows.
Single-cell RNA-based foundation models are not covered in
depth in this study as they form a distinct and specialized
research domain. However, we include a brief overview of recent
developments in single-cell omics modeling and note opportunities
for integration with genome-wide LLMs in future research.

1.3 Study organization

The remainder of this study is organized in a sequential order.
Section 2 introduces genomic language model pretraining, providing
a brief summary of pretraining strategies for the genomic language
model, covering pretext learning tasks and the architectural
foundation. Section 3 discusses data preparation for genome large
language models (Gene-LLMs), with an emphasis on tokenization
approaches, sequence encoding, and multimodal integration.
Section 4 outlines the WGS workflow, from patient sampling to
clinical reporting, highlighting its role as a primary source of high-

quality genomic data from the real world for model pretraining and
evaluation. Section 5 presents a detailed examination of encoder,
decoder, and encoder–decoder architectures in genomic
applications, correlating design choices with particular tasks and
stages of the WGS pipeline. Section 6 provides a review of all the
downstream applications related to functional genomics and clinical
diagnostics, along with benchmarking using different datasets such
as CAGI5, GenBench, NT-Bench, and BEACON. Section 7 mainly
focuses on emerging research directions, including federated
learning, multimodal modeling, and rare variant discovery, while
also addressing current challenges and future opportunities. Finally,
Section 8 concludes the study by summarizing the key contributions
and main takeaways from the work.

2 Background study

The enormous growth of genomic data, driven by high-
throughput sequencing, has made it necessary to develop smart
and powerful computational tools to unravel the massive complexity
of DNA and RNA sequences. Conventional bioinformatics methods
are effective for single tasks, but they usually utilize human-made
features and are not as scalable or interpretable at whole-genome,
strand-level resolution. A similar transformation in text processing
technology resulted in the deployment of LLMs, largely based on
transformer architectures, for sequence data analysis. These Gene-
LLMs are designed to treat nucleotide sequences as a biological
language and use self-supervised learning to identify the regulatory
patterns, functional motifs, and genome structure directly from
unprocessed genetic material. The leap from rule-based learning
to a form of learning that enables one to form a mental model opens
up new possibilities in functional genomics, the prediction of the
variant effects, and the diagnosis of clinical disease. This literature
overview focuses on the main ideas presented by the authors,
highlighting the designs of different Gene-LLMs, how they are
trained, and the tasks to which they are applied in the field of
genomics. Table 1 provides a list of the most important Gene-LLMs,
explaining their significance to genomic learning and including
screenshots of the projects.

2.1 Data sources (input data)

Data used with Gene-LLMs can be categorized into two types:
sequential and non-sequential genomics. These data types are
presented in Figure 1. Sequential data consist of linear DNA/
RNA nucleotide sequences, while non-sequential data are
retained in tabular form, such as gene expression matrices.

Gene-LLMs are emerging as most instrumental tools in
genomics and bioinformatics, enabling machines to understand
and interpret biological sequences in a manner very similar to
how humans understand natural language. These models process
two major data types: sequential data, which is dependent on the
order in which they are accessed, and non-sequential data.

2.1.1 Sequential genomic data
Sequential data refer to the order of nucleotides: adenine (A),

thymine (T), guanine (G), and cytosine (C)—which make up DNA
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and RNA sequences. Nucleotide order determines gene function just
as word order affects meaning in language. LLMs, which can be
trained either on all the genetic material or particular regions only,
can understand both the grammar and the semantics of this natural
language (Liang et al., 2024). In this way, genomic LLMsmake use of
tokenization (e.g., k-mer splitting) and transformer-based
architectures to extract patterns, dependencies, and regulatory
elements that are concealed within the sequences (Chen, 2025).
Models that possess such capabilities can perform tasks in silico,
such as masked nucleotide prediction and the identification of
enhancer–promoter binding sites.

2.1.2 Non-sequential genomic data
This section discusses nucleotide sequence data that are not

arranged in a linear format. No species of DNA, except some
bacteriophages, is single-stranded, and its double-stranded
structure makes it stable and nearly impossible to degrade even
after a few years of isolation.

The most recent research has focused on the use of sequential
and non-sequential data together to improve an individual’s
predictive ability. To address this, one must align DNA
sequences with expression profiles, and that is where
encoder–decoder models and multi-modal embeddings can be of
great use (Chen, 2025). Furthermore, inventions such as those
mentioned above, for example in the case of biological
coordinates, continue to act as a springboard for clarifying model
details, particularly in chromatin modeling or transcription factor
binding-site prediction (Chen, 2025). LLMs are referenced in studies
that apply such strict quality controls, such as CAGI5, GenBench,
NT-Bench, and BEACON downtrodden, which virtually eliminate

model performance measurement errors across tasks like variant
effect prediction and sequence alignment (Chen, 2025; Tan and
Yiap, 2009).

2.2 Tokenization techniques for genomic
sequence modeling

Figure 2 illustrates twomethods of tokenization used in genomic
language models: k-mer tokenization for nucleotide sequences and
expression-based tokenization for gene expression profiles
using gene IDs.

Before genomic data are processed using LLMs, they have to be
tokenized. The tokenization strategy relies on whether the input data
are of a sequential or non-sequential nature. K-mer tokenization is
commonly used to segment long DNA and RNA sequences into
overlapping fragments of length K (e.g., “ATGCGA”) for the
sequential genome data modality. Similar to subword
tokenization techniques in NLP used to process natural language,
the approach allows the model to capture the context of words
within the genomic sequences. By capturing nucleotide relationships
and forecasting functional sequence elements as K-mers, LLM
achieves this effectively. In sequence-based learning, the
production of significant genomic LLMs, such as DNABERT and
nucleotide transformer, depends on the presence of K-mers. Gene
tokenization is used to transform/encode gene-level expression data
of a non-sequential genome into a numerical format. During
tokenization, an identifier is assigned to each gene (Gene ID),
rather than breaking it down into parts. Gene expression data are
also included in the tokenized genes to represent biological activity.
Given the evolution of the cellular environment, the latter does not
treat sequences in the same way, allowing the model to learn
regulatory and expression patterns that are specific to multiple-
cell contexts.

2.3 Pretext learning tasks: building
foundational knowledge in genomic LLMs

In Figure 3, the principal charts of pretext tasks in the learning of
genomic large language models are masked language modeling
(MLM) and autoregressive language modeling (ARLM). MLM
involves concealing fragments of the sequence and asking the

TABLE 1 Summary of key studies on Gene-LLMs and their core attributes.

Ref. No. Study description Key attribute

Ji et al. (2021) DNABERT introduces a k-mer-based adaptation of BERT for genomic sequences, showing
effectiveness in promoter and splice-site prediction.

K-mer tokenization, promoter/splice-site prediction,
and DNABERT

Chen et al. (2025) Nucleotide transformer generalizes across species and downstream tasks using multi-species
pretraining and attention-based architectures.

Multi-species training, long-range attention, and
nucleotide transformer

Gao et al. (2024) EpiGePT utilizes transformer architecture with transcription factor activities and 3D genome
interactions to predict epigenomic signals.

Epigenomics, 3D genome structure, and TF activity
modeling

Liang et al. (2024) Genetic transformer (GeneT) applies Gene-LLMs to rare disease diagnosis, reducing
candidate variants and enhancing clinical utility.

Clinical diagnostics, variant prioritization, and speed
optimization

Consens et al. (2025b) GenBench provides a comprehensive benchmarking suite for evaluating Gene-LLMs across
short- and long-range genomic tasks.

Benchmarking, standardized datasets, and model
reproducibility

FIGURE 1
Classification of genomic data sources.
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FIGURE 2
Tokenization strategies for genomic data preparation.

FIGURE 3
Illustration of pretext tasks in genomic language model training.
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model to recover these parts, whereas ARLM teaches the model to
predict the next token in the sequence based on the previous tokens.
LLMs use NLP-inspired self-supervised learning strategies to create
meaningful genomic representations. In genomic applications, two

main pretext tasks are frequently used: autoregressive language
modeling (ARLM) and mask language modeling (MLM). By
randomly masking specific regions of a DNA sequence, MLM
trains a model to predict the missing nucleotides. This technique

TABLE 2 Comparative performance of selected Gene-LLMs.

Model Year/
reference

Benchmark
dataset(s)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score
(%)

AUROC Strength/limitation

DNABERT Ji et al. (2021) CAGI5 (promoter/
splice site prediction)

92.3 91.0 90.5 90.7 0.94 Strong k-mer context
modeling; less effective on
ultra-long sequences

Enformer Avsec et al.
(2021)

GenBench (gene
expression/chromatin
accessibility)

89.7 88.5 89.1 88.8 0.92 Excellent at long-range
chromatin interaction
prediction; high
computational cost

Nucleotide
Transformer

Dalla-Torre et
al. (2025)

NT-Bench (cross-
species sequence
modeling)

91.8 90.9 91.3 91.1 0.93 Cross-species generalization;
large model size and training
cost

DNABERT-2 Marin et al.
(2024)

Multi-species genome
benchmarks

93.5 92.8 92.4 92.6 0.95 Parameter-efficient;
improved k-mer
embeddings; strong cross-
species generalization

Evo-2 Nguyen et al.
(2024)

Multi-modal genomic/
protein interaction
benchmarks

94.1 93.4 93.0 93.2 0.96 Integrates genomic and
protein sequence modeling;
excels at cross-scale design;
high computational
requirements

FIGURE 4
Pretext tasks used in genomic language model training.
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allows the model to infer contextual dependencies between genetic
elements and is similar to the fill-in-the-blank task used in natural
language processing. The model learns to reconstruct masked
sequences, which helps it better comprehend genomic variations
and structures better. ARLM involves predicting the next nucleotide
in a sequence based on the preceding nucleotide. Just like the
algorithms used to generate text, the application of NLP methods
helps the model to capture the relationship between sequences and
the joint probability distribution of genes. A model trained with
ARLM can effectively identify and link the most promising genetic
elements most efficiently, providing a breakthrough for downstream
genomic tasks.

In addition to the typical attention-based architectures that are
heavily used in MLM and ARLM, a set of convolution-based
architectures has been recently adopted for genomic pretext
learning. Among others, there is HyenaDNA that takes advantage
of long-range implicit convolution kernels to efficiently capture the
dependencies that can be as far as millions of base pairs. These
convolutional architectures can carry out the same pretraining
objectives as masked nucleotide prediction and next-token
prediction, but they can provide a better scalability and memory
efficiency profile than the attention-only models. Consequently, the
use of such methods secures a more diverse architectural landscape
in Gene-LLM training, which not only relies on the different types of
attention but also takes into consideration the alternative paradigms
of sequence modeling.

Table 2 summarizes the comparative performance of selected
Gene-LLMs on representative benchmarks, along with their
strengths and limitations.

2.4 Downstream tasks (practical
applications)

After training, genomic language models (LLMs) can be applied
across various life science and medical domains, advancing genomic
research and clinical diagnostics (Figure 4). The discovery of
functional regions is one of the remarkable uses of genomic
LLMs that can determine the key regulatory units, such as
enhancers and promoters. To gain insights into transcriptional
regulation and genetic interactions, these regulatory regions,
which play a crucial role in gene expression control, must be
identified. Functional sites in the genome can be predicted in a
very accurate manner using learned representations. Forecasting

disease single-nucleotide polymorphisms (SNPs) is an essential task
for LLMs, whereby these latter are capable of determining the SNP
markers of genetic diseases. SNPs are the differences found at single-
nucleotide positions in the genome and are used as disease
susceptibility biomarkers. Furthermore, LLMs can support disease
diagnosis and risk assessment by evaluating the extent to which
certain SNPs contribute to the development of pathological
conditions through the analysis of genetic variation patterns.
Moreover, genomic LLMs can also be used to predict the gene
expression, which is essential for understanding the behavior of cells
under different biological states. Thus, in addition to having the
ability to foresee gene activity or inactivity in different cell types, the
LLMs can, through the combination of the RNA profiles with DNA
sequence information, accurately determine the specific level at
which the genes are functioning. This feature is very important
in areas where an accurate model of gene expression dynamics is
required, such as in drug discovery, regenerative medicine, and
cancer genomics. The development of self-supervised learning
techniques, tokenization, and model interpretability is crucial to
improving genomic LLMs’ ability to analyze complex genomic data
as the field continues to expand. These models could be harnessed to
transform the way precision medicine and genomics research are
being carried out as they establish the link between unprocessed
genomic sequences and meaningful biological insights.

3 Whole-genome sequencing
laboratory and
bioinformatics workflow

The WGS workflow is used sequentially to decode and interpret
a person’s complete genetic code. It involves laboratory-based
experimental methods, high-speed sequencing technologies,
computational data processing, and the interpretation of clinical
results. Using self-supervised learning methods, tokenization
strategies, and model interpretability not only greatly enhances
but also increases the capacity of genomic LLMs to analyze
complicated genomic data in the emerging field. The
aforementioned models can overhaul precision medicine and
genomics research execution and act as a bridge between raw
genomic sequences and novel biological insights. The first step,
called sample preparation, includes DNA extraction and
precipitation of the material to be used for the experiment from
various biological macromolecules. There are many basic steps to

TABLE 3 Summary of DNA sample preparation steps and their importance.

Reference no. Objective Remark

Gupta et al. (2019) Sample collection from biological sources like blood or tissue Initial step crucial for reliable DNA yield and quality

DNA Extraction - an
overview

Cell lysis to release DNA using physical, chemical, or enzymatic methods Lysis enables access to nucleic acids within cells

He et al. (2022) DNA purification to separate DNA from proteins and other cellular debris Essential for removing contaminants that interfere with molecular
processes

Promega Corporation (2023) DNA precipitation using alcohol and salt to concentrate the DNA Precipitation makes DNA visible and retrievable

Satam et al. (2023) Ensure purity and concentration for downstream applications (PCR and
sequencing)

Purified DNA improves accuracy and reliability of results
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follow in the DNA extraction process so that the integrity of the
sample and its suitability for subsequent molecular applications are
correctly maintained. The main steps, i.e., sample collection, lysis,
purification, and precipitation, are provided in Table 3 (Gupta et al.,
2019; DNA Extraction - an overview; He et al., 2022; Promega
Corporation, 2023; Satam, 2023).

DNA is often extracted from whole blood samples that are kept
stable with citrate or EDTA to prevent decomposition. Other
examples are surgical specimens or biopsy tissue. Since the
sensitivity of the copy number variation (CNV) test is greatly
improved, high-molecular-weight DNA is suggested. Through the
newer protocols of WGS, DNA amplification has been excluded,
thus leading to equal sequence depth across the whole genome, and
the success of the experiment has been accompanied by low biases
in the results. Library preparation is carried out after DNA
extraction to prepare the DNA for sequencing. To improve
sequence alignment, DNA is broken down into much smaller
fragments, which are generally approximately a few hundred
base pairs in length. Subsequently, the fragmented DNA
molecules are attached to the screen with adapters to enable
them to be captured by the sequencing chip. To clarify the
sequence of DNA fragments, multiple barcoded samples are
essential for multiplex sequencing. This method not only
protects the data from being tampered with but also enables the
parallel sequencing of several cases. The generation of DNA
fragments for sequencing starts with specific steps, such as
fragmentation, adapter ligation, and sequence chip attachment,
as shown in Table 4 (DNA Library - an overview; ECU Genomics
Core; CD Genomics, 2024; Illumina dye sequencing - an overview;
Ji et al., 2021; Chen et al., 2025; Gao and Zhou, 2024; Consens et al.,
2025b; Liu et al., 2025 collectively demonstrate the power of
transformer-based AI models in advancing genomic and single-
cell biomarker analysis).

The cluster generation phase is crucial for amplifying DNA
fragments prior to sequencing. The prepared DNA libraries are
loaded onto a flow cell, a specialized sequencing chip, and

distributed across its surface. Each DNA fragment undergoes
clonal amplification via polymerase-mediated reactions, resulting
in clusters of identical DNA molecules. This amplification process
ensures a sufficient signal-to-noise ratio during sequencing,
improving the accuracy of base calling. The next stage,
sequencing, involves determining the nucleotide sequence of each
DNA fragment. WGS primarily utilizes short-read sequencing
technology, generating sequence reads of approximately
100–300 base pairs. The sequencing process follows a cycle-by-
cycle approach, in which a DNA polymerase enzyme incorporates
fluorescently labeled nucleotides one at a time. As each nucleotide is
added, a high-resolution confocal fluorescence laser detects the
emitted signals, which correspond to the specific base
incorporated. This fluorescence-based detection allows for
accurate sequence determination, ensuring high-resolution
genomic analysis. The key steps involved in the cluster
generation phase of next-generation sequencing (NGS) are
outlined in Table 5 (Satam, 2023; CD Genomics, 2023; Eren
et al., 2022; Akintunde, 2023; DNABERT-2, 2024), beginning
with DNA fragment attachment and progressing through
amplification stages critical for signal detection and
sequencing accuracy.

After the sequencing process has been finished, the raw
sequencing data must be processed further using bioinformatic
tools so that the data can be extracted from the received results.
In the beginning, the sequencer/machine releases the information in
the form of FASTQ files. These data contain the read sequences and
the corresponding quality figures. The next step is to align the
sequences with a reference genome using high-performance
computing systems; thus, a Binary Alignment Map (BAM) file is
built up. This file can be used for further analysis and to make raw
data more comprehensible and readable for researchers. Variant
calling is carried out to detect changes in the genome, such as
mutations, insertions, or deletions, which are then recorded in a
Variant Call Format (VCF) file. The next task in bioinformatics is
the analysis of the variants, which may involve variant filtration, the

TABLE 4 Overview of DNA adapter ligation and sequencing workflow.

Reference no. Objective Remark

DNA Library - an overview DNA fragmentation DNA is broken into smaller pieces using enzymes or physical shearing

ECU Genomics Core Adapter ligation Synthetic DNA adapters are attached to both ends of each DNA fragment

CD Genomics (2024) Sequencing chip capture Adapters help anchor DNA fragments onto the surface of the sequencing chip

Illumina dye sequencing - an overview Sequencing readout The sequencing chip reads the attached DNA fragments to generate data

TABLE 5 Cluster generation workflow in DNA sequencing.

Reference no. Stage Description

CD Genomics (2023) Attachment DNA fragments with adapters hybridize to the flow cell surface

Satam et al. (2023) Bridge amplification Polymerase extends strands forming “bridges” across the flow cell

Eren (2022) Denaturation Bridges are denatured to produce single-stranded templates

Akintunde et al. (2023) Clonal amplification Repeated amplification forms dense clusters of identical DNA fragments

DNABERT-2 (2024) Importance Ensures strong signal detection, high throughput, and sequencing accuracy
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removal of sequencing artifacts, annotation, identification of known
mutations, and—most importantly—the determination of
pathogenicity and clinical relevance. The final steps in the WGS
workflow are clinical interpretations and the report generated from
these. Genomic data that are filtered and matched by bioinformatics
analysis are carefully examined by a geneticist and a physician, with
the objective of discovering the disease-related variations. The
analysis and interpretation result in a clinical report identifies
possible therapeutic targets and explains the diagnosed genetic
disorder. Such reports are indispensable tools in the treatment of
tumors as they play a crucial role in the targeted therapy option and
diagnosis of genetic disorders. The correct rate of change detection is
constantly growing with the increasing influence of WGS and the
new technologies used in the process. However, a part of the work
related to data interpretation and the clinical application area
remains not well addressed; hence, further improvement of
classification criteria and computational techniques is needed.
Undoubtedly, if WGS—already part of the standard clinical
pipeline—is used for the molecular diagnostics of each patient, it
will improve current therapies and, in the future, support the
advancement of personalized medicine.

In addition to the typical attention-based architectures that are
heavily used in MLM and ARLM, a set of convolution-based
architectures has been recently adopted for genomic pretext
learning. Among others, HyenaDNA leverages long-range implicit
convolution kernels to efficiently capture dependencies that can span
millions of base pairs. These convolutional architectures can carry out
the same pretraining objectives as masked nucleotide prediction and
next-token prediction, but they can provide better scalability and
memory efficiency profiles than the attention-only models.
Consequently, the use of such methods secures a more diverse
architectural landscape in Gene-LLM training, which not only relies
on the different types of attention but also takes into consideration the
alternative paradigms of sequence modeling.

3.1 Integrating clinical genomics with Gene-
LLM pipelines

WGS is a key multiple real-world data processing pipeline, one
of the main sources of high-quality genomic sequences, annotations,
and clinical metadata, which are used to pretrain and evaluate Gene-
LLMs. Patient consent, sequencing, bioinformatic interpretation,
and clinical reporting are the steps in the WGS workflow that not
only determine the framework of the datasets but also their quality,
which later on becomes the input of the models. WGS workflow
staging enables us to reach the hospital and laboratory setting, which
fundamentally changes the architecture and training parameters we
discuss in the following sections. In particular, it exemplifies how the
data source can affect tokenization methods, variant annotation
ontologies, multimodal integration, and downstream NLP-style
applications like clinical report generation. Therefore, in the next
section, the link between data acquisition from the genome and AI
model design in precision medicine is discussed.

In addition to these architectures, several new genomic language
models have advanced both in efficiency and scope. DNABERT-2
(2024) extends DNABERT by introducing optimized k-mer
embeddings, parameter-efficient training, and multi-species

genome pretraining, enabling strong cross-organism
generalization. It includes a standardized benchmark suite for
variant effect prediction, enhancer–promoter classification, and
multi-species motif discovery. The Evo series, Evo-1 and Evo-2,
developed by Nguyen et al. (2024), unify sequence modeling from
the molecular level (protein and RNA) to the genome scale. Evo-1
achieved state-of-the-art protein structure–function prediction,
while Evo-2 extended to cross-scale design, integrating molecular
motif modeling with long-range genomic dependencies. Protein
language models (PLMs) such as ESM-2 and ProtT5 have also
become valuable for multi-omic integration, aligning protein
sequence representations with genomic and transcriptomic
contexts to enhance variant effect prediction, drug target
discovery, and synthetic biological applications.

4 Whole-genome sequencing from
patient to clinical report: a
translational approach

In the context of personalized medicine, WGS applications involve
strategies that, during the process of “under the microscope” analysis of
genes related to cancer, hereditary diseases, and pharmacogenomic
responses, can reveal a large number of genetic variations. The
utilization of WGS technology, from a patient’s bedside to a clinical
report, is an interwoven process of joint clinical and genomic judgment
that goes beyond a single specialty. The stages of WGS implementation
for clinical purposes are outlined in this study, mainly illustrating the
role of the technology in diagnostics, treatment planning, and
continuous patient care.

4.1 Clinical assessment and patient consent

A clinical health worker evaluates whether genomic sequencing
would be helpful in the patient’s care and the site where the WGS
process begins. Various factors, such as unexplained genetic issues, rare
disease phenotypes, suspected hereditary illnesses, and cancer cases
where traditional molecular tests fail to provide a diagnosis, motivate
the decision to performWGS.WGS can benefit oncologists by enabling
them to identify actionable mutations that cause cancer, thereby
supporting the development of a more personalized treatment
regimen. After a clinical indication has been established, the patient
is provided with the full information concerning the sequencing
process, its likely outcomes, and any ethical issues that might arise.
First, formal consent is obtained to ensure that the patient is informed
about the potential for uncertain or incidental results and the
implications of genomic testing. This decision process also defines
the clinical metadata and phenotypic context that can be integrated into
multimodal Gene-LLMs, as described in Section 3.1, enhancing disease-
specific variant prediction.

4.2 Sample collection and laboratory
processing

Once the patient provides consent, genetic material, which is
typically peripheral blood for germline examination or tumor tissue
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for somatic variant analysis, is collected, prepared, and transferred to
the genomic laboratory forWGS. Correctly preserved sample quality
is the necessary thing for a reliable sequencing outcome, and DNA
extraction, storage, and transportation are carried out through the
strictly followed procedures. In the clean rooms of the laboratory,
many technical operations are in practice, including but not limited
to DNA extraction, library generation, sequencing, and quality
control tests. The most modern and high-throughput sequencing
(HTS) models generate gigabytes of raw genetic data, which, in the
following part, go through bioinformatics algorithms for the
detection and annotation of variants. The standardized laboratory
procedures described in this study ensure the quality of the
nucleotide sequences that form the basis for the tokenization and
k-mer segmentation strategies detailed in Section 3.1.

4.3 Variant interpretation and
multidisciplinary review

The bioinformatics pipeline takes the data on raw read
sequences and analyzes it using computational and statistical
methods to finally result in known clinical truths that are
personally valid. In the first phase, the sequences are aligned to a
reference genome, followed by variant calling to identify changes,
including gene duplications, deletions, and structural modifications.
The found variants are then further processed by rejecting those that
do not fit their potential pathogenicity, inheritance methods, and/or

clinical relevance. The interpretation of the data was guided by the
well-established classification framework outlined by the American
College of Medical Genetics and Genomics (ACMG), which
categorizes variants as pathogenic, likely pathogenic, benign, and
of very uncertain significance (VUS). One major goal of the
accompanying discussions is to clarify the underlying disease-
causing variants while ensuring both the accuracy of diagnosis
and the applicability of the clinical implications. All groups from
the clinic, laboratory, and other peripheral fields, like the
multidisciplinary team (MDT) of health, work together to
determine whether the results were meaningful or not. The MDT
examines the disease in depth, discusses how to manage a potential
disease situation, and identifies the most suitable treatment options
for the patient. With the guidance of a team of experts in the field,
consensus can be reached where necessary. These clinically curated
variant classifications can serve as high-quality labeled datasets for
supervised fine-tuning of Gene-LLMs, directly complementing the
pretraining and tokenization strategies described in Section 3.1.

4.4 Clinical reporting and patient
consultation

A clinical report indicating the interpretation of the variant is
generated and sent to the referring physician. One of the main points
in this report is the discovery of a dangerous variation in the gene,
the risk of disease it could cause, and the possible effects that

FIGURE 5
How WGS works: the step-by-step process from collecting a sample to the WGS workflow depicted in this context is the essential process of
handling raw data that are utilized for Gene-LLM pretraining and benchmarking. It is a workflow that connects the output of real-world sequencing to the
input range of models’ clinical application and continuous re-analysis.
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medicine can have in the therapy process. WGS reports in oncology
might help identify targetable mutations, providing doctors with
information to guide possible individualized treatment plans. Then,
the patient and the doctor review the results, during which the
doctor explains the genetic findings, their implications for disease
management, and any potential interventions. Experts in providing
genetic counseling are easily accessible for additional support and
guidance, especially in cases of genetic conditions. The complete
WGS process, accompanied by wet-laboratory sample preparation,
bioinformatics analysis, and clinical interpretation, is depicted in
Figure 5. It shows the flow of clinical decision-making that re-
analysis of the genome and data integration can affect. The
structured reporting format provides a natural mapping to
downstream NLP-style tasks for Gene-LLMs, such as clinical
text–genome alignment and report generation.

4.5 Continuous data re-analysis and
longitudinal patient care

Sequencing data that have been saved can be re-analyzed at
regular intervals, especially when the first WGS analysis has not led
to a definitive diagnosis. As genomic databases expand and new
disease-associated variants are discovered, data from a previous
WGS operation may provide new insights without asking the patient
to go to the hospital again or collect another sample. This novel
approach ensures that molecular medicine advancements and
patient care are continuously connected. Furthermore, the human
genome is a treasure trove of information about patients who are
likely to respond to a certain medication, and it may, therefore, be
used as a basis for personalized therapy; WGS data may serve as a
source of otherwise unidentified pharmacogenomic information,
providing insights into which drug to choose and how best to
optimize the dosage. Other types of genomic analyses can be
carried out during treatment to monitor disease progression,
adjust therapeutic approaches, and evaluate emerging resistance

mechanisms in cancer. The integration of WGS into clinical
practice paves the way for advancements in medical diagnostics
and individualized care. The genetic diagnosis will be more precise
through WGS, and the techniques of precision medicine will be
enabled by implementing a smooth transition from patient
assessment to genomic analysis and the clinical decision-making
process. Nevertheless, some issues remain, including the need for
robust computational infrastructure, the establishment of
standardized criteria for variant classification, and ethical
concerns related to data privacy and incidental findings. The
clinical utility of WGS will continue to improve along with the
advancements in genomic technologies, enabling more personalized
individualized, data-driven healthcare solutions that can
significantly improve patient outcomes.

5 Encoder, decoder, and
encoder–decoder architectures
in genomics

Through the use of original NLP architectures, neural networks
have addressed challenges in genomics caused by earlier deep
learning models, enabling complex analyses of DNA and RNA
sequences. The so-called encoder, decoder, and encoder–decoder
designs are the vital stages of the processes of generating and
analyzing genomic data. These types of models have been further
restructured to address issues such as the complexity of regulatory
element searches, the existence of long-range correlations, and the
non-random organization of DNA sequences. The section outlines
the function of the encoders, decoders, and encoder–decoder
architectures in genomics, mentions the types of applications,
and provides models of the different genomic tasks that have
been developed. The encoder component plays a crucial role in
converting raw genomic sequences into fixed-size embeddings that
retain biologically relevant features, as illustrated in Figure 6.

5.1 Encoder in genomics

Raw sequence data, such as DNA or RNA information, usually
require a numerical representation prepared by the encoder. The main
issue to be addressed in this process is how to preserve the biologically
relevant information in the dataset. The embedding (often referred to as
such) is a fixed-size representation that is context-aware and carries the
numerical information. It describes the most important patterns in the
sequential input and also supports tasks such as variant prediction,
classification, and functional annotation. It is important to note that the
encoder (referred to as the deep learning model input) of any dynamic
or static data source may also benefit from the kernel network’s help in
transforming the source data. This process is known as feature
extraction.

Let x � x1, x2, . . . , xn{ } be the input sequence of nucleotides (A, C,
G, and T) or k-mer tokens (1); E ∈ Rn×d be the embedding matrix,
where d is the embedding dimension (2); and z �
z1, z2, . . . , zn{ } ∈ Rn×d be the contextualized output representations (3).

DNA or RNA sequence is tokenized using k-mers:
xi ∈ V, where V is the vocabulary of all k-mers (4).
Each token is mapped to a vector:

FIGURE 6
Encoder function in genomic sequence representation.
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ei � Embed(xi) so thatE � [e1, e2, . . . , en]⊤ ∈ Rn×d (5).
Positional encoding
Because DNA sequences are ordered, positional information

is added:
~ei � ei + pi,wherepi is a sinusoidal or learnable positional vector

(6).
Self-attention mechanism (core of the transformer encoder)
For each position i, compute the following:

• Query: Q � EWQ.
• Key: K � EWK.
• Value: V � EWV.

Attention scores:
Attention (Q,K,V) � softmax(QK⊤��

dk
√ )V, (7)

where

• dk is the dimension of the key vectors;
• WQ,WK,WV ∈ Rd×d are learnable weights.

4. Feed forward layer (non-linearity)

After self-attention,
zi � FFN(Attention(Q,K, V)i) � ReLU(W1 · hi + b1)W2 + b2.

(8)
Embedding for downstream tasks z � z1, z2, . . . , zn{ }, used for

classification, variant calling, etc.
Output z is used for

• Variant prediction: ŷ � softmax(Wczi + bc). (9)
• Enhancer recognition: binary classifier ∈ 0, 1{ }.
• Splicing-site prediction: multi-label sequence classification.

5.2 Role of encoders in genomics

In essence, encoders are vital for genomic analysis because they can
extract important sequence patterns and DNA nucleotide correlations
that represent those nucleotides. Encoders in deep learning
architectures are responsible for processing tokenized DNA
sequences, which are typically displayed as k-mers, and transforming

them into dense, fixed-size vector descriptors. Self-attention
mechanisms in these embeddings are used to allow the model to
learn which genomic regions are interacting, and thus, the local and
long-range dependencies that are present in the genomic sequences can
also be identified. Models with encoder architecture have been useful in
various genomic tasks, like identifying gene functions, recognizing
enhancers, and automatically detecting disease-related variants.

Several deep learning models have been developed with encoder-
based architectures to analyze DNA and RNA sequences effectively.
Several transformer-based Gene-LLMs have been developed for
specialized tasks in genomics such as gene expression prediction,
enhancer detection, and variant effect modeling, as summarized
in Table 6.

These models demonstrate the effectiveness of encoders in
capturing sequence-level patterns and facilitating genomic
predictions, making them indispensable for computational genomics.

5.3 Decoder in genomics

The use of a decoder that transforms encoded representations into
structured outputs complements the encoder. Since most genomics-
related tasks involve classification or regression rather than sequence
generation, decoders are less in demand compared to encoders, which
are often used for the extraction and classification of genomic features.
However, decoders may be the best choice for tasks that need to convert
a set of genes annotated in a specific format into time-course trajectories
or/and reconstruct a sequential pattern.

Let:

• x ∈ X be the input genomic sequence (e.g., DNA/RNA);
• ∈ Rd be the latent representation (embedding vector); and
• y ∈ Y be the output (e.g., expression levels and
accessibility score).

1. Encoder function

z � fθ x( ),
where fθ is the encoder neural network parameterized by θ and output
(z) is a fixed-size vector embedding containing genomic features.

TABLE 6 Summary of Gene-LLMs and their functions in genomic applications.

Model name Function in genomics

DNABERT Processes k-mer tokenized DNA sequences and predicts gene functions and regulatory motifs.

Enformer Predicts gene expression by identifying enhancers, promoters, and chromatin interactions genome-wide.

GPN (Genomic Pretrained Network) Detects disease-associated mutations and large-scale structural variants using pretrained genomic embeddings.

iEnhancer-BERT Detects gene enhancer regions responsible for transcriptional activation in specific genomic contexts.

Nucleotide Transformer Uses cross-species DNA pretraining to infer conserved genomic elements and functional annotations.

SpliceBERT Models splice junctions to understand alternative splicing and isoform prediction from raw sequences.

GenomeT5 Applies T5 architecture to generate and classify genomic sequences with multiple downstream tasks.

Genomic BERT Learns contextual embeddings of DNA for variant effect prediction and genome annotation.

EpiGePT Integrates epigenomic and transcription factor data to model 3D genome structure and activity.

PromBERT Predicts promoter regions using BERT architecture trained on annotated regulatory sequences.
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2. Decoder function

ŷ � gϕ z( ).

Here,

• gϕ is the decoder network parameterized by ϕ.
• ŷ is the predicted output, such as gene expression levels or
chromatin accessibility.

• y is the ground-truth output (used for training).
3. Loss of function for training

The decoder is trained to minimize the difference between predicted
output ŷ and true output y using a suitable loss of function L.

• For regression tasks (e.g., gene expression level prediction),

L y, ŷ( ) � 1
n
∑
n

i�1
yi − ŷi( )2.

• For classification tasks (e.g., binary accessible/
inaccessible region),

L y, ŷ( ) � −∑
n

i�1
yi log ŷi( ) + 1 − yi( )log 1 − ŷi( ).

5.3.1 Function of decoders in genomics
It is true that decoders are not often used in genomic deep

learning, but they play a role in very limited applications.

5.3.1.1 Sequence reconstruction
Decoders can be used for reconstructing nucleic acid sequences

out of learned representations at times. The application of such an

approach resembles the classic error-correction tasks that require
one to apply particular processes and, based on the outputs,
determine what the errors in the input data were, then undo
the changes.

5.3.1.2 Predicting chromatin accessibility and gene
expression

A certain type of genomic model involves decoders in
calculating chromatin accessibility maps that specify the regions
of DNA available for transcription and determining gene expression
levels of different cell types, as shown in Figure 7. These applications
mainly focus on the investigation of epigenomics and provide
insights into the potential function of genes.

As shown in Table 7, several genomic reference models such as
GRCh38 and ENCODE provide foundational data for
genome analysis.

5.4 Encoder–decoder architectures
in genomics

The encoder–decoder framework represents an efficient method
for converting multiple genomic forms, combining the strengths of
transformers and encoders with the advantages offered by decoders.
This architecture, fundamentally used in machine translation and
certain NLP tasks, is applied only to genomic problems of a narrow,
specialized scope.

5.4.1 Encoder–decoder model applications
in genomics

Sequence-to-sequence tasks: For some genomics-related tasks,
such as changing only one sequence into another, the use of an
encoder–decoder model is very important.

For example, the model of predicting RNA secondary structure
from a DNA sequence uses the encoder–decoder concept, which
converts the input sequences to the structured outputs.

Multi-omic data integration: Given a variety of data types
available, an encoder–decoder model functions as a tool to
combine different types. A typical genomic sequence to
epigenomic signals of DNA can be used to predict the regulatory
activity of a sequence.

Variant-to-phenotype mapping: By establishing the
correspondence between the gene mutations and the resulting
traits, deep learning models can be used in the selection of

FIGURE 7
Representation of an encoder–decoder model in genomic applications in a tabular form. The encoder part of the model converts DNA or RNA
sequences to embeddings of predetermined size, while the decoder part of themodel reverts the embeddings back to the original space or family for the
generation of the output like gene expression or chromatin accessibility predictions.

TABLE 7 Common genomic reference models and their functions.

Model name Function

GRCh38 A complete reference for the human genome.

ENCODE Helps study how genes are regulated.

1000 Genomes Project Provides data on genetic variations in humans.

RNAcmap Helps understand RNA evolution.

BV-BRC Contains information on bacterial and viral pathogens.
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targeted therapy and disease diagnosis. As shown in Table 8,
encoder, decoder, and encoder–decoder architectures play distinct
roles in genomic sequence modeling, each with specialized
functions, strengths, and applications.

6 Datasets used for training Gene-LLMs

Gene-LLMs necessitate a large amount of genome data for
training. Genomic data from humans and other species are the

data source of choice for scientists to improve the understanding of
these models of DNA sequences. The main source of data is human
and mammalian genomes. The GRCh38 dataset is used for training
complete human DNA reference models. A complete description of
the Mammalian-Gene dataset is provided in the study, which
contains genetic information from mammals like chimpanzees
and pigs; the 1,000 Genomes Project was a project that collected
DNA from 2,500 people worldwide with the aim of studying
diversity and variations in genetics. In the area of gene regulation
and expression, datasets like 690 ChIP-seq provide insights into how

TABLE 8 Comparative overview of encoder, decoder, and encoder–decoder architectures in genomic modeling.

Type Purpose Main
function

How it
works?

Key strength Common
application

Example use
cases in
genomics

Example model

Encoder Extracts
features from
the input

Analyzes and
understands
DNA/RNA
sequences

Masks parts of
sequences and
predicts missing
information

Excellent at
identifying
patterns,
mutations, and
functional
elements in DNA

Promoter prediction,
transcription factor
binding site analysis,
and single-nucleotide
variation detection

Classification tasks
(e.g., promoter
identification)

DNABERT,
Nucleotide-
Transformer,
GenFormer, and
Uni-RNA

Decoder Generates
output
sequences

Generates or
predicts genetic
sequences

Uses learned
patterns to
generate
sequences

Strong generative
ability for new
sequences and
evolutionary
predictions

Generating new
sequences, species
identification, and
regulatory factor
prediction

Sequence
reconstruction or
prediction

Orca, GenSLMs,
DNAGPT, HyenaDNA,
and Evo

Encoder–decoder Maps input to
different
output formats

Both analyzes
and generates
sequences

First encodes the
sequence and
then decodes it to
reconstruct or
predict

Combines analysis
and generation for
better results

Complex genomic tasks
like sequence
reconstruction and
mutation prediction

Predicting 3D
genome structure
and chromatin
interactions

Orca, C.Origami, and
ENBED (Ensemble
Nucleotide Byte-level
Encoder–Decoder)

FIGURE 8
Usage distribution of genomic datasets across recent Gene LLM studies (2021–2025). Values represent relative usage frequency calculated based on
citation counts, dataset mentions, and usage across selected genomic language model publications. A combination of literature survey and metadata
extraction was used to estimate frequency.
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proteins interact with DNA, thereby enabling models to gain a better
understanding of gene activity. DeepSEA investigates DNA
modifications and how they can affect gene function, but
ExPecto tries to find an answer to the question of how different
sequences of DNA affect gene expression across the tissues. One of
the tasks of a functional genomics database is creating a genomic
“atlas” that maps the regulatory elements of the genome. ENCODE
is a superb dataset that is a landmark in terms of its breadth as it
identifies the major functional regions of the human genome and
even those that are not only genes and regulatory DNA sequences.
The EPD new database remains the primary resource for identifying
sequences that activate gene expression. In addition to this,
Ensemble also has a big collection of data on the general biology
of different species. Genomic and viral DNA are also quite
significant in the training of Gene-LLMs. STAARS was one of
the projects included in NPR, aiming to generate the first
representative agent of the American BV-BRC, which stores both
viral and bacterial DNA. However, among the DNA they collect,
there are also various COVID-19 variants. On the other hand,
VGDB is the viral genome collection that is mainly used for the
identification of virus evolution and functioning. Many niche
datasets are available to solve certain problems in genomic
research. Panglao is specifically devoted to single-cell RNA data
for studies on gene expression in different cell types. RNAcmap, in
turn, uses evolutionary data to predict RNA structures. UCSC
Genome is a very useful tool for sequence comparison across
species, and the NCBI-Genome offers a multitude of genetic
sequence records from various organisms that can be a support
to any and all of the genomic research areas. From Figure 8, it is
quite clear that datasets like GRCh38, ENCODE, and NCBI Genome
are driving the development of Gene-LLMs by research scientists for
general research usage. On the other hand, RNAcmap and Panglao
are two different types of databases—RNAcmap is an RNA sequence
repository, and Panglao is a single-cell gene database—which are
used for Gene-LLM development with a narrower scope.

We manually examined peer-reviewed publications and
preprints from 2021 to 2025 that either proposed or evaluated
genomic language models to calculate the numbers represented
in Figure 8. For each study, we documented the datasets used,
extracted citation and usage metrics (if accessible), and normalized
them to approximate relative frequency. Although this method may
not account for all usages, it is indicative of the typical usage
frequencies of the most cited and popular Gene-LLMs.

7 Benchmarks

Benchmarks are an essential part of the process of evaluating
and comparing how different models can perform in genomic
research. They help reveal the potential of Gene-LLMs in
different genomic tasks. The following is a full description of the
benchmarks that are most frequently used.

CAGI5 Challenge Benchmark (CAGI5) was created to assess the
extent to which computers can replicate human ability in
recognizing genetic alterations and their consequences. In cancer
research, the goal is not to measure the overall impact of
17,500 DNA mutations but to understand how these mutations
change genes and increase their susceptible to cancer. This is

performed using a technology called the saturation mutagenesis
massively parallel reporter assay. It examines a large number of
mutations at the same time and identifies those that affect
genotype–phenotype. The task also changes the protein during
gene expression through exon splicing (a process that processes
the gene to obtain further mRNA for gene phenotypic expression),
introducing mutations that can disrupt protein functionality. In
addition, it also checks model predictions for genetic mutations and
their effect on the patient’s condition. In addition, the latter is
considered clinical genomematching, which involves associating the
model with real patient symptoms and complex genetic diseases,
including intellectual disabilities and autism spectrum disorders, for
diagnostic purposes.

The protein–RNA interaction prediction benchmark
(protein–RNA) is designed to assess how accurately
computational models can predict the interactions between
proteins and RNA, which play a vital role in regulating gene
expression and cellular function. Many machine learning (ML)
models are designed for RNA–protein interactions, yet they
typically use different training/evaluation datasets; therefore, the
comparability of the work is compromised. This challenge, however,
makes the comparison clear by introducing 37 different RBP
interaction prediction models as the standard in the field. This is
achieved using data from three leading CLIP-seq data centers, which
together hold 313 different experiments involving 203 RBPs
providing researchers with data for control experiments on RNA
interactions.

The Nucleotide Transformer Benchmark (NT-Bench) allows
new genomic models that focus on the nucleotide level to be
measured qualitatively against foundational non-genomic models.
This study worked on showing that the Knight–Beyer model is
efficient in contrast to other reference models by performing eight
different genomic tasks that are benchmarked by the former.
Nucleotide Transformer is one of the tested models, while other
models like DNABERT (a gene regulation-relevant adaptation of
BERT), HyenaDNA (a predictive model that is optimized for long-
distance genomic DNA data with context lengths 1 kb and 32 kb),
and Enformer (a model with the ability of a deep learning
mechanism to predict gene regulation) have been selected. This
suggests that the former actually measured the models’ capability to
perform the 18 tasks; accordingly, NNTBench also evaluated
whether they integrate new data sources. The GenBench: A
Benchmarking Suite for the Genomic Foundation Models
(GFMs) cleaned the slate of all of the previous methods of
evaluation in genomic research, particularly those on foundation
models. This implies that it is well-versed in the methods and
standards, comparable to those adopted by other researchers. A
fair comparison is possible with GenBench through the
standardization of experimental conditions, model complexity,
dataset selection, and reproducibility. It is evident that the former
method compared the two models for each of the 12 tasks. In the
long-range genomic tasks, it was found that DNABERT,
HyenaDNA, and Nucleotide Transformer were proven to be the
best, while short-range genomic tasks showed HyenaDNA,
Enformer, and DNABERT as the best. The 43 datasets, therefore,
must be studied carefully to be able to compare the strengths and
weaknesses of different models and address areas that need
improvement.
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The BEACON: Benchmark for RNA Language Models evaluates
models’ performance in various RNA-related tasks, including
structural, functional, and engineering challenges. By unraveling
the mysteries of the RNA language, these models delve more deeply
into RNA biology, creating a whole bunch of innovative RNA-based
technologies that will significantly change the application scenarios
in biomedicine, pharmaceuticals, agriculture, etc. Most of the
projects discussed so far are focused on the medical field, but not
all the papers’ innovations meet the same needs. In particular,
innovation in the farm-to-table processes (crops) has been the
industry’s main agenda. In cases where respondents answer
affirmatively, training tests are required. Figure 9 depicts the
connection between the variety of training datasets and the
generalization performance of Gene-LLMs across benchmark
tasks. The purpose of this figure is to demonstrate the extent to
which diversified, heterogeneous datasets can enhance a model’s
flexibility in handling different genomic tasks.

As shown in Figure 9, only a few tasks, such as variant effect
prediction and promoter activity classification, have been cross-
checked across multiple Gene-LLMs, while a large number of tasks
have been only partially explored or not addressed at all. These
mappings provide an idea of the places where the evaluation has
been focused and the tasks to be covered for further work.

8 Evaluation of Gene-LLMs

Gene-LLMs are tested on four major tasks, namely, function
prediction, structure prediction, sequence generation, and sequence
variation and evolution analysis. These tasks allow scientists to
reveal gene functions, understand molecular structures, create
synthetic sequences, and explore genetic evolution. The function
prediction task involves identifying gene functions and also studying
the expression and regulation of the genes. Conventional models
needed to be tailored to the specific task and then trained, but Gene-

LLMs operate in a completely different way; they first acquire
general knowledge from large genomic datasets and are then
fine-tuned for a specific problem, thereby improving accuracy.

One of the most significant sub-tasks is promoter prediction,
which mainly involves locating genes through regions of DNA
promoters of DNA. It is the promoter that enables the RNA
polymerase to stick to the DNA. Gene-LLMs, such as
DNABERT, are trained on a large collection of human promoters
(TATA and non-TATA) to identify sequence motifs, enabling more
accurate repurposing of these sequences as promoters. The second
subtask is enhancer prediction, and in this case, software is expected
to locate the regions rich in enhancers, i.e., DNA sequences that are
far from the genes but can regulate their transcription by attracting
transcription-activating proteins. Although promoters are always
next to the genes they control, enhancers can be located quite far
away. Finding enhancers is of great importance to researchers for
understanding the mechanism of gene regulation and disease. Gene-
LLMS such as iEnhancer-BERT and iEnhancer-ELM are pre-trained
on the human genome and later fine-tuned to discover enhancers.

Binding site prediction is the last part of the function prediction
process, and its role is to find parts of the DNA, RNA, or protein that
are the most probable contact points for molecules (such as
transcription factors or other DNA- or RNA-binding proteins) to
bind and act as controlling mechanisms for the expression of genes.
The knowledge of binding sites is a prerequisite for gene regulation
and drug discovery. New Gene-LLMs have been introduced as
epigenomic gene prediction tools, e.g., EpiGePT, which scan
DNA “bins” and scores sequences based on their potential
correspondence with binding sites where proteins can attach,
using DNA motifs and gene expression data to improve
prediction accuracy. The process called structure prediction
involves understanding the formation of helices and base pairs
over time—in other words, the study of nucleic acid unfolding.
This is the best model currently and is being applied in many such
unpredictable cases in molecular biology. This allows for a better

FIGURE 9
Mapping between representative genomic tasks and Gene-LLMs evaluated on them. This matrix highlights the relationship between language
models and downstream genomic tasks, such as variant effect prediction, regulatory region classification, and gene expression modeling. The figure is
intended to reveal patterns in model–task alignment and identify gaps in current benchmarking efforts.
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understanding of the gene-regulating process, the creation of new
molecular devices, and the prediction of how mutations influence
DNA/RNA structures in human diseases. One of the major steps in
the chromatin profile prediction is identifying genes in DNA that are
actively being expressed.

Chromatin is a complex of DNA and proteins that serves as the
carrier of the genetic code. The packaging of genetic material within
the core of the cell by chromatin prevents the free expression of
genes. There are changes in the chromatin structure that affect gene
expression and are associated with diseases like cancer.
Understanding chromatin provides the potential to manipulate
DNA indirectly, regulating gene activity without changing its
structure. Gene-LLMs, such as HyenaDNA, are capable of
predicting the locations of chromatin markers and epigenetic
signatures from DNA sequences, which, in turn, aids in
examining non-coding variants and their roles in gene regulation
across the human genome. One of the subtasks is the DNA/
RNA–protein interaction prediction task which aims to
demonstrate the first possible way of recognizing a specific
sequence of DNA within the protein sequence. This concurs with
the interaction of DNA with the mRNA molecule itself. The

regulation of both of these mechanisms is not only the result of a
few disease-causing mutations but also a pathway for genetic defects
that cause diseases. Multifaceted drug resistance (MDR) involves
proteins with the ability to pump out many types of drugs, including
anticancer drugs, resulting in resistance against chemotherapy
treatments. Predicting protein-binding regions using TF-Bert
from available DNA–protein interaction datasets offers a new
approach that is valuable for gene regulation both now and in
the future. The sequence generation task refers to a process where a
model produces DNA code that resembles the real thing. This
technique can be applied in cases such as genetic privacy, cost
reduction in research, and improving data synthesis for model
training purposes. Genome-LLMs (e.g., DNAGPT) are sources of
artificial genomes that can be used to mask a person’s genetic
features. DNAGPT has created 5,000 artificial genomes, each
with 10,000 SNPs. These synthetic sequences were tested against
real genetic data and outperformed other models in generating more
realistic genetic variations. The sequence variation and evolution
analysis task aims to study the process of DNA alteration throughout
time and understand the impact of these DNA changes on diseases
and how they determine characteristics. This process facilitates the

TABLE 9 Core genomic tasks addressed by Gene-LLMs with their subtasks, objectives, and representative models.

Primary task Subtask Purpose Example model

Function prediction Promoter prediction Locate promoter regions to identify gene start sites DNABERT

Enhancer prediction Detect distal DNA elements enhancing transcription iEnhancer-BERT and
iEnhancer-ELM

Binding site prediction Identify TF/protein binding regions EpiGePT

Structure prediction Chromatin profile prediction Predict active DNA expression based on chromatin state HyenaDNA

DNA/RNA–protein interaction Predict binding between nucleic acids and proteins TF-BERT

Sequence generation Synthetic genome generation Create artificial genomes for simulation or data privacy DNAGPT

Variation and evolution
analysis

Mutation analysis Understand mutational impact and evolution of species or
viruses

GenSLMs

Comparative genomics (MSA-
based)

Align multiple genomes to analyze conserved sequences GPN-MSA

FIGURE 10
Categorization of core tasks performed by Gene-LLMs with associated subtasks and example models.
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detection of disease-related mutations in genes, identification of
evolutionary changes in species, and a better understanding of
genetic adaptation. The main model in the domain is GenSLMs,
which use LLMs for genetic evolution analysis. The tool is
particularly suitable for the study of the evolution of the SARS-
CoV-2 genome, and to this end, it is being used to monitor viral
mutations and changes and understand the evolution and spread of
the virus to different geographical areas. GPN-MSA uses an
innovative concept where the alignment of multiple genomes
from different domains provides the basis for DNA language
modeling. The model facilitates the process of sequence
comparison, making it easy for geneticists to determine the
evolutionary lineage of organisms using genome data. The core
tasks and associated models used in Gene-LLMs are summarized
in Table 9.

Figure 10 shows the complexity of GPT or Gene-LLMs and how
they are used in the four principal domains, namely, function
prediction, structure prediction, sequence generation, and
variation and evolution analysis, together with their
corresponding subtasks and some model examples. The lifecycle
of Gene-LLMs is provided in Figure 11.

8.1 Limitations and future directions

Despite the rapid advancements and promising potential of
Gene-LLMs, several problems must be solved before their full
application, especially in clinical and translational settings, can be
realized. Moreover, recognizing these limitations is very important
for guiding future research and ensuring responsible deployment.

8.1.1 Data bias and representativeness
The datasets of genomic data available now often have biases in

population representation, species diversity, and genomic region
coverage. The lack of non-European ancestry in human datasets is
just one example of how data bias can lead to uneven model
performance across populations, potentially widening existing
health disparities. On the other hand, bias in favor of model
organisms (e.g., humans, mice, and yeast) restricts the transfer of
knowledge from one organism to another. What new approaches
could focus on selecting more diverse and balanced datasets, and
how might synthetic data be used to supplement underrepresented
genomic contexts?

8.1.2 Interpretability and biological insight
Gene-LLMs are highly accurate in prediction; however, they

often lack transparency in the steps leading to a certain decision,
making it difficult to translate the results into human biological
knowledge. The “black-box” nature of the method is a big obstacle to
its use in clinical diagnostics, a high-stakes application. These XAI
(explainable AI) methods, like attentionmap visualization, gradient-
based attribution, and motif discovery tools act like as
paleontologists digging for the regulatory grammar that these
models have learned.

8.1.3 Computational resource demands
Building a cutting-edge Gene-LLM is a huge computational task.

It takes substantial GPU or TPU power, extensive storage, and long
processing times, hours or even days. This is a major bottleneck for
small laboratories that wish to do the same. However, one can
reduce the resource demands through many approaches such as

FIGURE 11
WorkflowofGene-LLMs from rawnucleotide sequences to self-supervised pretraining, enabling key genomic tasks with examplemodels and benchmarks.
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parameter-efficient fine-tuning (PEFT), model distillation, mixed-
precision training, and cloud-based collaborative computing
platforms, which can lower resource costs and broaden accessibility.

8.1.4 Lack of robust clinical validation
Most of the Gene-LLM studies are basically confined to

researching gene datasets, and only a small number of models
have been put to the test in a clinical setting.

8.1.5 Ethical, legal, and social implications
Genomic data are sensitive; hence, the issues of privacy, consent,

and data sharing around the handling of genomic data are
major concerns.

Gene-LLMs can revolutionize genomics and precision medicine
as a whole; however, this transformation will require the community
to first address a series of challenges, including data bias,
interpretability of models, reduction of computational resources,
clinical validation of models, and, finally, ethical issues. The
community, by following these paths, is thereby committing to
the development of Gene-LLMs as dependable, fair, and clinically
implementable tools.

9 Conclusion

The era of Gene-LLMs has brought a revolution in computational
genomics by connecting deep learning andmolecular biology, making it
possible to understand the language of life. Using transformer-based
structures and self-supervised pretraining mechanisms—such as
masked nucleotide modeling and sequence containment—Gene-
LLMs generate informative representations from raw genetic
sequences, gene expression profiles, and corresponding multi-omic
annotations. This study is a complete Gene-LLMs life cycle from
data ingestion and tokenization (k-mer and gene-level) to
applications of the data, like protein–RNA interaction prediction
and synthetic genome generation. The performance of the models is
verified in several contexts: CAGI5, NT-Bench, GenBench, and
BEACON for functional, structural, and evolutionary genomics. The
harmonizing relationship between Gene-LLMs and WGS results in
easy-to-understand clinical variant interpretation, which is further
translated to precision diagnostics and targeted therapy. The most
advanced encoder–decoder architectures, position-aware embeddings,
and multimodal fusion strategies are being encompassed in studies of
genomic representation learning to enable the incorporation ofmultiple
data types in one model. Nonetheless, problems remain to be
recognized, including the interpretability of the model, the scalability
of computations, and the ethical governance of genomic data usage. In
the future, breakthroughs in federated genomics learning, adaptation to
the low-resource settings for rare variant detection, and bio-constrained
pretraining will play a major role in realizing the full potential of Gene-
LLMs. Nonetheless, Gene-LLMs are steadily establishing their role in
the field of biomedicine, thus demonstrating a strong supportive ability

in the sphere of individualized healthcare, drug discovery, and telling
the story of evolution. There is an increasing need for ongoing
collaboration among AI experts, molecular biologists, and clinicians
in this field. Such collaboration offers three main benefits, namely, the
manufacture of strong models that are both ethical and therefore safe
(security in terms of the use of technology) and their effective
application in promoting and accelerating genomic science.
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