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Forensic genetic genealogy (FGG) is a force-multiplier for human identification,
leveraging dense single nucleotide polymorphism (SNP) data to infer
relationships through identity by descent (IBD) segment analysis. Although
powerful for investigative lead generation, broad adoption of SNP-based
identification methods by the forensic community, especially medical
examiners and crime laboratories, necessitates likelihood ratio (LR)-based
relationship testing, to align with traditional kinship testing standards. To
address this gap, a novel method was developed that incorporates LR
calculations into FGG and SNP testing workflows. This approach is unique in
that it dynamically selects unlinked, highly informative SNPs based on
configurable thresholds for minor allele frequency (MAF) and minimum
genetic distance for a robust and reliable analysis. Employing a curated panel
of 222,366 SNPs from gnomAD v4 and data from the 1,000 genomes project,
high accuracy in resolving relationships up to second-degree relatives can be
achieved. For example, a subset of 126 SNPs (MAF > 0.4, minimum genetic
distance of 30 cM) yielded 96.8% accuracy and a weighted F1 score of
0.975 across 2,244 tested pairs. This LR-based methodology enables forensic
laboratories to select informative SNPs and integrate modern genomic data with
existing accredited relationship testing frameworks, providing critical statistical
support for close-relationship comparisons and enhances the rigor of FGG- and
SNP-based human identification applications.
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Introduction

Advances in genomic analyses, particularly massively parallel sequencing (MPS), have
enabled unprecedented high throughput SNP analyses which have fostered the
development of Forensic Genetic Genealogy (FGG). This subdiscipline of forensic
genetics exploits genome-wide dense single nucleotide polymorphism (SNP) data
generated by whole genome sequencing (WGS) or microarrays to determine near and
distant kinship relationships. While targeted sequencing, in theory, can be used in forensic
contexts to interrogate selected SNPs at lower cost (although current commercial forensic
options are relatively costly), whole genome sequencing (WGS) offers a more
comprehensive approach, capturing significantly more genetic variation and enabling
deeper kinship inference. As sequencing costs continue to decline, WGS is becoming
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increasingly preferred in FGG for its broader utility and richer
dataset (Mandape, et al., 2024). The kinship relationships can
facilitate investigative leads for identification of human remains
and source attribution of donors of crime scene DNA evidence more
effectively than current forensic genetic methods (Dowdeswell,
2023; Kling, 2019; Kling and Tillmar, 2019; Mandape et al., 2024;
Budowle et al., 2024). Kinship associations typically are determined
using either IBS (identity by State) or IBD (identity by Descent)
segmented-based methods (Henn et al., 2012; Browning and
Browning, 2011; Browning and Browning, 2013; Huff et al., 2011;
Lipatov et al., 2015; Staples et al., 2016; Kaplanis et al., 2018;
Ramstetter et al., 2018; Morimoto et al., 2018; Seidman et al.,
2020). While these approaches provide high accuracy, they differ
from the likelihood ratio (LR)-based framework traditionally used in
kinship analysis, which underpins the validity and acceptance of
short tandem repeat (STR) interpretation methods in forensic
applications. LR-based statistics are routinely employed to
support identifications, making them a critical component of
forensic practice. To enable the forensic community to leverage
SNP data, an analogous LR-based framework is needed that offers
the flexibility, rigor, interpretability, and validity required for broad
acceptance. Accordingly, an LR-based interpretation method
tailored to whole genome sequencing (WGS) data for SNP
selection and relationship inference was developed, with a focus
on pairwise comparisons up to second degree relatives.

Like traditional kinship analysis, the approach described
herein calculates the likelihoods of each selected SNP for
specific relationships, with LRs obtained by comparing the
likelihoods of genetic data under alternative relationships.
Assuming independence among SNPs, the cumulative LR is
calculated by multiplying the LR values for each individual
SNP. Therefore, selecting the most informative SNPs is critical
to the success of the method. Our approach is unique in that it
enables dynamic SNP selection in tandem with likelihood ratio
(LR) calculations compared with traditional kinship software that
relies on fixed, pre-selected markers. This dynamic integration
allows for greater flexibility and improved performance when
working with WGS data. A straightforward approach was used
to refine a subset of SNPs from the hundreds of thousands to
millions identified by WGS, prioritizing high minor allele
frequency (MAF) markers observed in each case. These markers
offer high discrimination power for relationship inference.
Subsequently, the data are further subset to include SNPs
located in genomic regions identified by Genome-in-a-Bottle as
being easy to sequence or genotype (Dwarshuis et al., 2024). This
subset is then further refined by selecting only SNPs that exhibit
nominal or no linkage and linkage disequilibrium (LD). This
approach provides a curated panel of SNPs with high MAF for
robust LR support for true close kinship relationships, particularly
up to the second degree.

Indeed, Yousefi et al. (2018) demonstrated in a Dutch sample
population that 50 independent SNPs (MAF > 0.2; average MAF =
0.35) are sufficient to yield low probabilities of identity (or
population match probabilities) of 6.9 × 10−20 and 1.2 × 10−10 for
unrelated individuals and siblings, respectively. Chakraborty et al.
(1999) estimated that approximately 40 SNPs (MAF ~ 0.5) could
achieve random match probabilities around 10−15 and 33 SNPs
(MAF ~ 0.5) would be required to reach an exclusion probability

of 99.9% in a typical trio paternity case. Furthermore, the higher the
MAF for a suite of binary SNPs (i.e., approaching the highest
heterozygosity of 0.5) is globally, the lower are the effects of
population substructure. Moreover, with high heterozygosity any
positive predictive power with binary SNPs for associations with
private genetic information would be negligible (Budowle and van
Daal, 2008).

Here, the validation of a statistical approach, KinSNP-LR
(version 1.1), is described for computing LRs based on WGS
generated SNP data. Instead of a priori selecting a fixed panel
of informative SNPs, the first SNP on an end of a chromosome
passing the MAF threshold is selected from a large candidate panel
and the next SNP at a specified genetic distance (e.g.,
30–50 centimorgans (cM)) and meeting the MAF criterion is
selected and so on across the genome. The LRs for multiple
relationships are calculated based on the methods described in
Thompson (1975), Ge et al. (2010), and Ge et al. (2011). This
approach maximizes the number of SNPs with little to no linkage
and LD selected in a case-specific manner.

Materials and methods/
implementation

Empirical genomic data

A large, preselected SNP panel (222,366 SNPs) from gnomAD
v4 (Chen et al., 2024) was used as the data foundation for this
validation study (details on this panel can be found in
Supplementary Material A). The SNP allele frequencies and
genetic distances between the SNPs in this panel will be used in
SNP selection and likelihood calculation in the kinship analysis. The
SNPs in the panel were filtered and obtained by quality control,
MAF, and “Not in all difficult regions” regions. The data contain
nine populations: Admixed America, African, Ashkenazi Jewish,
East Asian, Finnish, Non-Finnish European, Middle Eastern, South
Asian, and Remaining Individuals (includes Amish). Five major
populations: African (AFR), Admixed American (AMR), East Asian
(EAS), South Asian (SAS), and Non-Finnish European (NFE), were
selected in validating KinSNP-LR. More details about preparing this
SNP panel can be found in the Supplementary Material.

In addition, the 1,000 genomes project data contain 3,202 whole
genome sequenced samples with many closely related pairs, and
these related pairs were used to validate the methodology. Each
sample in the 1,000 genomes data was converted using the
GRCh38 coordinate positions into a tab-separated text format,
but only for the SNPs contained in the preselected gnomAD
panel. After removing uncertain relationships, there are
1,200 parent-child, 12 full-sibling, and 32 second degree pairs in
the 1,000 genome project. Unrelated pairs were randomly selected in
the populations. The validation study described herein used data in
GRCh38 coordinates.

Simulation data

Pedigrees and phased genotypes simulations were performed
using Ped-sim (v1.4) (Caballero et al., 2019) with the unrelated
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individuals in the ASW (Americans of African Ancestry in SW
United States), CEU Utah Residents with Northern and Western
European Ancestry), CHB (Han Chinese in Beijing, China), and
MXL (Mexican Ancestry from Los Angeles, United States)
populations in the 1,000 genomes project. Each population
represents one of four major continental groups (African, East
Asian, European, and Admixed American); thus a broad genetic
diversity is captured as opposed to simulating all 26 subpopulations,
many of which are closely related groups.

Only the SNPs in the preselected SNP panel from gnomAD
v4 were used in the simulations, and only unrelated individuals
in each of the populations were used as founders in the
simulations. The unrelated relationships were confirmed with
IBIS (Seidman et al., 2020) with a maximum total shared IBD
segment of 40 cM.

Briefly, Ped-sim simulated 50 families as shown in Figure 1,
in which there were three generations with second degree being
the most distant relationship. Each family has 22 parent-child
pairs, 20 sibling pairs, 40 second degree pairs, and 22 unrelated
pairs. In the simulation, descendants inherit recombinant
chromosomes, one from each parent, according to the
specified pedigree. Recombination follows an interference
model and applies sex-average genetic maps. Chromosome
segments are tracked through the inheritance process, and
genetic markers from the founders are overlaid on the
corresponding segments to produce whole genome data.
Simulations were conducted with true IBD segments and
founder sample identifiers recorded with zero missing
genotype call rate, zero opposite homozygote errors, and
various genotyping errors (i.e., 0.001, 0.01, and 0.05). In the
simulation, the keep_phase flag was enabled, using high-
resolution sex average genetic maps from the Broad Institute
(see Data availability for details) and chromosome interference
maps (nu_p_campbell_X.tsv) from Campbell et al. (2015).

For LR calculations, the allele frequencies from the
corresponding gnomAD major population were used. For
example, gnomAD Non-Finnish European frequencies were used
for the CEU pairwise LR calculations.

Candidate SNP selection

To maximize information content, the SNPs with MAF higher
than a threshold (e.g., 0.4) in each individual population, were
selected for relationship tests. Further, only unlinked SNPs were
selected with a Minimum Genetic Distance (MGD) cM threshold,
such as 30 cM. This selection is necessary for following traditional
LR-based kinship analyses that require independent markers to
calculate cumulative likelihoods by directly multiplying the
likelihood of each marker. LD tends to decay over distances of
approximately 1 cM or less (Ardlie et al., 2002), and thus, if the
MGD is greater than 1 cM, LD between SNPs may be ignored.

Genetic distances between SNP pairs were calculated based on
the sex averaged genetic map. Genetic distance maps of both
GRCh38/HG38 and GRCh37/HG19 are available at Broad
Institute (see Data availability for details). Since the input profile
only contains the SNP names and physical positions in the
chromosomes, the SNPs’ physical positions were mapped to their
genetic positions, so genetic distance in cM can be obtained between
two SNPs on the same chromosome. The positions of the SNPs that
are not in the genetic map were interpolated linearly.

To maximize the number of selected markers, the first SNP on an
end of a chromosome passing the MAF threshold is selected from a
large candidate panel, and the next SNP at a specified genetic distance
(i.e., MGD) andmeeting theMAF criterion is selected and so on across
the genome. This dynamic SNP-selection algorithm applies a high
MAF filter to a large candidate panel, then sweeps each chromosome
once from an end inward, greedily choosing the first marker and every
subsequent marker that lies at least a certain centimorgans (defined by
the selected MGD) distance from the last one selected. Because all
retained SNPs have similarly high MAF, information content per
marker is nearly uniform, so simply maximizing the count within the
distance constraint maximizes cumulative power. The procedure runs
in linear time after sorting, yet it approximates the optimal distance-
constrained subset-selection problem, which is NP-hard for exact
solutions, and sufficient for forensic and association applications.
The pseudocode of this dynamic SNP selection algorithm can be
found in the Supplementary Material B.

FIGURE 1
The simulated family tree using unrelated founders in the 1,000 genomes data. This pedigree includes first to second degree relationships and four
unrelated founders. The same format was used for all populations studied herein.
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Kinship analysis

Once the SNPs are selected, the pairwise likelihood(s) given a
specific relationship(s) is calculated following the methods
described in Thompson (1975), Ge et al. (2010), and Ge et al.
(2011). This method relies on 1) Identity by Descent (IBD)
Coefficients (Table 1) and 2) joint genotype probabilities given
IBD (Table 2).

The likelihoods of the observed genotypes given two mutually
exclusive hypotheses are compared. The likelihoods of the genetic
data under each hypothesis are calculated as follows,

Pr X,Y R) � Pr (X,Y| |φ0( ) × φ0

+Pr X,Y φ1) × φ1 + Pr (X,Y∣∣∣∣
∣∣∣∣φ2( ) × φ2

where X and Y are two genotypes at a single locus, R is the
hypothesized relationship, φ0, φ1, and φ2 are IBD = 0, 1, and 2,
respectively, and Pr(X,Y|R) is the likelihood of the genotypes given
R. The joint genotype probabilities of X and Y given IBD are shown
in Table 2 (Ge et al., 2010; Ge et al., 2011). The cumulative
likelihoods across multiple loci are the product of the likelihoods
of each locus, assuming the loci are independent.

To avoid zero likelihoods due tomutations, a simplemutationmodel
was implemented for the parent-child relationship. In this model, a

constant mutation rate is set for any nucleotide difference; transitions
(A↔G or C↔T) and transversions (A↔C, A↔T, G↔C, or G↔T) are
treated as equally probable. Since the sequencing error rate likely is much
higher than themutation rate (e.g., 10−8), the defaultmutation rate is set at
10−3 (based on Q30 filtering, although it can be configured). While a
mutation rate parameter is used herein, one could consider this rate as a
genotyping error parameter of which themutation rate is subsumed. This
mutation model was applied only for the parent-child relationship. The
impact of mutation for other relationships was considered negligible due
to zero probability of IBD= 0.With themutationmodel, the likelihood of
a pair of genotypes given a parent-child relationshipwould be the product
of the parent and the transmission probability from parent to child (the
details can be found in Equation 6 in Ge et al. (2010).

Software

KinSNP-LR was implemented in Python (version 3.10+). Input
genotype data of tested individuals for KinSNP-LR were formatted
as a tab-separated text format. Configurable parameters, such as
MAF, MGD, mutation rate, genomic build (GRCh38 or GRCh37),
and populations allowed for the exploration of a broad parameter
space. KinSNP-LR outputs two files: a file contains the cumulative
likelihoods and LRs for each population selected, and a file contains
the details about each marker and the likelihoods for each
population and relationship.

Results

Empirical genomic data

The accuracy of traditional LR-based kinship analysis is
directly dependent on the information content of each SNP and
the total number of SNPs measured. To maximize information
content of a SNP panel, a higher MAF is necessary. Figure 2 shows
the number of selected SNPs with MAF thresholds, in which the
allele frequencies in gnomAD were used. Only SNPs that had

TABLE 1 Identity by Descent (IBD) Coefficients derived from Li and Sacks
(1954).

Relationship φ2 φ1 φ0
Identical twins 1 0 0

Parent-child 0 1 0

Full sibs ¼ ½ ¼

Half sibs 0 ½ ½

1st cousins 0 ¼ ¾

Unrelated 0 0 1

TABLE 2 Joint genotype probabilities for two genotypes X and Y given IBD (i.e., φ).

Ordered genotypes (X, Y) Joint probabilities: Pr(X,Y| φ)

IBD = 2 (φ2) IBD = 1 (φ1) IBD = 0 (φ0)

AiAi, AiAi pi
2 pi

3 pi
4

AiAi, AjAj 0 0 pi
2pj

2

AiAi, AiAj 0 pi
2pj 2pi

3pj

AiAj, AiAi 0 pi
2pj 2pi

3pj

AiAi, AjAk 0 0 2pi
2pjpk

AjAk, AiAi 0 0 2pi
2pjpk

AiAj, AiAj 2pipj pipj (pi + pj) 4pi
2pj

2

AiAj, AiAk 0 pipjpk 4pi
2pjpk

AiAj, AkAl 0 0 4pipjpkpl

Ai, Aj, Ak and Al are alleles at the locus with allele frequencies pi, pj, pk, and pl, respectively.
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minor allele frequencies higher than a MAF threshold in each of
the five populations (AFR, AMR, EAS, SAS, and NFE) were
selected. With the MAF thresholds of 0.4 and 0.45, only
25,664 and 1,441 SNPs remained, respectively, which are
appropriate for the threshold range for SNP selections.

In the 1,000 genomes data, there were 1,200 parent-child,
12 full-sibling, and 32 second degree pairs. In addition,
1,000 unrelated pairs were randomly selected with 200 in each of
the five populations. In total, 2,244 pairs were selected to validate the

LR method. For each pair, the likelihoods are calculated given each
of the four relationships (unrelated, parent-child, sibling, and
second degree), and each of the five populations were calculated.
Assuming the population is known, the relationship is determined as
the one with the maximum likelihood in that population.

Figure 3 shows the confusion matrix of determining
relationships given MAF = 0.4 and MGD = 30 cM with
126 SNPs selected. Based on this confusion matrix, the accuracy
and the weighted F1 score could be calculated as 0.9679 and 0.9751,

FIGURE 2
Number of selected SNPs with Minor Allele Frequency (MAF). Minimum Genetic Distance is not considered in this Figure.

FIGURE 3
Confusion matrix of determining relationships given Minor Allele Frequency (MAF) = 0.4 and Minimum Genetic Distance (MGD) = 30 cM, with
126 selected SNPs. The rows are the true relationships, and the columns are the predicted relationships.
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respectively, which were reasonably high given the limited number
of SNPs available with the selection criteria described. As expected,
most of the false associations were either with the first degree
relationship (parent-child and sibling) or between unrelated and
second degree.

Supplementary Table S1 gives more details of each of the false
identifications in Figure 3. All the truly related but falsely identified
pairs had the first-to-second LR less than 10, except HG00578-
HG00582 (i.e., a ratio of 85), and many of them are about 1 or 2.
But HG00578-HG00582 was correctly determined with lower MGD
thresholds (and more SNPs), such as 10 cM (346 SNPs) and 20 cM
(184 SNPs). The pairs truly unrelated but incorrectly identified as
second degree all had first-to-second LRs less than 60, and 77.78% of
them had ratios less than 10. Thus, the LR difference could be easily
overcome by adding more SNPs. With a lower MGD of 10 cM, most
of the errors were eliminated (Supplementary Table S2), except a few
unrelated pairs were incorrectly determined as second degree. This
observation is reasonable as many of the unrelated pairs in the
1,000 genomes data are not truly unrelated but distantly related to
a certain degree (Fedorova et al., 2016), which resembles many actual
relationship testing cases.

The ratio of the maximum and second maximum likelihoods
among the populations were compared to investigate how confident
a conclusion may be made to determine a relationship. As shown in
Figure 4, in which MGD = 30 cM and MAF = 0.4 were applied, the
parent-child and sibling relationships usually had several
magnitudes higher likelihoods than the unrelated and second
degree relationships. For parent-child and sibling, 53 out of
1,212 pairs (4.37%) had ratios less than 10, and 230 out of
1,212 pairs (18.98%) had ratios less than 100. For unrelated and
second degree, 250 out of 1,032 pairs (24.22%) had the ratio less than
10, and 524 out of 1,032 pairs (50.78%) had ratios less than 100. In

addition, all incorrectly identified pairs had the ratios less than 100,
and 79.17% (15/72) of them were less than 10. Thus, with these
1,000 genomes data, a conclusion might be made with high
confidence if the maximum likelihood of a relationship is
100 times greater than the second maximum likelihood.

Further, for a fixed MGD = 30 cM, the effect of MAF also was
investigated. As shown in Figure 5, the highest accuracy was reached
with MAF = 0.4. With MAF = 0.35, more SNPs (i.e., 130) were
selected but with the accuracy decreased, because more SNPs with
lower information content were selected. MAF = 0.38, 0.4, and
0.42 all had the same number of SNPs selected but with different sets
of SNPs. MAF = 0.4 had a higher accuracy than MAF =
0.38 probably because more informative SNPs were selected.
MAF = 0.42 had a lower accuracy compared with MAF = 0.4,
probably due to the randomness in the selection process. In general,
a reasonable MAF threshold may be between 0.4 and 0.42 based on
the current marker selection algorithm.

Table 3 displays the number of selected SNPs, the accuracies and
weighted F1 scores of relationship identification given variousMAF and
MGD. The results were consistent with Figure 5 that MAF = 0.45 could
lead to smaller numbers of selected SNPs and lower accuracies of
relationship identifications with the current SNP selection method. As
expected, lower MAFs and MGDs led to higher number of selected
SNPs and higher relationship identification accuracies. With MAF =
0.4 andMGD = 10 cM, 346 SNPs were selected, and the accuracies and
F1 scores were close to 100%. However, withMGD less than 50 cM, the
selected SNPsmay be considered linked to some degree. In practice, the
linkage of pairs of markers separated by 30 or 40 cMmay be sufficiently
small to have little effect on the match probabilities or likelihood
calculations (Buckleton and Triggs, 2006; Li et al., 2021). However,
closer SNPs with MGDs of 10 or 20 cM may have substantial linkage
effects on marker independence.

FIGURE 4
The ratios of the maximum likelihood and the second maximum likelihood among the populations for each pair for Minimum Genetic Distance
(MGD) = 30 cM and Minor Allele Frequency (MAF) = 0.4. The circles and triangles represent the pairs with correct and incorrect identifications,
respectively.
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Simulation data

Similar studies were conducted with simulation data. The
number of SNPs after MAF filtering (as shown in Figure 6) were
very similar to the numbers in Figure 2 (i.e., empirical data), in
which the allele frequencies in the 1,000 genomes data were used.
The differences were due to the slight allele frequency differences
between gnomAD and the 1,000 genomes data.

Figure 7 shows the confusion matrix of determining
relationships given MAF = 0.4 and MGD = 30 cM with
130 SNPs selected. Based on this confusion matrix, the accuracy
and the weighted F1 score were both 0.9282, which were slightly
lower than those with empirical data. This observation is likely due
to the simulated data having more sibling and second degree
relationships and that more distant relationships usually have

lower accuracies in testing. The confusion matrices of ASW,
CHB, and MXL can be found in the Supplementary Material C.

Supplementary Table S3 gives more details of each of the false
identifications in Figure 7. 97.1% (i.e., 366/377) of the pairs were
falsely identified with a first-to-second LR ratio greater than 100, and
82.5% (311/377) of ratios were less than 10. Like the empirical data,
when MGD reduces to 10 cM (Supplementary Table S4), the
accuracy substantially increases due to more SNPs being selected.

The ratio of the maximum and second maximum likelihoods for
the CEU population with MGD = 30 cM and MAF = 0.4 were
plotted in Figure 8. Like the results with empirical data, the parent-
child and sibling relationships usually had several magnitudes
higher likelihoods than the unrelated and second degree
relationships. For parent-child and sibling, 226 out of 2,100 pairs
(10.76%) had ratios less than 10, and 554 out of 2,100 pairs (26.38%)

FIGURE 5
Distributions of accuracy and F1 score (weighted) with Minor Allele Frequency (MAF) given Minimum Genetic Distance (MGD) = 30 cM.

TABLE 3 The numbers of selected SNPs, accuracies, and weighted F1 scores given various Minor Allele Frequency (MAF) and Minimum Genetic
Distance (MGD).

MGD MAF

Number of selected SNPs Accuracy F1 score (weighted)

0.40 0.45 0.40 0.45 0.40 0.45

10 cM 346 211 0.9955 0.9799 0.9958 0.9831

20 cM 184 140 0.9733 0.9541 0.9792 0.9661

30 cM 126 103 0.9679 0.9563 0.9751 0.9671

40 cM 99 85 0.9407 0.9256 0.9573 0.9477

50 cM 80 71 0.9305 0.9100 0.9509 0.9382
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had ratios less than 100. For unrelated and second degree, 971 out of
3,150 pairs (30.86%) had the ratio less than 10, and 2,200 out of
3,150 pairs (70.48%) had ratios less than 100.

In addition, 82.49% (311/377) of the incorrectly identified pairs
had ratios less than 10, 97.08% (366/377) of them were less than 100,
and only 1 out of 377 had the ratio >1,000. Thus, within unrelated
and these tested close relationships, it is highly confident to conclude
a relationship if the maximum likelihood of a relationship is
1,000 times greater than the second maximum likelihood.
Otherwise, an inconclusive interpretation could be made.

The effect of MAF also was investigated with the simulation data.
The peak accuracy was obtained with MAF = 0.3, which is slightly
different from the distributions generated from empirical data, likely due
to the different allele frequencies in the gnomAD and the 1,000 genomes
data. The accuracy difference across different MAFs may not be
substantial, and the distribution is rather random due to the
availability of the SNPs and allele frequencies used in analysis. For
samples from real cases, the SNP profiles generated may have a much
smaller number of SNPswith high quality. Thus,multipleMAFs between
0.3 and 0.4 may be tried to achieve the highest likelihood and/or LR.

FIGURE 6
Number of selected SNPs with Minor Allele Frequency (MAF). Minimum Genetic Distance is not considered in this Figure.

FIGURE 7
Confusion matrix of determining relationships given a Minor Allele Frequency (MAF = 0.4) and Minimum Genetic Distance (MGD) = 30 cM, with
130 selected SNPs. The rows are the true relationships, and the columns are the predicted relationships.
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It is worth noting that the gnomAD panel was used to filter the
SNPs in the 1,000 genomes data in the simulation study. However,
many SNPs in the gnomAD panel have lowerMAF than 0.3 than in the
1,000 genomes data. Because of this difference,MAF = 0.2 is in Figure 9.

The effect of genotyping errors also was evaluated. LRs with
various genotyping error rates in simulation and in LR calculation
were calculated, and the accuracies and F1 Scores (weighted) were
summarized in Table 4 (the confusion matrices can be found in

FIGURE 8
The ratios of the maximum likelihood and the second maximum likelihood among the populations for each pair for Minimum Genetic Distance
(MGD) = 30 cM and Minor Allele Frequency (MAF) = 0.4. The circles and triangles represent the pairs with correct and incorrect identifications,
respectively.

FIGURE 9
Distributions of accuracy and F1 score (weighted) with Minor Allele Frequency (MAF) givenMinimumGenetic Distance (MGD) = 30 cM. The accuracy
and F1 score (weighted) are almost identical due to the relatively even numbers of samples for each relationship.
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Supplementary Material D). Apparently, lower error rate increases
the accuracy. An error rate of 0.01 may still be acceptable for LR
calculations (i.e., the accuracy is reduced from 0.9282 to 0.9198 with
error rates increasing from 0.001 to 0.01). Error rate in LR
calculations also is important. With 0.05 simulation error, LR
calculations with the same error rate (i.e., 0.05) can substantially
increase the relationship test accuracy (i.e., 0.8663 and 0.7907 with
0.05 and 0.01 LR calculation errors, respectively). In general, low
genotyping error is extremely important for LR based relationship
testing. It is necessary to filter out low quality variants with certain
measures (such as read depth, variant quality scores, etc.) before
calculating LRs.

Discussion and conclusion

This paper describes the development and validation of a LR-
based methodology designed to conduct close kinship
relationship testing by dynamically selecting informative SNPs
based on MAF and MGD from genome-wide SNP data. Our
approach is unique in that it integrates dynamic SNP selection
based on output data, rather than relying on a fixed, pre-selected
SNP set. The described approach bridges modern genomic
datasets with the traditional LR-based framework, allowing
kinship testing laboratories to leverage comprehensive
genomic information while maintaining established LR-based
interpretive methodologies. KinSNP-LR, as implemented in this
study, does not incorporate comprehensive population
parameters, such as Fst or linkage between markers; these are
features that can be considered in future iterations. This initial
implementation is intended to demonstrate the core logic and
workflow of dynamically integrating SNP selection with LR
calculations for close kinship analysis. The system is evaluated
for accuracy using empirical and simulated datasets.

However, the traditional LR framework assumes marker
independence, necessitating the selection of only a limited
subset of SNPs from the total typed data to minimize the
confounding effects of linkage and LD31. The current
implementation of the methodology supports parent-child, full-
sibling, and second degree relationships, as well as distinguishing
unrelated individuals. These close relationships are most
commonly encountered in missing and unidentified persons
cases handled by medical examiner offices, where the goal is to
confirm identity rather than generate investigative leads. While
more distant relationships could be incorporated in future
iterations by including linked SNPs, such comparisons generally

are less fruitful for identity confirmation due to the higher number
of potential matches and reduced specificity.

This LRmethodology assumes access to high-quality genotyping
data. When genotypes are derived from low-quality or low-quantity
DNA samples, rigorous quality control measures are necessary to
ensure accurate relationship testing, which may include the use of
metrics such as genotype quality scores, read depth, or other
laboratory-specific thresholds for SNP quality. The default
mutation rate in the methodology is set at 0.001, corresponding
to the Q30 threshold, as genotyping errors are significantly more
frequent than the actual biological mutation rate (~10−8). For
datasets of lower quality, the mutation rate can be adjusted to
higher values (e.g., 0.01) to account for increased error rates. In
this study, the mutation rate (or better stated typing error rate) was
performed only on parent-child relationships as is typically done in
such cases. However, one could consider applying the typing error
rate to all relationships tested herein since typing error will impact
all sequence data.

Additionally, targeted panels may be considered, as they can be
enriched to increase sensitivity of detection. The LR approach would
remain similar, though the number of candidate SNPs will be fewer
unless the DNA is highly degraded. For close relationships up to
second degree, the number of SNPs may be sufficient, as only a
limited number are needed. However, enrichment approaches still
may suffer from differential detection of SNP states, and overall data
quality will impact success. While the choice between targeted
panels and WGS has historically been influenced by cost and
laboratory preference, declining sequencing costs are making
WGS increasingly attractive due to its broader genomic coverage
and greater utility in distant kinship inference. This LR tool was
developed to accommodate WGS data, but if one would like to use it
with a targeted panel, the panel should be evaluated for its ability to
include a maximum number of unlinked (or loosely linked) SNPs.

Substructure, which likely exists at some level, was not included
in this iteration of the software because these SNPs likely exhibit low
Fst values, particularly for each individual population. The impact of
Fst on calculations involving high frequency SNP alleles should
minimize their impact of substructure on LR calculations and
support robust relationship testing across populations. Future
versions of KinSNP-LR could explore the impact of a Fst
correction based as described by Balding and Nichols (1994).

The selection of an appropriate large set of candidate SNPs for
relationship testing was derived from a preselected gnomAD panel
containing 222,366 SNPs. These SNPs were filtered based on a MAF
threshold of 0.3. Subsequently, the data were further subset to
include SNPs located in genomic regions identified by Genome-

TABLE 4 The accuracies and F1 scores (weighted) for various simulation genotyping error rates and LR calculation error rates.

Simulation error LR calculation error Accuracy F1 score (weighted)

0.001 0.001 0.9282 0.9282

0.01 0.001 0.9110 0.9114

0.01 0.01 0.9198 0.9198

0.05 0.001 0.7907 0.7805

0.05 0.05 0.8663 0.8660

CEU population, Minor Allele Frequency (MAF = 0.4), and Minimum Genetic Distance (MGD) = 30 cM were used.
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in-a-Bottle as being easy to sequence or genotype. One might
consider a much lower MAF, such 0.01, as rare alleles may
increase the LR; however, such SNPs would not apply to all
kinship comparisons as they are quite uncommon and have little
value in most cases. A high MAF ensures that the SNPs from the
large, preselected candidate panel of 222,366 SNPs would be
applicable routinely. The high MAF threshold enhances the
informativeness of selected SNPs, while reducing risk of
unintended medical interpretations. This filtering strategy ensures
a robust and unbiased dataset, providing a solid foundation for FGG
as well as for other forensic applications, such as mixture
interpretation. These selection steps provided SNPs that are
amenable to validation studies performed herein, supporting
reliability and reproducibility in forensic applications.

There have been reports by Mostad et al. (2023) and Andersen
et al. (2025) that also provide approaches to use LRs with kinship
analyses based on SNP data. They both have some positive features
and limitations, as does KinSNP-LR. Mostad et al. (2023) use the
Lander-Green algorithm, basically a Hidden Markov model
(HMM), like the methods described by Epstein et al. (2000) and
Boehnke and Cox (1997). Their method can exploit larger amounts
of SNP data with the assumption of linkage equilibrium and no
genetic interference, in which the likelihood of individuals given a
defined relationship is calculated using the allele frequencies, the
recombination fractions between the markers, and transition
probabilities of the IBD values of linked markers. Thus, instead
of using a maximum of a few hundred SNPs with the assumption of
little or no linkage between the markers, HMM-based methods in
theory could use all available SNPs to increase the accuracy of the
relationship tests. However, the Mostad et al. (2023) approach does
not address mutation or genotyping error which could be a
problem with low quality data, although mutation rates could
be added to their model. The benefits of HMM may be limited for
close relationships, as shown herein and the accuracy is already
very high for close relationships with a few hundred SNPs.
However, if LRs are desired for more distant relationships,
HMM-based methods can be utilized in subsequent versions of
KinSNP-LR. Andersen et al. (2025) used a preselected panel of
43 SNPs with relatively high MAF for LR calculations accounting
for genotype errors for direct comparison of single source samples
to persons of interest. Our approach is in some ways similar to that
of Andersen et al. (2025) but extended to indirect kinship
comparisons and makes use of more SNPs. KinSNP-LR
provides a model for possible solutions to address LR/SNP-
based calculations by dynamically selecting high MAF SNPs
common to several population groups, MGD to account for
linkage effects, incorporation of a basic mutation (or
genotyping error) rate model, and being flexible on a case-by-
case perspective.

In addition, including multiple reference family members
instead of pairwise comparisons (i.e., joint probabilities), which
are not described herein because the current genetic genealogy
applications are mostly with pairwise relationship tests, can be
considered in future studies. For cases with more than one family
reference sample, a pedigree LR can be calculated capturing all
genetic information from all the references. Ge et al. (2010), based
on the Elston-Stewart algorithm (Elston and Stewart, 1971),
provide the methods for calculating a pedigree likelihood which

incorporated genetic mutation, population substructure and
accommodations for missing genetic data.

There are other ways to implement algorithms other than the
one used herein which is a traditional, case-specific approach for
LR calculation based on genotype combinations, where the
formulae differ according to the genotype combination of the
participants. For example, unified LR calculation formulae
could be considered to address all genotype combinations with
a single, more generalizable equation (Egeland, et al., 2017; Ma,
et al., 2024). This would reduce reliance on complex code with
numerous conditional statements which in turn potentially could
reduce computational efficiency and increase risk of
implementation errors, especially when dealing with high-
density SNP data. KinSNP-LR is designed for close relationship
testing for a specific targeted audience, such as medical examiners.
The code for this software is only a few hundred lines. Therefore,
these concerns that can be obviated to some degree with a unified
LR calculation formulation are less likely an issue with KinSNP-LR
which has been tested under the conditions shown in this study. In
future iterations, where more distant and complex relationships
would be addressed, the unified approach will be considered.

The validation results from both empirical and simulation data
show high accuracies of close relationships, particularly for first
degree relationships. One potential limitation is that the sample size
of 50 pedigrees may be considered small. However, the data shown
in Figures 6–9 and Table 4 support that the sample size is sufficient
to evaluate the performance of the software tool for the tested
relationships. On another point, the ratios for selecting relationships
with maximum and second maximum likelihoods differed for
empirical data (>100) and simulated data (>1,000). Sampling is a
potential explanation for the observed differences between empirical
and simulation results. The empirical data have less samples, which
tend to result in lower ratios overall. With more samples, as with the
simulated data, larger ratios will be observed. These differences
between the maximum and the second maximum likelihoods are
merely observations and may not be construed as a recommended
threshold(s) for casework. Threshold selection will be done at the
laboratory level and based on the risk profile that a laboratory or
jurisdiction defines operationally.

Comparisons with other kinship software were not conducted.
The reasons were the input data format and requirements, or even
assumptions and methods, are different for different software
programs. To seamlessly integrate with WGS-based genetic
genealogy application, KinSNP-LR can accept any VCF file
without pre-defined panels, which is unique among all LR-based
relationship testing software programs. Due to the different input
data, assumptions, methods, and/or software implementations,
different software programs may use different sets of variants,
population features, and methods in relationship testing, which
will lead to different LR results or even different conclusions but
not provide insight into accuracy of any given software. Thus, the
evaluation (e.g., accuracy) of any software program should be
conducted with ground truth data, which is what was done in
this study, instead of comparing with other software programs.

In addition, the WGS data generated for some forensic samples
may yield 0.5X to 5X coverage. If, for example, DeepVariant (Poplin
et al., 2018) were used to call variants with additional high-quality
filters, such as Genotype Quality (GD) ≥ 30 (equivalent to 99.9%
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genotyping accuracy) and a minimum read depth ≥5, such samples
may yield limited data. However, for higher quality samples,
typically ~1,600 to ~350,000 high quality variants could be
detected for relationship testing. Even with further MAF and
MGD filtering, there should be enough variants for close
relationship tests, which usually only require dozens to a few
hundred SNPs. On the other hand, relationship test software
programs that require pre-selected panels may not work well for
WGS data generated from typical forensic samples, as there may not
be enough SNPs recovered with smaller pre-selected SNP panels
after stringent quality filtering. A pre-selected panel may start with
upwards of ~3,500 to ~10,000 compared with millions or tens of
millions of SNPs by WGS.

In summary, the methodology presented in this study marks a
significant step forward in bridging traditional forensic
relationship testing with modern genomic technologies. By
applying a LR-based framework with dynamically selected high-
MAF SNPs, forensic laboratories can harness the data generated by
WGS while maintaining compliance with accredited relationship
testing standards. The use of unlinked markers and case-specific
SNP selection distinguishes this method from existing LR-based
kinship tools, making it especially applicable for FGG and other
applications requiring statistically robust assessments of close
relationships. This approach is particularly important for
medical examiners, who are focused on confirming identity,
which is a process that typically relies on comparisons of close
relatives. In cases where STR testing is not possible due to
degraded or limited DNA, this SNP-based LR approach offers a
reliable and scientifically defensible alternative. As the field
evolves, these advancements provide a strong foundation for
broader adoption of relationship testing approaches that
combine the rigor of traditional statistical models with the
scalability of modern genomics.
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