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Introduction: Extrachromosomal circular DNA (eccDNA) represents a class of
circular DNAmolecules derived from chromosomes with diverse roles in disease.
Long eccDNAs (typically 1–5 kb) pose detection challenges due to their large size,
hindering functional studies. We propose HyenaCircle, a novel deep learning
model leveraging large language model and third-generation sequencing data to
predict long eccDNA formation.

Methods: Full-length eccDNAs within 1–5 kb were identified by FLED algorithm
for Nanopore sequencing data, extended by 100-bp flanking sequences, and
paired with 20,000 length-matched negative controls from eccDNA-depleted
genomic regions. HyenaCircle was built by adapting the pretrained HyenaDNA
model with a designed classifier head. The strategies of data augmentation,
regularization and class imbalance weighting were applied to increase model
robustness.

Results: HyenaCircle achieved comparable performance with a validation
AUROC of 0.715 and recall of 0.776. It surpassed DNABERT by 5.9% in AUROC
and demonstrated stable convergence. Hyperparameter optimization confirmed
batch size 16 and learning rate 5 × 10−5 as optimal. The ablation studies revealed
flanking sequences are important, as their removal reduced model stability. The
model also showed superior stability over the baseline HyenaDNA architecture.

Conclusion: HyenaCircle integrated third-generation sequencing data and large
language model for long eccDNA prediction, which outperformed the existing
model. Our work demonstrates that the HyenaDNA architecture enables
effective long-sequence genomic modeling and provides a new insight for
eccDNA prediction and identification.
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1 Introduction

Extrachromosomal circular DNA (eccDNA) is a distinctive category of DNAmolecules
characterized by a ring-like structure, formed by the cyclisation of DNA fragments shed
from chromosomes (Gaubatz, 1990; Paulsen et al., 2018). The advent of high-throughput
sequencing technology has catalyzed the research of eccDNA. It is widely accepted that
eccDNA is a significant indicator of genomic instability and eccDNAs with different sizes
have significant differences in the formation mechanism, biological properties, relative
abundance, and the manifestation in diseases.
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In terms of the formation mechanisms, short eccDNAs (less
than 1,000 bases) primarily rely on microhomology-mediated repair
following DNA double-strand breaks, exhibiting a high degree of
stochasticity (Pau et al., 2021; Yang et al., 2022). Conversely, the
formation of long eccDNAs (more than 1,000 bases) involves
complex events, such as chromosome fragmentation, break-
fusion-bridging loops, and eccDNA fusions, and may result in
reintegration into the chromosomal genome (Noer et al., 2022;
Koche et al., 2020; Eugen-Olsen et al., 2025). Accordingly, with
regard to biological characteristics, short eccDNAs typically
function as gene regulatory elements, carrying enhancer,
promoter, or non-coding RNA sequences that influence local
chromatin status or stimulate immune activation through cis-
regulation and its circular structure (Wang et al., 2021; Ling
et al., 2021). It has been established that long eccDNAs, which
have been shown to exhibit the characteristics of a mini genome,
contain a complete set of oncogenes and their regulatory elements.
These eccDNA-encoded genes, such as MYCN and CCND1,
undergo amplification and heterogeneous distribution through
the independent replication units present on eccDNAs
(Helmsauer et al., 2020; Ambros et al., 1997). In normal tissues,
eccDNA molecules are predominantly constituted of short
fragments, with a proportion exceeding 90% measuring less than
1 kilobase. Conversely, tumor tissues exhibit a significantly higher
abundance of long eccDNA (Yang et al., 2022; Møller et al., 2018).
Consequently, in comparison with short eccDNA, long eccDNA is
often deemed to possess a higher clinical value, particularly in the
context of complex diseases such as malignant tumors. In
glioblastoma, long eccDNAs carrying EGFR amplicons form a
super-enhancer structure, driving the sustained activation of
oncogenes and thus influencing the tumor progression (Wu
et al., 2019; Morton et al., 2019; Zhu et al., 2021; Karami et al.,
2022; Nikolaev et al., 2014). In colorectal cancer, long eccDNA
carrying genes such as DHFR and EGFR induces the drug resistance
in tumor cells (Morales et al., 2009; Morales et al., 2005; Ooi et al.,
2004; Chen et al., 2023); while in neuroblastoma, patients carrying
MYCN-amplified eccDNA show an even lower survival rate (Karami
et al., 2022; Nathanson et al., 2014; Chapman et al., 2023). It has been
demonstrated that eccDNA is significantly more stable than linear
DNA in the tumor microenvironment, and its circular structure
resists degradation by DNA exonucleases. This renders eccDNA an
ideal target for liquid biopsy (Ling et al., 2021; Luo et al., 2023; Ya
et al., 2024; Lv et al., 2022). It is therefore imperative to identify and
parse long eccDNA accurately and efficiently.

Current researches on the eccDNA identification and
characterization are mainly based on traditional bioinformatics
approaches. Various algorithms have been designed to identify
the unique molecular signature of eccDNA based on the
alignment of sequencing reads. For instance, classic tools such as
Circle_finder and Circle-Map, infer potential circular structures by
identifying split and discordant alignment patterns of sequencing
reads, specifically soft clipped reads and discordant aligned read
pairs, while enhancing prediction accuracy through the analysis of
local sequencing depth variations and statistical validation around
the joint breakpoints (Shibata et al., 2012; Dillon et al., 2015; Prada-
Luengo et al., 2019; Prada-Luengo et al., 2020). In contrast, methods
for eccDNA identification based on third-generation sequencing
(TGS) data, such as Flec and FLED, leverage the ultra-long read

lengths characteristic of TGS to precisely identify eccDNA
molecules and reconstruct their internal structures and full-
length sequences (Wang et al., 2021; Li et al., 2023; Wang et al.,
2023). However, existing methodologies remain heavily dependent
on specific experimental protocols and sequencing technologies, and
face challenges in detecting long eccDNA due to inherent limitations
imposed by DNA polymerases and achievable read lengths.
AmpliconArchitect and AmpliconReconstructor reconstruct the
internal structure and sequences of long eccDNAs by analyzing
abnormal alignment patterns and copy number variations caused by
eccDNAs in whole-genome sequencing data, or combined with
optical mapping data. Recently, a machine learning model,
GCAP, developed by Zhao et al. leverages whole-exome
sequencing data to predict long eccDNA amplifications and
associated genes in tumor from the perspective of genomic copy
number variation (Wang et al., 2024). Although this approach
partially addresses limitations inherent in traditional alignment-
based methods, the reliability of GCAP predictions is contingent
upon accurate copy number profiles. And due to the typically low
copy numbers of long eccDNAs, AmpliconArchitect,
AmpliconReconstructor and GCAP struggles to reconstruct
complex eccDNA structural and consequently fails to resolve the
intrinsic complex sequence of eccDNAs. These limitations result in
constrained prediction accuracy and generalization ability.
Consequently, comprehensively extracting the implicit intrinsic
features from eccDNA sequences while maintaining the integrity
poses a significant challenge in current research.

Transformer-based large language models (LLMs) have
demonstrated revolutionary potential in genomics. Through
self-supervised pre-training strategies, LLMs can learn deep
grammatical rules of DNA from billions of base pairs,
enabling breakthroughs in predicting cis-regulatory elements
(Le et al., 2022; Luo et al., 2022), identifying splice sites (Ji
et al., 2021), characterizing DNA-protein interactions (An
et al., 2024; An et al., 2022), and forecasting DNA methylation
(Tsukiyama et al., 2022; Jin et al., 2022), thereby overcoming
limitations inherent in traditional feature engineering.
Representative models like DNABERT, which employ k-mer
tokenization strategies and undergo pre-training on the
human reference genome, achieve state-of-the-art (SOTA)
performance in tasks such as promoter prediction,
transcription factor binding site identification, and splice site
recognition with minimal fine-tuning (Ji et al., 2021). Notably,
enhanced long-sequence modeling capabilities of LLMs present
new opportunities for eccDNA research. Moreover, compared to
traditional bioinformatics methods such as FLED and Circle-
Map, this data-driven modeling approach offers distinct
advantages: it can uncover previously unknown or non-
genomic-origin eccDNA sequence patterns and quantitatively
characterize eccDNA sequence features, thereby facilitating the
effective integration of multi-omics data.

Traditional transformer attention mechanisms face two
primary constraints: first, computational complexity bottlenecks
impose sequence length limitations, where increasing sequence
length incurs exponential computational resource demands,
restricting existing models to input lengths typically between
500 bp and 4 kb—merely 0.01% of the human genome; second,
current efficiency-focused models sacrifice base-level resolution,
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impeding single-nucleotide precision predictions. Emerging
architectures like HyenaDNA address these limitations by
replacing multi-head attention with Hyena operators (Nguyen
et al., 2023). HyenaDNA incorporated implicit long-range
convolutions and processed single nucleotide tokens, and
pretrained on the human reference genome with context
lengths of up to 1 million tokens at the single nucleotide-level,
finally achieving SOTA performance. This architectural
breakthrough enables direct prediction of long eccDNA
formation from long contiguous DNA sequences.

Moreover, previous studies indicate that LLMs can capture
key sequence governing eccDNA formation. DeepCircle, a
framework integrating DNABERT with convolutional neural
networks (CNNs), has established predictive models for short
eccDNAs, achieving cross-dataset prediction accuracies of
79.65% (CNN-based) and 83.31% (DNABERT-based)
respectively (Chang et al., 2023). It demonstrates the inherent
predictability of eccDNA sequence. Nevertheless, current LLM-
based eccDNA prediction approaches remain constrained by two
primary limitations. First, existing LLMs are predominantly
designed and optimized for short eccDNAs, whereas long
eccDNAs exhibit more complex structural characteristics and
formation mechanisms requiring dedicated long-sequence
modeling strategies. Second, training eccDNA sequences
primarily derived from NGS data, suffers from short-read
limitations that compromise full-length sequence
reconstruction of long eccDNAs, consequently impairing
model capabilities in capturing structural variations.

To address these challenges, we employed third-generation
sequencing (TGS) to accurately identify and sequence full-length
eccDNAs, with particular emphasis on long eccDNAs (1–5 kb).
Building upon the HyenaDNA architecture, we developed
HyenaCircle through model optimization, harnessing its long-
range dependency modeling capacity for comprehensive analysis
of long eccDNA sequence characteristics. This framework
enabled us to establish a predictive algorithm for long
eccDNA formation, followed by carefully evaluation of model
generalizability. Together, these contributions offer both
methodological advances and new perspectives for
investigating tumor genomic instability.

2 Materials and methods

2.1 EccDNA sequencing

In this work, we used seven human cell lines for eccDNA
detection, including gastric cancer cells BGC823 and SGC7901,
gastric epithelial cells GES1, hepatocellular carcinoma cells
HepG2, liver cells HL7702, breast carcinoma cells MDA-MB-
453 and breast epithelial cell line MCF12A. Each sample was
subjected to Plasmid-Safe ATP-dependent DNase (Epicentre)
digestion and performed rolling circle amplification by
Phi29 DNA polymerase with Exo-resistant random primer
followed by Nanopore sequencing according to the
manufacturer’s protocol. High-quality base-called reads were
aligned to the human reference genome (GRCh38) using long-
read splice-aware mapper minimap2 (Li, 2018; Li, 2021).

2.2 Samples and datasets

FLED algorithm was employed to identified high-confident
eccDNAs from Nanopore sequencing data in 7 cell lines. FLED is
a full-length eccDNA detection methods that was developed in our
previous work (Li et al., 2023). Multilevel annotation was then
performed using Bedtools (Quinla, 2014; Quinlan and Hall, 2010)
intersect (v2.30.0) with gene annotation information from the
GENCODE database (GRCh38, Release 45). First, a stringent
full-exon coverage criterion, which means that the exons
completely contained within eccDNA regions, was applied to
select eccDNAs carrying intact exons. Subsequently, the gene-
body full-structure coverage criterion, which means the gene
body regions fully encompassed by eccDNA regions, was used to
define complete genic eccDNAs. Functional annotation was also
conducted for eccDNAs overlapping with gene regions.

Based on the length distribution characteristics of eccDNA with
gene or exon structures, a dynamic length filtering threshold (min =
1,000 bp, max = 5,000 bp) was established, retaining only qualified
eccDNAs across the 7 cell lines. To preserve potential regulatory
elements around eccDNA breakpoint regions, such as transcription
factor binding sites or open chromatin regions, we extended 100 bp
upstream and downstream genomic sequences for each eccDNA
using Samtools (v1.15) (Li et al., 2009), to generate continuous
sequences as the positive sample dataset used in this work.
Specifically, the total length of each positive sample comprised
both the full-length eccDNA sequence and 100 bp flanking
sequences on each side.

The next step was the generation of random genomic sequences.
We first merged all FLED-detected eccDNAs from the 7 cell lines
using Bedtools merge (v2.30.0) and identified shared eccDNA-
depleted regions across samples using Bedtools complement. The
resulting genomic regions totaled 1.9 Gb, where no homologous
eccDNAs were detected in any of the 7 cell lines. Subsequently, we
employed a stratified sampling approach to match the length
distribution of positive samples, for example, the eccDNA
regions plus 100 bp flanking sequences on both sides. Using
Bedtools random, we dynamically generated a candidate dataset
with sequences of equal length to the positive set. Finally, Monte
Carlo simulation was applied to optimize spatial uniformity in
sampling, yielding a negative control dataset comprising
20,000 sequences. Each negative sequence contained a core
region and flanking sequences matching those of positive
samples, with total lengths ranging from 1.2 kb to 5.2 kb, which
used as the negative sample dataset used in this work.

2.3 Datasets partitioning, data augmentation
and preprocessing

The positive and negative sample datasets were divided into
training and internal validation sets through stratified random
partitioning at an 8:2 ratio, ensuring consistent class distribution
between both datasets.

To improve model robustness and generalization capability, we
employed multiple data augmentation strategies to further expand
the dataset. The overall data augmentation approach involved
applying dynamic spatial transformations to the training
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sequences, including the following preprocessing operations. First, a
50% probability of reverse complement conversion was
implemented on original sequences to simulate the double-
stranded nature of DNA, achieving data augmentation based on
the reverse complement principle. Second, for sequences exceeding
500 bp in length, random truncation was performed to retain 50%–
100% continuous subsequences as training data, enhancing the
model’s sensitivity to local features. Additionally, the model
incorporated a 10% probability of random base substitution to
simulate potential single-base mutations and sequencing errors.
Specifically, this 10% probability operated at the sample sequence
level, meaning each training sample had a 10% chance of triggering a
base substitution event during augmentation. When triggered, the
model would randomly select a single base position in the sequence
for substitution, such as replacing the original C with any of A/T/G.
This design resulted in an actual per-base mutation probability of
0.1 × (1/L). Considering that FLED employs a multiple sequence
alignment strategy to generate consensus sequences during eccDNA
reconstruction, the base accuracy of the corrected sequences can be
comparable to that of high-throughput sequencing. So for the 5 kb
sequences examined in this study, the actual single-base mutation
probability was 0.002%. By introducing this sparse mutation
strategy, the enhanced sequences maintained error rates on the
same order of magnitude as quality-controlled real data, without
introducing unnecessary errors or confounding information.

Furthermore, to address potential class imbalance issues, the
model adopted a dynamic weight adjustment strategy based on
sample size. The weight coefficients were determined by calculating
the inverse of class frequencies, with the specific formula as follows:

Wi � nsamples

nclasses p Ci

whereWi represents the class-corrected weight coefficient, nsamples is
the total number of training samples, nclasses is the total number of
classes, and Ci is the actual sample count for class i. During model
training, these class correction weights were further integrated into
the cross-entropy loss function to optimize the loss function.

2.4 Construction of HyenaCircle

This work presented some model improvements based on the
HyenaDNA architecture, a deep learning framework specifically
designed for DNA sequence classification (Nguyen et al., 2023). In
contrast to Transformer-based approaches such as DNABERT,
HyenaDNA employs a more efficient mechanism for capturing
long-range dependencies, enabling superior processing of lengthy
sequence data while simultaneously reducing computational and
memory requirements. The architecture incorporates a pretraining
module for key feature extraction combined with a lightweight
classification network, achieving enhanced training and inference
speeds while demonstrating greater robustness and practicality in
handling the complexities of genomic data.

Due to computational resource constraints, specifically the
24 GB memory limitation of our NVIDIA GeForce RTX 4090D
GPU and considering that the eccDNA sequences under
investigation do not exceed 6 kb in length, we ultimately adopted
the pretrained weights from the hyenadna-small-32k model. This

model supports input sequences up to 32 kbp in length, with
pretrained parameters available at: https://huggingface.co/
LongSafari/hyenadna-small-32k-seqlen/tree/main.

To develop an AI model for long eccDNA identification based
on sequence information, we implemented targeted optimizations
based on the HyenaDNA architecture, resulting in our proposed
HyenaCircle model. The implementation process begins with
tokenization of full-length eccDNA sequences prior to model
construction. To maintain single-nucleotide resolution,
HyenaCircle directly utilizes the four nucleotide bases along with
necessary special characters as its vocabulary, converting sequences
into numerical vectors for model input. Specifically, the HyenaCircle
retains the frozen HyenaDNA block from the pretrained model as its
feature extraction backbone, maintaining an output dimensionality
of 768. For the classification component, the architecture
incorporates an adaptive average pooling layer to reduce
sequence dimensionality, followed by a feature transformation
module consisting of a 512-dimensional fully connected layer,
GeLU activation function, layer normalization, and dropout
(rate = 0.3), ultimately producing binary classification outputs
through a linear projection layer. The network architecture of
our proposed HyenaCircle model is illustrated Figure 1.

During the training phase, HyenaCircle was trained by using a
mixed-precision training strategy that employed the
bfloat16 floating-point format to accelerate computational
processes. The AdamW optimizer was implemented with an
initial learning rate of 4 × 10−5, coupled with a cosine annealing
scheduler that incorporated a linear warm-up period during the first
10% training steps to prevent gradient instability. To mitigate
overfitting, the network incorporated multiple regularization
mechanisms. A weight decay coefficient of 0.01 was applied to
constrain the parameter space, while gradient clipping with a
maximum norm of 1 was implemented to control gradient
magnitudes. Label smoothing was integrated into the loss
function to enhance model calibration capabilities.

The training process was conducted on an NVIDIA GeForce
RTX 4090D GPU (24 GB VRAM), with gradient accumulation
employed to alleviate memory constraints (accumulation steps = 2).
Under these configurations, each complete training epoch requires
approximately 6 h on average. This optimization strategy effectively
balanced computational efficiency with model performance while
working within hardware limitations.

2.5 Model performance evaluation and
optimization

Given the current paucity of research attempting to establish
predictive models for long eccDNA formation based on sequence
information, we implemented a comprehensive and objective
evaluation framework to assess model performance and the
feasibility of this work. Our multi-dimensional evaluation system
incorporated six key metrics: area under the receiver operating
characteristic (AUROC), specificity, accuracy, precision, recall,
and F1-score, providing a robust assessment of the model’s
classification performance, with specificity = TN/(TN + FP),
accuracy = (TP + TN)/(TP + TN + FP + FN), precision = TP/
(TP + FP), recall = TP/(TP + FN), and F1 = 2 × Precision × Recall/
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(Precision + Recall); where TP denotes true positives, TN denotes
true negatives, FP denotes false positives, and FN denotes false
negatives. Throughout model training and validation, the dataset
was randomly partitioned into training and independent test sets at
an 8:2 ratio to prevent data leakage.

For critical hyperparameters including batch size and learning
rate, we systematically determined the optimal combination through
the following approach. To balance training efficiency with memory
constraints, we evaluated four batch size options (Yang et al., 2022;
Wang et al., 2021; Karami et al., 2022; Wang et al., 2023). The
learning rate optimization in this work was conducted in two phases:
an initial coarse search across four values based on previous
experience (1 × 10−4, 3 × 10−4, 1 × 10−5, 5 × 10−5) followed by a
refined search in the vicinity of the optimal learning rate identified
during model training. The entire training process comprised
50 epochs, with both training and validation loss functions
meticulously recorded and visualized to monitor model
convergence and performance. This rigorous parameter
optimization strategy ensured robust model performance while
maintaining computational feasibility.

2.6 Ablation and comparative experiments

To comprehensively evaluate the performance of our proposed
HyenaCircle model, we designed two ablation studies: (Gaubatz,
1990): a comparative performance analysis between HyenaCircle
and the original hyenadna-small-32k model, and (Paulsen et al.,
2018) an assessment of the impact of eccDNA breakpoint flanking
sequences on prediction outcomes.

In the first comparative experiment, we focused on optimizing
critical hyperparameters (batch size and learning rate) specifically
for HyenaCircle during its training process, given their significant
relationship with input sequence length. After identifying the
optimal hyperparameter combination, we applied the same
configuration to train the original hyenadna-small-32k model

and evaluated its performance variation. This experiment aimed
to assess the feature representation capability of the large model as a
feature extractor and compare the performance differences between
our classification module integration versus direct model training,
providing insights for future network and module design.

The second experiment investigated the influence of eccDNA
breakpoint flanking sequences on prediction accuracy. Recognizing
that sequences adjacent to eccDNA breakpoints have been
demonstrated to correlate with full-length eccDNA identification,
we systematically evaluated model performance when varying
lengths of these flanking regions were removed. Specifically, we
conducted 10 comparative experiments by excluding 10–100 bp (in
10 bp steps) of sequence data from both sides of the breakpoints in
the input to HyenaCircle. This allowed us to quantitatively assess the
contribution of breakpoint-adjacent sequences to eccDNA
formation prediction.

The implementation was conducted in Python 3.10.8 with
CUDA 12.1 and PyTorch 2.4.1. Key dependencies included: bio
(1.6.2), huggingface-hub (0.29.1), hydra-core (1.3.2), scikit-learn
(1.3.2), torchvision (0.20.0), and transformers (4.26.1). This
experimental setup ensured reproducibility while leveraging state-
of-the-art deep learning frameworks for genomic sequence analysis.

3 Results

3.1 Genomic feature analysis of positive and
negative samples

Given the widespread genomic distribution of eccDNAs, we first
evaluated the representativeness of our modeling dataset by
analyzing the genomic features of positive samples, including
sequence length distribution and chromosomal distribution. The
FLED algorithm identified 45,355 eccDNAs across 7 cell lines using
Nanopore sequencing data (Table 1). Based on the eccDNA
annotation, these eccDNAs were classified into distinct

FIGURE 1
Network architecture diagram of the HyenaCircle model.
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TABLE 1 Summary of Nanopore sequencing and eccDNA detected by FLED.

Cell
line

Number of
reads

Total
bases

Mean
read

quality

Read
length
(N50)

Percentage of
clean data (>Q7)

Number of FLED-
detected eccDNA

Number of
positive
eccDNA

BGC823 1,239,061 2,095,226,792 13.7 2,565 98.8% 5,285 2,361

SGC7901 738,344 1,601,836,701 13.7 3,338 98.9% 4,943 2,456

GES1 673,160 1,310,252,216 13.8 3,091 99.1% 6,318 2,701

HepG2 524,970 1,232,425,802 13.9 3,808 99.1% 5,286 3,004

HL7702 2,118,440 3,413,043,155 13.9 2,620 99.0% 3,222 1,218

MB453 1,268,384 2,346,612,631 13.2 3,327 98.6% 19,766 12,198

MCF12A 871,873 1,673,085,152 13.9 3,330 99.2% 535 193

FIGURE 2
(A) The box plot of the size distributions of four eccDNA categories across 7 cell lines detected by FLED: all FLED-identified eccDNAs (FLED, n =
45,355), exon-carried eccDNAs (FullExon, n= 8,657), eccDNAswith full gene bodies (FullGene, n= 1,144), and gene-overlapping eccDNAs (OverlapGene,
n = 27,922). (B) Comparative size distribution of length-filtered eccDNAs (Positive, n = 23,812) versus randomly selected genomic sequences (Negative,
n = 20,000). (C) The genomic distribution of length-filtered eccDNAs (Positive, n = 23,812) and randomly selected genomic sequences (Negative,
n = 20,000) across 1 Mb chromosomal windows. P-values are determined using the Wilcoxon test. Significance: (***) P-value<0.001 (NS.) Non-
Significant.
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categories: 8,657 containing complete exons, 1,144 encompassing
intact genes, and 27,922 overlapping with gene regions. Length
distribution analysis revealed that detected full-length eccDNAs
predominantly clustered within the 1–3 kb range, while those
carrying intact genes or exons typically spanned 2–5 kb and
2–4 kb, respectively (Figure 2A). Since gene or exon-containing
eccDNAs are more likely to possess transcriptional or regulatory
potential, we retained 23,812 eccDNAs within the size range of
1–5 kb, along with their flanking genomic sequences as our positive
sequence set for subsequent analysis.

To ensure balanced model training, we randomly selected
20,000 genomic sequences from eccDNA-depleted regions as
negative controls, ensuring their length distribution was
consistent with that of eccDNAs and their flanking regions.
Validation confirmed that 19,719 (98.6%) of the genomic regions
of negative samples had an average sequencing depth of less than
2 reads, and the negative sequences exhibited comparable length
distribution to the positive set while maintaining uniform genomic
distribution (Figures 2B,C). Additionally, we performed a statistical
analysis of gene structures encoded in both positive and negative
samples: 67.06% of positive sample originated from genic regions,
compared to 59.89% in the negative samples. Chi-square test results
indicated no significant difference in gene sequence patterns
between the positive and negative sets.

3.2 Model performance optimization

After finalizing the architecture of HyenaCircle, we optimized
two critical hyperparameters, batch size and learning rate, to
determine the optimal model configuration. This evaluation

aimed to assess their impact on prediction performance for
similar tasks while providing practical recommendations for
comparable deep learning applications. We systematically tested
combinations of batch sizes (Yang et al., 2022; Wang et al., 2021;
Karami et al., 2022; Karami et al., 2022; Wang et al., 2023) and
learning rates (0.00001, 0.00005, 0.0001, and 0.0003), with
performance evaluated across six metrics (Table 2). The results
demonstrated significant variations in model performance
depending on these hyperparameters.

Smaller batch sizes (4 or 8) increased parameter update
frequency and gradient stochasticity, enhancing model
sensitivity but compromising specificity. For instance, at a
batch size of eight and learning rate of 0.0001, the model
achieved high recall (0.831) and F1-score (0.738), indicating
effective feature detection. However, this came at the cost of
reduced specificity (0.497) and elevated false-positive rates. In
contrast, larger batches (e.g., 32) improved memory efficiency
and per-epoch training speed but yielded overly smooth gradient
estimates, hindering escape from local optima. At a low learning
rate (0.00001), this combination performed poorly (AUROC:
0.578), suggesting ineffective convergence. Even at a learning
rate of 0.00005, specificity remained suboptimal (0.545 for batch
size 16 vs. lower values for batch size 32), likely due to
oversimplified gradient averaging in high-batch settings.
Consequently, we discontinued further evaluation of
larger batches.

Moderate batch sizes, such as 16, exhibited more balanced
performance across learning rates. For example, at a learning rate
of 0.00005, this configuration achieved an AUROC of 0.715, F1-
score of 0.719, recall of 0.776, and specificity of 0.545, a 12%
specificity improvement over smaller batches. While the recall

TABLE 2 Results of the HyenaCircle model across multiple performance metrics on the validation set under varying batch sizes and learning rates.

Batch size Learning rate AUROC Accuracy Precision Recall Specificity F1-score

4 0.00001 0.567 0.551 0.582 0.616 0.474 0.599

4 0.00005 0.713 0.665 0.674 0.742 0.573 0.706

4 0.0001 0.714 0.672 0.667 0.791 0.530 0.724

4 0.0003 0.712 0.670 0.670 0.777 0.543 0.719

8 0.00001 0.599 0.585 0.613 0.641 0.518 0.627

8 0.00005 0.713 0.676 0.660 0.836 0.487 0.737

8 0.0001 0.720 0.679 0.663 0.831 0.497 0.738

8 0.0003 0.714 0.672 0.668 0.789 0.533 0.724

16 0.00001 0.592 0.581 0.607 0.650 0.499 0.628

16 0.00005 0.715 0.670 0.670 0.776 0.545 0.719

16 0.0001 0.712 0.668 0.672 0.759 0.560 0.713

16 0.0003 0.716 0.676 0.669 0.802 0.527 0.729

32 0.00001 0.578 0.562 0.587 0.655 0.451 0.619

32 0.00005 0.712 0.673 0.659 0.824 0.493 0.733

32 0.0001 0.720 0.674 0.675 0.772 0.558 0.720

32 0.0003 0.711 0.668 0.660 0.805 0.505 0.725
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was moderate, the gains in specificity better aligned with practical
needs to minimize false positives.

Extremely low learning rates (e.g., 0.00001) universally
underperformed (AUROC <0.6; recall: 0.616–0.655; specificity:
0.451–0.518), indicating insufficient feature learning due to
inadequate parameter updates within fixed training epochs.
Performance improved markedly at learning rates of
0.00005–0.0001, though high learning rates (0.0003) introduced
instability, evidenced by increased inter-batch variability (F1-
score fluctuations of 0.012 between batch sizes 4 and 32) and
declining specificity. Based on these findings, we selected a batch
size of 16 and learning rate of 0.00005 for HyenaCircle, balancing
predictive performance, training stability, and practical utility.

3.3 Long eccDNA prediction by HyenaCircle

In this work, we developed a base-resolution prediction
algorithm for long eccDNA formation, HyenaCircle, by adapting
the HyenaDNA large language model architecture to third-
generation sequencing data and full-length eccDNA sequences.
Following optimization of batch size and learning rate, the model
was trained and validated. Evaluation results demonstrated the
utility of HyenaCircle in predicting long eccDNA formation,
achieving an AUROC of 0.715 on the validation set. Additional
performance metrics included accuracy (0.670), precision (0.670),
recall (0.776), specificity (0.545), and F1-score (0.719), indicating
robust discriminative capability between positive and negative
samples, with particular strength in detecting positive cases with
77.58% recall.

Training curves in Figure 3A showed stable convergence, with
loss values decreasing from 0.80 to 0.55 over 1,000 training steps
(50 epochs). The validation AUROC displayed in Figure 3B
progressively improved to 0.7147 during training, reflecting the
model’s capacity to extract both global sequence features (up to
5 kb) and base-resolution patterns. This performance advantage
stems from HyenaDNA’s specialized attention mechanism, which
effectively captures long-range dependencies in DNA sequences, a

recognized limitation of conventional approaches. Our findings
suggest HyenaCircle offers a methodological advance for eccDNA
identification and analysis.

3.4 Comparative experiments

We further evaluated the predictive performance of HyenaCircle
against the baseline hyenadna-small-32k model. Both models used
identical batch sizes with 16, learning rates with 0.00005, and data
preprocessing as well as data augmentation. As shown in Figure 4,
HyenaCircle demonstrated superior training stability and predictive
performance.

The training loss curves revealed that HyenaCircle reached
stable convergence after 10 epochs, with final loss values below
0.6 (Figure 4A). In contrast, while the baseline model ultimately
achieved lower loss values, it exhibited slower convergence,
stabilizing only after 25 epochs, and greater instability during
training. Validation loss curves indicated that HyenaCircle
maintained stable generalization without overfitting, whereas the
baseline model showed slight validation loss increases in later
training phases (Figure 4B), suggesting potential overfitting risks.
This implies that direct application of the baseline model, despite its
strong feature representation capacity, may compromise
generalizability without architectural modifications.

The observed improvements stem from HyenaCircle’s enhanced
feature modeling capacity through strategic architectural additions to
the baseline framework. This was further corroborated by validation
AUROC curves, where HyenaCircle showed more stable and
generalizable performance. Collectively, these results demonstrate
that HyenaCircle achieves more efficient biological feature
extraction for long eccDNA prediction compared to the baseline
language model, even under identical data augmentation conditions.

To further validate the effectiveness of the HyenaCircle model,
we conducted comparative experiments using the DNABERTmodel
with parameters configured according to its original publication
(Chang et al., 2023). The DNABERT model was employed by
DeepCircle for predicting the formation of eccDNAs shorter than

FIGURE 3
Performance of the HyenaCircle model on the training sets (A) and validation sets (B).
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1 kb; however, when applied to predict long eccDNA sequences
(>1 kb), DNABERT achieved the following performance metrics on
the test set: AUROC 0.6878, accuracy 0.637, precision 0.622, recall
0.739, specificity 0.529, and F1-score 0.675 (Table 3). The evaluation
metrics indicate that DNABERT demonstrates limited overall
accuracy in predicting long eccDNA sequences, failing to
maintain the high performance reported in its original study for
short-sequence prediction. While the model shows some
discriminative capability (F1-score 0.6752, AUROC 0.6878)
between positive and negative classes, its performance remains
substantially lower than that of HyenaCircle. These comparative
results highlight the superior suitability of the HyenaDNA
architecture for long-sequence biological data analysis,
particularly in eccDNA prediction tasks.

3.5 Assessment of flanking sequences on
prediction performance

Given the importance of flanking sequences for eccDNA
breakpoint identification, we systematically evaluated how
truncating these regions impacts HyenaCircle’s predictive
performance. Our results demonstrate that sequence context
surrounding breakpoints critically influences model accuracy.

As shown in Table 4, the baseline model incorporating full
flanking sequences achieved optimal performance, whose AUROC

was 0.715 and F1-score was 0.719, and with balanced specificity
(0.545) and recall (0.776). Truncation experiments revealed
significant performance variations: while some conditions (e.g.,
40 bp flanking sequences) showed improved recall (0.831), this
came at the cost of markedly reduced specificity (minimum 0.463 at
60 bp), indicating compromised prediction stability. Systematic
analysis showed that reduced sequence length decreased model
specificity by an average of 9.7% compared to baseline, with
recall and F1-scores fluctuating between 0.729–0.841 and
0.697–0.735 respectively, suggesting heightened sensitivity to local
genomic features. The truncated models also exhibited lower
discriminative capacity, with mean AUROC (0.711) consistently
below baseline performance (0.715), accompanied by reduced
accuracy and precision.

These findings confirm that flanking sequences provide essential
contextual information for eccDNA formation prediction. The
performance degradation observed with truncated sequences aligns
with our FLED algorithm’s design rationale, which similarly utilizes
breakpoint-adjacent sequences for accurate detection.

4 Discussion

In this study, we addressed the challenging task of predicting
long eccDNAs (1–5 kb) by developing the first deep learning
framework that integrates full-length eccDNA sequences

FIGURE 4
Comparison of the performance of the HyenaCircle model (A) and baseline models (B) on training and validation sets.

TABLE 3 Comparison of the model performance of DNABERT and HyenaCircle in predicting long eccDNA (1kb–5 kb).

Model AUROC Accuracy Precision Recall Specificity F1-score

DNABERT 0.675 0.637 0.622 0.739 0.529 0.675

HyenaCircle (Ours) 0.715 0.670 0.670 0.776 0.545 0.719
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identified from third-generation sequencing (TGS) data with a large
language model (LLM), systematically exploring the predictive value
of genomic long-range dependencies in eccDNA formation.

Using FLED, we obtained 23,812 high-quality full-length
eccDNA sequences from TGS data and incorporated 100 bp
flanking genomic sequences surrounding eccDNA breakpoints as
critical contextual information. At the model architecture level, we
adapted the HyenaDNA framework and proposed HyenaCircle,
which employs single-nucleotide tokenization, adaptive pooling,
and a multi-layer perceptron (MLP)-based classification module
to enable accurate prediction of 1–5 kb eccDNAs. Experimental
results demonstrated that HyenaCircle significantly outperformed
baseline models and DNABERT on the validation set, validating the
superiority of HyenaDNA in long-sequence feature extraction.

Given the limited sample size in this study, we implemented
systematic experimental designs to mitigate potential overfitting
risks across dataset partitioning, preprocessing, model construction,
and training. First, we split the dataset and determined optimal
hyperparameters based on loss function curves in the training set
before validating model performance on an independent internal
test set. Additionally, we applied data augmentation techniques to
the training set, including reverse-complement transformation,
random truncation, and nucleotide substitution, ensuring that the
introduced noise remained comparable to real sequencing errors.
During model training, we employed dropout regularization to
further prevent overfitting.

Furthermore, our study revealed the profound impact of
hyperparameter tuning on model performance: a combination of
moderate batch size and learning rate achieved a balance between
gradient stochasticity and stability, yielding an F1-score of 0.719.
Ablation experiments confirmed the importance of flanking genomic
sequences near breakpoints, highlighting the biological relevance of
structural features such as microhomologies in eccDNA formation.

Reliable detection of eccDNA typically relies on experimental
validation. However, considering the cost of experimental validation
and the applicability to large-scale samples, the positive samples in
this study were derived from high-quality eccDNA sequences
identified by FLED. Nevertheless, FLED depends on features such

as split-read alignment patterns present in TGS sequencing data and
may be affected by structural variation regions in linear DNA or
alignment errors, thus posing a certain risk of false positives.
Moreover, FLED imposes requirements on eccDNA size,
abundance, and structural complexity; extremely large, highly
complex, or low-abundance eccDNAs may not be reliably
detected, and insufficient sequencing depth may also result in
missed detections. Although FLED attempts to balance false-
negative and false-positive risks as much as possible, some
impact on HyenaCircle is inevitable, potentially limiting its
predictive capability for eccDNA. HyenaCircle achieved only 67%
precision and an AUROC of 0.71 on the validation set, indicating
that the current model still requires further optimization in false-
positive control and the extraction of specific sequence patterns,
such as microhomology structures. Additionally, previous studies
have suggested that eccDNA formation exhibits high stochasticity
and low reproducibility, which may also contribute to the model’s
performance limitations. In the future research, the establishment of
high-confidence eccDNA database through experimental validation,
along with the incorporation of error-correction modules for
eccDNA detection into the HyenaCircle, will improve the
predictive performance of HyenaCircle.

In this work, we demonstrate the predictability of long
eccDNAs, which provides potential for their clinical application.
First, sequence-based eccDNA formation prediction models may
capture intrinsic sequence features underlying eccDNA biogenesis,
thereby deepening understanding of tumor progression
mechanisms. Second, eccDNA is an important mechanism
driving resistance to targeted cancer therapies and is dynamically
generated during tumor development. By analyzing genomic
sequence features, such as specific amplification patterns and
microhomology, it is possible to predict the propensity for
eccDNA formation in tumors and even precancerous tissues.
This can help identify patients exhibiting high tumor
heterogeneity and potential resistance risk, classifying them into
higher-risk categories and enabling the implementation of more
proactive monitoring and therapeutic strategies. Furthermore, LLMs
excel at capturing long-range dependencies and contextual

TABLE 4 Impact of upstream and downstream sequences of eccDNA breakpoint regions on the performance of the HyenaCircle model.

Length (bp) AUROC Accuracy Precision Recall Specificity F1-score

Baseline 0.715 0.670 0.670 0.776 0.545 0.719

10 0.709 0.666 0.660 0.795 0.512 0.721

20 0.711 0.671 0.657 0.825 0.488 0.732

30 0.712 0.667 0.667 0.776 0.538 0.717

40 0.714 0.675 0.659 0.831 0.488 0.735

50 0.708 0.671 0.659 0.817 0.498 0.730

60 0.704 0.668 0.651 0.841 0.463 0.734

70 0.717 0.671 0.672 0.772 0.552 0.719

80 0.705 0.663 0.667 0.759 0.550 0.710

90 0.707 0.656 0.669 0.729 0.570 0.697

100 0.713 0.668 0.669 0.769 0.547 0.716
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information, allowing deep mining and quantitative
characterization of eccDNA sequence features. In the future,
integration of additional omics data, such as epigenomic or
transcriptomic profiles, could enable construction of more
comprehensive tumor diagnostic or prognostic models, thereby
advancing precision oncology.

5 Conclusion

Overall, this work presents HyenaCircle, the first pretrained large
language model specifically designed for long eccDNA from third-
generation sequencing (TGS) data, achieving significant performance
improvements over traditional methods, such as DNABERT, in
predicting long eccDNA formation based solely on sequence
information, establishing a SOTA benchmark. Furthermore, by
extending sequences around eccDNA breakpoints and employing
dynamic enhancement strategies, this study further validates the
critical role of breakpoint-adjacent sequences in eccDNA biogenesis.
From a data-driven perspective, we established connections with
biological prior knowledge and systematically evaluated the
contribution of long-range sequence dependencies in eccDNA
prediction.
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