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Introduction: Cardiovascular diseases (CVDs), including myocardial infarction
(MI), heart failure (HF), atrial fibrillation (AF), and arrhythmia, are major
contributors to global mortality and often share overlapping risk factors and
pathophysiological mechanisms. While genome-wide association studies
(GWAS) have identified many loci for individual CVDs, the shared genetic
architecture across related traits—particularly in East Asian
populations—remains underexplored.

Materials and methods: We integrated large-scale GWAS summary statistics
from East Asian populations to perform genome-wide and local genetic
correlation analyses across four CVD phenotypes and five cardiometabolic
traits (blood pressure and lipid levels). Using stratified LD score regression, we
assessed tissue-specific heritability enrichment. Multi-trait analysis of GWAS
(MTAG) was then employed to identify pleiotropic loci associated with
multiple traits, with functional annotation and expression quantitative trait loci
(eQTL) data used to explore biological relevance.

Results: We observed extensive genetic correlations among CVDs and between
CVDs and cardiometabolic traits, with HF showing the strongest connections to
bothMI and arrhythmia. Notable genome-wide correlations were found between
MI and SBP (rg = 0.35, P = 1.59 × 10−14) and between HF and DBP (rg = 0.54, P =
9.84 × 10−9). Stratified heritability analyses revealed significant enrichment in
heart and arterial tissues, highlighting the relevance of cardiovascular-specific
regulatory elements. MTAG identified several pleiotropic loci, including
established genes such as APOB and MC4R, and novel East Asian-enriched
signals such as QSOX2 and GUCY1A1/GUCY1B1. Functional data indicated that
QSOX2 variants regulate gene expression in arterial and cardiac tissues,
implicating redox regulation in HF and hypertension pathogenesis.

Conclusion: Our findings provide comprehensive insight into the shared genetic
determinants of cardiovascular and metabolic diseases in East Asian populations.
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The identification of pleiotropic and ancestry-specific loci, along with tissue-
specific regulatory patterns, underscores the need for integrative multi-trait and
population-informed approaches in cardiovascular genetics and risk prediction.
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1 Introduction

Cardiovascular diseases (CVDs), including myocardial
infarction (MI), heart failure (HF), atrial fibrillation (AF), and
arrhythmia, represent leading causes of morbidity and mortality
worldwide (Kim, 2021). These conditions share overlapping
pathophysiological mechanisms, such as myocardial ischemia,
structural remodeling, and electrophysiological instability, which
are increasingly understood to have genetic underpinnings.
Genome-wide association studies (GWAS) have successfully
identified susceptibility loci for individual conditions, especially
in populations of European ancestry (Hartiala et al., 2021).
However, the transferability of these findings to other
populations, particularly East Asians, remains limited.

Given the substantial global burden and frequent co-occurrence
of MI, HF, AF, and other arrhythmias, increasing attention has been
directed toward their shared genetic architecture. Epidemiological
data demonstrate considerable comorbidity across these conditions.
For instance, up to 30% of patients with HF also develop AF, and
prior MI significantly increases the risk of both arrhythmia and
progressive HF (Packer, 2020; Wang et al., 2023). Furthermore, AF
is now recognized as both a consequence and a driver of structural
heart disease, with overlapping risk factors such as hypertension,
diabetes, and aging (Li et al., 2022). These observations suggest that
these CVDs may not be entirely distinct but instead represent
manifestations of interconnected biological processes with
common genetic underpinnings.

To systematically investigate these connections, multi-trait
analytical frameworks offer a powerful approach to uncover
shared and distinct loci contributing to this spectrum of
disorders. In particular, Multi-Trait Analysis of GWAS (MTAG)
enables the joint interrogation of genetically correlated phenotypes,
thereby enhancing locus discovery and improving interpretability of
pleiotropic associations (Turley et al., 2018).

In this study, we performed a multi-trait GWAS focusing on
four major cardiovascular conditions—MI, HF, AF, and
arrhythmia—in East Asian populations. By integrating functional
annotations and tissue-specific enrichment analyses, we aimed to
elucidate the shared and unique genetic determinants of these
disorders and provide ancestry-informed insights into their
biological mechanisms.

2 Materials and methods

2.1 GWAS data

GWAS summary statistics for the traits analyzed in this study
were obtained from the GWAS Catalog (Buniello et al., 2019), with

detailed information provided in Supplementary Table S1. Summary
data for cardiometabolic traits—including systolic blood pressure
(SBP), diastolic blood pressure (DBP), high-density lipoprotein
(HDL), low-density lipoprotein (LDL), and triglycerides (TG)—
were derived from ameta-analysis of East Asian cohorts (Chen et al.,
2023), incorporating 92,615 participants from the Taiwan Biobank,
Biobank Japan, and the East Asian subset of UK Biobank.

2.2 Global genetic correlation analysis

We assessed the genetic correlation (rg) between CVDS and
cardiometabolic traits using linkage disequilibrium score regression
(LDSC). LDSC estimates rg by analyzing the relationship between
GWAS test statistics and LD scores, which represent the cumulative
LD between a given SNP and its neighboring variants. This method
operates on summary-level GWAS data, making it well-suited for
large-scale meta-analyses and robust to confounding from sample
overlap. In contrast to approaches requiring individual-level
genotypes, LDSC is less susceptible to biases from population
stratification or cryptic relatedness. As such, it offers a reliable
framework for characterizing the genetic overlap between traits
and for informing the selection of phenotypes in subsequent
causal inference analyses (Bulik-Sullivan et al., 2015). The
formula used in LDSC is as follows:

E βjγj[ ] �
�����
N1N2

√
rg

M
l + Nsr�����

N1N2

√

where βj and γj represent the effect sizes of SNPj on the two traits
being tested, N1 and N2 are the sample sizes for the two traits, Ns is
the number of overlapping samples between the two traits, r is the
phenotypic correlation in the overlapping samples, and, lj is the LD
score. In this analysis, precomputed LDSC for HapMap3 SNPs,
derived from individuals of European ancestry in the 1000 Genomes
Project (Bulik-Sullivan et al., 2015), were used. Variants with an
imputation INFO score greater than 0.9 were included for the
analysis (Bulik-Sullivan et al., 2015).

2.3 Cell-type-specific enrichment of SNP
heritability

Stratified LD Score Regression (s-LDSC) extends the LDSC
framework by quantifying the contribution of specific genomic
annotations to the heritability of complex traits (Trynka et al.,
2013). By modeling heritability across predefined functional
categories while adjusting for linkage disequilibrium, s-LDSC
enables the identification of biologically relevant regions
contributing to disease risk. Unlike conventional approaches that
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rely on genome-wide significant variants, s-LDSC utilizes all SNPs to
provide a more comprehensive view of the polygenic architecture.
This method is computationally scalable and suitable for large-scale
GWAS datasets. Importantly, s-LDSC can pinpoint enrichment in
cell type–specific regulatory elements and functional annotations,
aiding in the prioritization of genomic features for follow-up studies.
Its integration into cross-trait analyses also allows for more nuanced
interpretation of genetic correlations by revealing functional
categories that drive shared heritability (Finucane et al., 2015).

To dissect tissue- and cell type-specific contributions to trait
heritability, we employed s-LDSC using functional annotations
derived from six chromatin marks (DHS, H3K27ac, H3K36me3,
H3K4me1, H3K4me3, and H3K9ac) across 88 tissues and cell types
from the Roadmap Epigenomics Consortium (Finucane et al., 2015).
For each histone mark, annotations were grouped into nine
biological categories: adipose, cardiovascular, central nervous
system, digestive, immune/blood, liver, pancreas, musculoskeletal/
connective tissue, and others. Trait-specific heritability enrichment
was calculated for each annotation, and the results were visualized
through hierarchical clustering based on normalized enrichment
scores. This approach enabled the discovery of distinct enrichment
profiles across traits and tissues, revealing shared biological
underpinnings among genetically correlated phenotypes.
Chromatin mark-specific signals provided further granularity,
highlighting regulatory elements that may play central roles in
tissue-relevant pathways. Together, these analyses support the
functional interpretation of GWAS findings and inform the
prioritization of candidate tissues and regulatory mechanisms
involved in complex trait etiology.

2.4 Local genetic correlation analysis

To complement the genome-wide genetic correlation estimates
obtained from LDSC, we applied ρ-HESS to assess local genetic
correlations between trait pairs (Shi et al., 2017). While LDSC
provides a genome-wide average estimate, ρ-HESS partitions the
genetic covariance across 1,703 approximately independent
genomic regions, enabling locus-level interrogation of shared
genetic architecture. This method uses GWAS summary statistics
and accounts for linkage disequilibrium patterns and potential
sample overlap, without assuming specific distributions of effect
sizes. For each region, ρ-HESS estimates local SNP heritability and
covariance by projecting GWAS effect size vectors onto LD-derived
eigenvectors. We applied this approach to all trait pairs with
significant global genetic correlations from LDSC, using a
Bonferroni-corrected threshold (P < 0.05/1,703) to determine
statistical significance. This analysis allowed us to identify specific
genomic intervals that disproportionately contribute to the observed
genome-wide correlations, revealing heterogeneity in shared genetic
architecture across loci.

2.5 Multi-trait analysis of GWAS

To enhance locus discovery and statistical power, we applied
Multi-Trait Analysis of GWAS (MTAG), a method that leverages
shared genetic architecture across genetically correlated traits to

identify trait-specific SNP associations (Turley et al., 2018). MTAG
uses GWAS summary statistics and estimates pairwise genetic
correlations via LDSC (Bulik-Sullivan et al., 2015), accounting for
sample overlap and trait correlation to generate unbiased SNP-level
effect estimates. In our analysis, the included GWAS datasets were
largely derived from non-overlapping cohorts; nonetheless, MTAG’s
internal framework corrects for any residual overlap using
covariance estimates from LDSC, thereby reducing inflation in
test statistics. This framework is particularly suited for complex,
polygenic traits with overlapping etiology. After stringent variant
filtering, we retained SNPs that achieved genome-wide significance
(P < 5 × 10−8) in MTAG and showed suggestive associations (P <
0.01) in the original single-trait GWAS, ensuring robustness and
biological relevance. This approach enabled the identification of
pleiotropic loci contributing to multiple cardiovascular phenotypes.

3 Results

3.1 Genetic correlations between
cardiovascular diseases and
cardiometabolic traits

We performed genome-wide genetic correlation analysis using
LDSC to evaluate shared genetic architecture among four major
CVDs and five cardiometabolic traits (Figure 1; Supplementary
Table S2). MI exhibited strong and significant positive genetic
correlations with SBP (rg = 0.35, SE = 0.05, P = 1.59 × 10−14), DBP
(rg = 0.30, SE = 0.05, P = 7.02 × 10−9), LDL (rg = 0.27, SE = 0.05, P =
1.15 × 10−7), and TG (rg = 0.21, SE = 0.03, P = 1.92 × 10−10). A
significant inverse correlation was observed with HDL (rg = −0.20, SE =
0.05, P = 8.50 × 10−5). These results confirm the known involvement of
blood pressure and lipid metabolism pathways in MI pathophysiology.
HF also showed robust genetic correlations with both SBP (rg = 0.52,
SE = 0.0891,P= 4.81 × 10−9) andDBP (rg = 0.54, SE = 0.0937, P= 9.84 ×
10−9), highlighting a shared genetic basis linked to hemodynamic stress.
Additionally, HF was modestly associated with TG (rg = 0.22, SE =
0.0699, P = 0.0021), and negatively correlated with HDL (rg = −0.19,
SE = 0.0757, P = 0.0142), further suggesting convergence on metabolic
dysregulation. In contrast, AF demonstratedweaker genetic correlations
with cardiometabolic traits, with no significant associations observed for
SBP or DBP. Modest but nominal associations were observed with LDL
(rg = −0.22, SE = 0.10, P = 0.0296) and TG (rg = −0.18, SE = 0.07, P =
0.0109), suggesting a partially distinct genetic basis. Arrhythmia showed
moderate genetic correlations with SBP (rg = 0.22, SE = 0.0486, P =
8.14 × 10−6) andDBP (rg = 0.18, SE = 0.0498, P = 0.0004), but weaker or
no associations with lipid traits, including non-significant correlations
with HDL and LDL. A small negative correlation with TG was noted
(rg = −0.10, SE = 0.0442, P = 0.0185).

3.2 Genetic correlations among
cardiovascular diseases

To further examine shared genetic architecture across
cardiovascular phenotypes, we estimated pairwise genetic
correlations among MI, HF, AF, and arrhythmia (Table 1). MI
showed a strong genetic correlation with HF (rg = 0.43, SE = 0.10,
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P = 1.76 × 10−5), and a moderate correlation with AF (rg = 0.27, SE =
0.11, P = 0.0165). However, the correlation between MI and
arrhythmia was not significant (rg = 0.07, SE = 0.07, P = 0.2953).
In contrast, HF exhibited significant genetic overlap with both AF
(rg = 0.48, SE = 0.14, P = 0.0005) and arrhythmia (rg = 0.55, SE =
0.087, P = 3.78 × 10−10), indicating common underlying etiological
pathways likely related to electrical and structural remodeling. As
expected, AF and arrhythmia were highly correlated (rg = 1.0, SE =
0.08, P = 1.73 × 10−43), reflecting substantial phenotypic and
mechanistic overlap.

3.3 Partitioning heritability and chromatin
marker enrichment in cardiovascular
diseases and cardiometabolic traits

s-LDSC analysis demonstrated significant heritability
enrichment for cardiovascular and cardiometabolic traits in

cardiac and vascular tissues, particularly the left ventricle, right
atrium, aorta, coronary artery, and tibial artery (Supplementary
Figure S1). Among these, MI and SBP exhibited the highest
enrichment in coronary and aortic tissues, respectively, consistent
with their biological roles. Genomic regions bearing active
chromatin marks—such as H3K27ac and H3K4me3—in these
tissues were preferentially enriched, indicating that regulatory
elements, including enhancers and promoters active in
cardiomyocytes and endothelial cells, are likely to harbor causal
variants. Notably, the enrichment profiles were broadly consistent
across MI and related cardiometabolic traits, pointing to shared
regulatory architecture and suggesting that pleiotropic effects may
be mediated by tissue-specific regulatory programs. These results
underscore the importance of cardiovascular tissues in shaping the
genetic basis of MI and its metabolic risk factors, and emphasize the
value of investigating the functional roles of these tissue-specific
regulatory elements.

3.4 Local genetic correlations between
cardiovascular diseases and
cardiometabolic traits

To further explore the genetic interplay between cardiovascular
diseases and cardiometabolic traits, we conducted a regional analysis
of local genetic correlations. This analysis revealed several loci with
statistically significant genetic overlap between CVD phenotypes
and metabolic risk traits. For instance, a positive local genetic
correlation was observed between MI and HDL cholesterol on
chromosome 12 (Supplementary Table S3), a region enriched
with genes implicated in lipid metabolism, including HNF1A (Ai-
Ghalayini et al., 2020), which is known to affect HDL levels and
coronary artery disease risk. In contrast, we identified negative local
correlations between MI and LDL cholesterol at multiple loci. On
chromosome 9 (Supplementary Table S3), the region includes ABO,
a gene involved in coagulation and lipid regulation (Li et al., 2015),
and SURF4, which facilitates the secretion of lipoproteins such as
VLDL and LDL (Wang et al., 2021). Two additional regions on
chromosome 19 were noteworthy: the first (positions
9,383,877–11,849,449; Supplementary Table S3) encompasses
LDLR, a gene central to LDL clearance and cardiovascular risk
(Franceschini et al., 2009); the second (positions
43,862,455–45,579,043; Supplementary Table S3) contains the
APOE gene cluster (APOE, APOC1, APOC2, and APOC4), all of

TABLE 1 Genetic correlations among cardiovascular diseases.

Trait 1 Trait 2 rg SE P

Myocardial infarction Atrial fibrillation 0.27 0.11 0.017

Heart failure 0.43 0.10 1.76 × 10−5

Arrhythmia 0.07 0.07 0.3

Arrhythmia Atrial fibrillation 1 0.08 1.73 × 10−43

Heart failure 0.55 0.09 3.78 × 10−10

Atrial fibrillation Heart failure 0.48 0.14 5 × 10−4

rg, Genetic correlation estimated using LDSC; SE, standard error of the genetic correlation estimate; P, P-value indicating the statistical significance of the correlation.

FIGURE 1
Genetic correlations between cardiovascular diseases and
cardiometabolic traits in East Asians. This heatmap illustrates the
pairwise genetic correlation between four cardiovascular disease
phenotypes—myocardial infarction (MI), heart failure (HF), atrial
fibrillation (AF), and arrhythmia—and six cardiometabolic
traits—diastolic blood pressure (DBP), systolic blood pressure (SBP),
high-density lipoprotein cholesterol (HDL), low-density lipoprotein
cholesterol (LDL), triglycerides (TG), and HDL. The strength and
direction of correlations are color-coded, with positive correlations
shown in blue and negative correlations in red. The size of the squares
represents themagnitude of the genetic correlation. Asterisks indicate
levels of statistical significance: P < 0.05 (*), P < 0.01 (**), P <
0.001 (***).
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which play essential roles in lipid transport and homeostasis.
Notably, genetic variants in APOE have been consistently
associated with LDL levels and predisposition to cardiovascular
disease (Chaudhary et al., 2012).

3.5 Multi-trait GWAS analysis identifies
pleiotropic loci for cardiovascular diseases
and cardiometabolic traits

To identify pleiotropic loci contributing to CVDs and related
cardiometabolic traits, we conducted a multi-trait GWAS using
MTAG across MI, HF, SBP, DBP, and other relevant traits. This
analysis revealed several new genome-wide significant loci (P <
5 × 10−8) exhibiting consistent, albeit modest, associations across
traits (Table 2). Additionally, we identified several previously
unreported East Asian-specific loci characterized by substantially
higher minor allele frequencies in East Asian populations
compared to other populations (Supplementary Table S4).
Notably, the locus tagged by rs13414987 (APOB) was jointly
associated with HF and MI (P = 1.35 × 10−8), implicating a gene
central to lipid metabolism and atherosclerosis (Supplementary
Figure S2). Similarly, rs1942867 (MC4R) showed pleiotropic
effects on HF and MI (P = 4.24 × 10−8), consistent with
MC4R’s known role in energy homeostasis and obesity, both
critical contributors to cardiac risk (Supplementary Figure S2).
Of particular interest, rs3824359 in QSOX2 was significantly
associated with HF and SBP (P = 7.06 × 10−10), a novel
pleiotropic locus not previously reported in cardiometabolic
GWAS (Supplementary Figure S2). To explore the functional
relevance of rs3824359, we examined eQTL data from GTEx and
found that this variant significantly influences QSOX2 expression
across multiple tissues. The lead allele was associated with
increased QSOX2 expression in cultured fibroblasts (P =
2.00 × 10−20), testis, tibial artery (P = 1.60 × 10−12), and
subcutaneous adipose tissue, as well as in cardiovascular-
relevant tissues including the heart (left ventricle and atrial
appendage), skeletal muscle, and arterial vasculature
(Supplementary Table S5). Notably, the variant also

modulated gene expression in esophageal and brain tissues,
suggesting a broad regulatory footprint. Given QSOX2’s role
in oxidative protein folding and redox homeostasis, its
upregulation in vascular and cardiac tissues could implicate
reactive oxygen species modulation as a shared pathway in HF
and blood pressure regulation. These findings nominate QSOX2
as a previously unrecognized contributor to cardiovascular
pathophysiology and highlight the potential of pleiotropic loci
to reveal convergent molecular mechanisms underlying
complex traits.

Moreover, the region encompassing GUCY1A1 and
GUCY1B1—encoding key subunits of soluble guanylate cyclase
(sGC), the intracellular receptor for nitric oxide—emerged as a
candidate with dual associations to both MI and blood pressure
traits (Table 3). This pathway mediates cGMP synthesis, promoting
vasodilation and vascular tone regulation. Regional association
analyses revealed evidence of allelic heterogeneity, with at least
two statistically independent association peaks, implying the
presence of multiple functional variants or distinct regulatory
elements within this locus (Figure 2). Prior studies have linked
this region to blood pressure phenotypes, and the cumulative burden
of risk alleles in this region has been associated with heightened
susceptibility to stroke and coronary disease. Our eQTL
investigation using GTEx data further supports the functional
relevance of this locus, as risk alleles were associated with
reduced expression of GUCY1A1 and GUCY1B1 in arterial
tissues, potentially impairing NO-sGC signaling and contributing
to vascular dysfunction (Supplementary Table S5). These findings
underscore the mechanistic convergence between endothelial
signaling, hemodynamic regulation, and ischemic cardiac events.

4 Discussion

In this study, we systematically dissected the shared genetic
architecture of CVDs and cardiometabolic traits in East Asian
populations through a multi-layered analytical framework. By
integrating genome-wide genetic correlation analyses, local
heritability mapping, tissue-specific enrichment profiling, and

TABLE 2 New pleiotropic loci identified in multi-trait GWAS of heart failure.

SNP CHR BP A1 A2 pval1 beta1 pval2 beta2 mtag_beta mtag_pval Gene Trait
1

Trait 2

rs13414987 2 20942072 C A 9.14E-
05

−0.08 1.43E-
06

0.1 −0.02 1.35E-08 APOB Heart
failure

Myocardial
infarction

rs1942867 18 60069038 G A 1.26E-
05

0.08 9.04E-
05

−0.07 0.02 4.24E-08 MC4R

rs1077534 3 14836067 A G 3.69E-
04

−0.05 7.41E-
07

0.02 −0.01 1.25E-08 FGD5 Diastolic
blood

pressure

rs16864620 2 6039940 G A 5.00E-
05

−0.06 4.17E-
06

0.02 −0.01 6.90E-09 SOX11 Systolic
blood

pressure
rs3824359 9 136213383 T C 1.17E-

05
0.07 1.41E-

06
−0.03 0.01 7.06E-10 QSOX2

SNP: Reference SNP cluster ID from dbSNP database; CHR, Chromosome location (hg38 assembly); BP, Base pair position (hg38 coordinates); A1, Effect allele (tested in associationmodels); A2,

Reference allele; pval1, Single-trait GWAS p-value for Trait 1; beta1, Effect size of A1 allele on Trait 1; pval2, Single-trait GWAS p-value for Trait 2; beta2, Effect size of A1 allele on Trait 2; mtag_

beta, Multi-trait meta-analysis effect estimate; mtag_pval, Multi-trait analysis p-value; gene, Nearest protein-coding gene.
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TABLE 3 New pleiotropic loci identified in multi-trait GWAS of myocardial infarction.

SNP CHR BP A1 A2 pval1 beta1 pval2 beta2 mtag_beta mtag_pval Gene Trait 1 Trait 2

rs10029651 4 155510873 T C 3.96E-
07

−0.07 2.40E-
04

−0.02 −0.02 3.43E-09 GUCY1A1/
GUCY1B1

Myocardial infarction Diastolic blood pressure

rs12646335 4 155501360 A G 1.72E-
06

−0.06 6.92E-
05

−0.02 −0.02 8.79E-09 GUCY1A1/
GUCY1B1

Systolic blood pressure

rs12513261 4 155692190 G T 6.12E-
07

0.07 9.33E-
03

0.01 0.02 1.65E-08 GUCY1A1/
GUCY1B1

rs117123860 5 75299307 C T 1.80E-
07

0.17 4.37E-
03

−0.03 0.04 1.58E-08 HMGCR High density lipoprotein cholesterol measurement

rs1042085 12 10722926 A G 5.63E-
08

0.08 1.91E-
03

−0.01 0.02 3.82E-09 YBX3

rs3809129 12 56317587 T C 1.63E-
07

0.08 6.46E-
03

−0.01 0.02 1.49E-08 PAN2

rs76416614 12 113294519 A G 7.07E-
08

−0.09 8.32E-
03

0.02 −0.02 6.08E-09 TPCN1

rs11235672 11 73184057 C T 1.13E-
07

−0.13 6.76E-
03

−0.02 −0.03 3.12E-09 P2RY2 Low density lipoprotein cholesterol measurement

rs7133315 12 109247311 G A 2.86E-
06

0.07 3.80E-
06

0.02 0.02 8.82E-09 ACACB Triglyceride measurement

SNP, Reference SNP cluster ID from dbSNP database; CHR, Chromosome location (hg38 assembly); BP, Base pair position (hg38 coordinates); A1, Effect allele (tested in associationmodels); A2, Reference allele; pval1, Single-trait GWAS p-value for Trait 1; beta1, Effect

size of A1 allele on Trait 1; pval2, Single-trait GWAS p-value for Trait 2; beta2, Effect size of A1 allele on Trait 2; mtag_beta, Multi-trait meta-analysis effect estimate; mtag_pval, Multi-trait analysis p-value; gene, Nearest protein-coding gene.
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multi-trait genome-wide association studies, we identified several
pleiotropic loci that illuminate converging biological mechanisms
underlying cardiovascular and metabolic risk.

Our genetic correlation results affirm extensive shared heritability
between key cardiovascular conditions. The strong correlations between
HF and both systolic and diastolic blood pressure, as well as the
consistent links between MI and LDL, TG, and HDL, support the
notion that vascular dysfunction and lipid dysregulation are
foundational to CVD pathogenesis. In contrast, the weaker
correlations between arrhythmia and lipid traits suggest partially
distinct genetic pathways for electrophysiological disorders. Our
analysis also revealed extensive genetic connectivity among four
major CVD phenotypes suggesting that these conditions, though
clinically distinct, are influenced by overlapping genetic factors in
East Asians. Notably, HF exhibited the strongest and most consistent
genetic correlations with MI, AF and arrhythmia, underscoring its
central role at the intersection of structural, electrical, and ischemic
heart disease (Winata et al., 2025). These findings reflect clinical
observations that HF often co-occurs with rhythm disturbances and
evolves downstream of MI, serving as both a consequence and an
amplifier of other cardiovascular pathologies. While MI showed
moderate correlation with AF and strong correlation with HF,
arrhythmia and AF were nearly genetically indistinguishable (rg =
1.0), consistent with their shared electrophysiological basis. Taken
together, these results support a model in which HF acts as a
genetically and pathophysiologically integrative phenotype, bridging
hemodynamic overload, myocardial injury, and conduction
abnormalities.

Critically, our MTAG analysis yielded several genome-wide
significant pleiotropic loci, including established cardiovascular
genes and novel signals with potential functional relevance. APOB
encodes apolipoprotein B, the primary structural protein of LDL,

which plays a central role in lipid transport and the formation of
atherosclerotic plaques. Variants in APOB have been repeatedly
linked to altered LDL-C levels and coronary artery disease risk
across ancestries. In our analysis, rs13414987 at the APOB locus
was jointly associated with both HF and MI, highlighting the gene’s
pleiotropic effect on vascular integrity and downstream cardiac
remodeling. This finding reinforces the contribution of lipid
dysregulation to both atherosclerotic burden and cardiac
decompensation, and suggests that APOB-mediated pathways may
serve as early upstream determinants of adverse cardiovascular
outcomes (Giannakopoulou et al., 2025; Vorster et al., 2025).
Similarly, MC4R (melanocortin 4 receptor), a G protein–coupled
receptor expressed predominantly in the hypothalamus, is known for
its key role in regulating appetite and energy homeostasis. Common
and rare variants inMC4R have been implicated in obesity, metabolic
syndrome, and type 2 diabetes. In our study, the MC4R locus was
significantly associated with both HF and MI, suggesting a broader
influence of central energy regulation on cardiovascular risk. This
observation supports the concept that neuroendocrine control of
body weight and energy balance exerts long-term effects on cardiac
structure and function, potentially through mechanisms involving
insulin resistance, adiposity-driven inflammation, and
neurohumoral activation (Guo et al., 2025). Notably, MC4R has
also been linked to blood pressure regulation, further implicating this
locus as a point of intersection between metabolic and
hemodynamic stressors.

Beyond these well-characterized genes, we also identified novel
pleiotropic signals with functional potential. Among them, QSOX2
emerged as a previously unrecognized locus significantly associated
with both HF and SBP. eQTL data revealed that
rs3824359 modulates QSOX2 expression in multiple tissues
including arteries and the heart, suggesting a role for oxidative

FIGURE 2
Regional association plots at the GUCY1A1/GUCY1B1 locus. (A) Association plot centered on signal 1, using the lead SNP rs12646335 as the index
variant. (B) Association plot centered on signal 2, using the lead SNP rs12513261as the index variant. Each plot displays SNPs within the GUCY1A1/
GUCY1B1 locus on chromosome 4, colored by their linkage disequilibrium (LD, measured as r2) with the respective lead SNP, based on the East Asian
reference panel from the 1000Genomes Project. SNPs in strong LD (r2 ≥ 0.8) are shown in red, moderate LD (0.6 ≤ r2 < 0.8) in orange, weak LD (0.4 ≤
r2 < 0.6) in green, and very low LD (r2 < 0.4) in light blue. Variants lacking LD information are shown in grey. Gene annotations and local recombination
rates (blue curves) are provided for genomic context. Although both signals map to the same genomic region, their distinct LD structures suggest the
presence of multiple independent regulatory elements at the GUCY1A1/GUCY1B1 locus.
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protein folding and redox balance in vascular homeostasis and
cardiac stress response (Ning et al., 2024). Similarly, we identified
distinct association peaks at the GUCY1A1/GUCY1B1 locus,
implicating reduced expression of nitric oxide receptor
components in arterial tissues as a potential shared mechanism
linking MI and elevated blood pressure (Vishnolia et al., 2021).
These findings extend prior evidence on NO–sGC–cGMP signaling
and offer mechanistic insights into the vascular origins of ischemic
and hypertensive disease (Russo et al., 2024; Gawrys et al., 2025).

Our study has several limitations that should be acknowledged.
First, although we identified multiple novel pleiotropic loci in East
Asian populations, we were unable to perform replication in
independent cohorts due to the limited availability of comparable
datasets with matched phenotypes. Second, the GWAS summary
statistics used in our analyses were derived from different studies,
which may vary in terms of case definitions, diagnostic criteria, and
phenotype ascertainment. Such heterogeneity in phenotype
definitions could introduce noise and reduce the precision of
association signals. Third, while some of the identified loci have
been reported in European or other populations, many appear to be
specific or stronger in East Asians. These differences may reflect
ancestry-specific allele frequencies or linkage disequilibrium
patterns, limiting the generalizability of our findings. Future
studies involving harmonized phenotyping and multi-ancestry
analyses will be critical to validate these associations and assess
their relevance across diverse populations.

In conclusion, our study provides a comprehensive analysis of the
genetic relationships amongmajor CVDs and their cardiometabolic risk
factors in East Asian populations. The identification of shared loci and
enriched biological pathways emphasizes the interconnected nature of
cardiovascular and metabolic disorders and highlights the need for
integrative risk prediction and therapeutic strategies. Future efforts
incorporating multi-omic data and trans-ancestry replication will be
crucial to further refine these insights and translate them into precision
medicine applications.
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