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Kawasaki disease (KD) patients could develop coronary artery lesions (CALs)
which threatens children’s life. We aimed to develop and validate an artificial
intelligence model that can predict CALs risk in KD patients. A total of 506 KD
patients were included at Children’s Hospital of Fudan University. Seven
predictive features were identified for model building. Among different
machine learning (ML) models tested, Multi-Layer Perceptron Classifier
(MLPC), Random Forest (RF) and Extra Tree (ET) demonstrated optimal
performance. These were finally chosen for time-across validation. Among
three of them, MLPC stands out with its highest accuracy. Besides, Mendelian
randomization (MR) analysis also provided genetic evidence. Among seven
predictive features, two of them were identified as causal associations with
CALs. They are activated partial thromboplastin time (APTT) and red cell
distribution width (RDW). The causal mechanism reinforced the biological
plausibility of the model. ML-based prediction models, combined with genetic
validation through MR, offer a reliable approach for early CALs risk stratification in
KD patients. This strategy may facilitate timely clinical interventions.
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1 Introduction

Kawasaki Disease (KD), first described by Tomasaku Kawasaki in 1967 (Noval Rivas
and Arditi, 2020), is one of the most common forms of vasculitis in childhood. It is usually a
self-limited disorder and, if left untreated, fever and other manifestations of acute
inflammation last an average of 12 days. KD mostly affecting medium and large-sized
vessels particularly coronary arteries, and finally leading to coronary artery lesions (CALs)
(Noval Rivas and Arditi, 2020; Saadoun et al., 2021). KD can cause a variety of
cardiovascular complications, including coronary artery aneurysms, cardiomyopathy
with decreased myocardial contractility and heart failure, myocardial infarction,
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arrhythmias, and peripheral artery occlusion. 25% of patients with
KD have developed CALs, which is the leading cause of acquired
cardiac disease in children (Platt et al., 2020). As the major
complication of KD, CALs include several syndromes, such as
arrhythmias, acute coronary syndrome, and pericarditis and/or
myocarditis-like syndromes. These complications can lead to
serious morbidity and even death. Therefore, the most important
aspect of KD is the prevention of CALs.

With the widespread of intravenous immunoglobulin (IVIG)
therapy around the world, the prevalence of CALs in KD patients
has been significantly reduced, but CALs still occur in 5%–20%
patients with KD in the acute phase (Makino et al., 2019; Skochko
et al., 2018). Early diagnosis of CALs is very important as it allows
performing appropriate disease management and treatment. So far,
imaging methods that are invasive (coronary angiography,
intracoronary ultrasound) are accurate to assess coronary disease.
However, its invasiveness, radiation exposure and high technical
requirements limit its application. More practical and convenient
options for patients are needed. In recent years, more and more
research has been carried out on other influencing factors of CALs
complicated by KD in the world (Noval Rivas and Arditi, 2020).
Some parameters such as D-dimer, C-reactive protein (CRP),
platelets, neutrophil aggregates and inflammatory cytokine levels
have been reported as biomarkers for predicting CALs (Lam et al.,
2022; Kostik et al., 2021). But the underlying pathogenesis of CALs
with KD is largely unknown. Therefore, further investigations of the
risk factors of CALs are highly warranted in KD patients.

Machine learning (ML), one of the major building blocks of
artificial intelligence (AI), has been applied in many different fields
and has shown great potential in assisting clinical diagnosis
(Greener et al., 2022; Handelman et al., 2018). Scholars from
various countries have used different algorithms to predict the
risk of different diseases. With the development of the research,
the definition and standard of CAL is becoming more and more
refined. Therefore, previously established risk scoring systems (e.g.,
the Formosa scoring system, the Egami scoring system, and the

statistical model advanced by the Kobayashi scoring system) are not
particularly ideal in China (Kobayashi et al., 2006; Egami et al.,
2006). There is an urgent need for a method to help predict that
those high-risk children are prone to CALs. In 2016, through a study
of large cohort data from the latest follow-up, Professor Gu
Dongfeng’s team created the China-PAR model to assess the 10-
year risk and lifetime risk of cardiovascular disease (Jiang et al.,
2023). This model can predict the risk of different genders, and
provides an effective tool for improving the level of primary
protection and management of cardiovascular diseases. Similarly,
ML has the potential to aid in early detection of CALs by modelling
the complex relationships between clinical variables, but, to the best
of our knowledge, there is currently no machine-learning algorithm
that differentiates CALs from Kawasaki disease.

The role of laboratory parameters in KD remains unclear and
evidence from observational studies may be subject to confounding and
selection bias (Kelly et al., 2017). Mendelian randomization (MR) may
provide unconfounded estimates. To clarify the role of influencing
factors in CALs, we conducted a two-sample univariable MR study to
assess the associations of possible indicators with KD using the largest
and most recent genome wide associations studies (GWAS) (Burgner
et al., 2009; Kim et al., 2011; Tsai et al., 2011; Khor et al., 2011; Onouchi
et al., 2012; Lee et al., 2012; Kim et al., 2017). In response to the difficulty
clinicians have in diagnosis of and differentiation between CALs and
Kawasaki disease, we aimed to develop and validate a clinical decision
support system to distinguish among children with or without CALs
from Kawasaki disease, characterized by similar clinical and laboratory
features in the early time.

2 Materials and methods

2.1 Participants

In this study, a total of 506 pediatric patients diagnosed with KD
between February 2013 and November 2023 were enrolled at the

TABLE 1 Dataset review.

Personal
information

Data for ML model (n = 432) Data for time validation (n = 74)

KD without CALs
(n = 331)

KD with CALs
(n = 101)

KD without CALs
(n = 38)

KD with CALs
(n = 36)

Gender (n)

Male 199 80 28 28

Female 132 21 10 8

Age (n, year)

0~1 62 19 6 2

1~3 133 24 13 7

3~5 75 21 8 4

5~7 33 15 4 2

7~10 24 10 6 10

10~18 4 12 1 11
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FIGURE 1
Heatmap of correlation and differential analyses of laboratory biomarkers in KD patients: (A) Differential analysis of laboratory biomarkers between
KD patients with and without CALs (p < 0.05). Scale values <0 indicate negative correlation differences, and scale values >0 indicate positive correlation
differences; (B) Correlation analysis of important laboratory biomarkers in children with KD. Colors indicate Pearson Correlation Coefficient (r) between
variables—blue for positive and red for negative correlations, with color intensity reflecting the strength of the correlation. The numbers in the cells
represent the exact r values, where positive values indicate positive correlations and negative values indicate negative correlations. Asterisks denote
statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Abbreviations: Eosinophil count (EO#), C-reactive protein (CRP), basophil
count (BASO#), basophil ratio (BASO%), neutrophil (NEUT#), red cell distribution width-standard deviation (RDW-SD), mean corpuscular hemoglobin

(Continued )
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Children’s Hospital of Fudan University. Venous blood samples
were collected from KD patients at the time of initial evaluation in
hospital. The blood analysis of the samples was conducted in the
laboratory department of our hospital. The demographic and
laboratory data were extracted from the medical record. All
patients met the diagnostic criteria outlined in the Expert
Consensus on the Diagnosis and Acute-Phase Treatment of
Kawasaki Disease (Subspecialty Group of Rheumatology, 2022),

which include persistent fever for ≥5 days and at least four of the
five principal clinical features: polymorphous rash, bilateral
nonexudative conjunctival injection, changes in lips and oral
cavity, changes in the extremities, and cervical lymphadenopathy.
The diagnosis of CALs was established based on echocardiographic
findings, defined as a Z score ≥2 mm (Kuo, 2023).

Patients were excluded if they had received
immunosuppressive therapy within the previous 3 months or

FIGURE 1 (Continued)

(MCH), mean corpuscular volume (MCV), red blood cell (RBC), hematocrit (HCT), albumin/globulin (A/G), creatinine (Cr), uric acid (UA), non-
esterified fatty acid (NEFA), triglyceride (TG), glucose (GLU), lipoprotein (a) (LP(a)), high-density lipoprotein cholesterol (HDL-C), calcium (CA),
apolipoprotein B (APOB), total biliary acid (TBA), lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), alkaline phosphatase (ALP), globulin (GLB),
total protein (TP), apolipoprotein A1 (APOA1), prealbumin (PA), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), phosphate (P),
potassium (K), chlorine (Cl), D-Dimer (DDR), fibrin degradation products (NFDP), international normalized ratio (INR), prothrombin time (PT), fibrinogen
(FIB), activated partial thromboplastin time (APTT), prothrombin activation (PTA), thrombin time (TT).

FIGURE 2
Comparative feature importance rankings across multiple algorithms. (A–C) The top 15 most influential features ranked by Gradient Boosting
Decision Tree (GBDT), Extra Tree (ET), and Random Forest (RF), respectively; (D,E) Feature importance scores derived from LASSO regression using the
optimal regularization parameter (best alpha = 0.0098). Each curve represents a biomarker. Abbreviations: Activated partial thromboplastin time (APTT),
fibrinogen (FIB), international normalized ratio (INR), C-reactive protein (CRP), prothrombin time (PT), creatine kinase-MB (CK-MB), non-esterified
fatty acid (NEFA), glucose (GLU), CD4+ count/CD8+ count (CD4/CD8), cholinesterase (CHEW), creatinine (Cr), albumin/globulin (A/G), red cell distribution
width-standard deviation (RDW-SD), alkaline phosphatase (ALP), neutrophil (NEUT#), prothrombin activation (PTA), prealbumin (PA), phosphate (P),
globulin (GLB), total protein (TP), mean corpuscular hemoglobin (MCH), albumin (ALB), triglyceride (TG), fibrin degradation products (NFDP), lymphocyte
count (LYM#).
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had evidence of cardiac, hepatic, or renal insufficiency; active
infections; or immunodeficiency disorders. All diagnoses and
treatment decisions were made by one of two experienced
pediatric clinicians specializing in KD. Detailed demographic
and clinical characteristics of the enrolled patients are presented
in Table 1.

2.2 Data preprocessing

For a fair comparison of performance across different input feature
sets, rigorous data preprocessing procedures were implemented using
the scikit-learn library in Python (version 3.9.13). Missing values in
continuous variables were imputed using median substitution, a robust
univariate method that reduces sensitivity to outliers while preserving
the central tendency of the data. Continuous features were standardized
using z-score normalization (mean = 0, standard deviation = 1) to
ensure comparability across variables and to enhance algorithmic
convergence. Where applicable, categorical variables were
transformed using one-hot encoding to enable compatibility with
machine learning models.

Following preprocessing, the dataset was randomly partitioned
into training and testing subsets in an 80:20 ratio. Stratified sampling
was employed to maintain consistent class distributions across
subsets, thereby minimizing potential sampling bias due to class
imbalance. All preprocessing steps were conducted prior to model
training and cross-validation to prevent data leakage and ensure
methodological rigor.

2.3 Feature selection

We employed five distinct algorithms to identify the most
informative predictors from a large pool of candidate variables:
Corrected as Gradient Boosting Decision Tree (GBDT), Extra Tree
(ET), Random Forest (RF), Logistic Regression (LR), and Least
Absolute Shrinkage and Selection Operator (LASSO) regression.
These algorithms were selected for their capacity to rank feature
importance based on different theoretical foundations—tree-based

ensemble methods, linear coefficients, and regularization penalties.
The aim was to adopt a data-driven approach that retains features
with high predictive value while eliminating redundant or irrelevant
variables, thereby enhancing model stability and performance on
unseen data.

2.4 Model development

To develop predictive models for the diagnosis of CALs in KD
patients, we implemented eight distinct ML algorithms: Support
Vector Classifier (SVC), LR, RF, ET, Decision Tree Classifier
(DT), Gaussian Naïve Bayes (Gaussian NB), K-Nearest
Neighbors (KNN), and Multi-Layer Perceptron Classifier
(MLPC). These algorithms were selected to represent a diverse
range of classification paradigms, encompassing linear models,
ensemble methods, probabilistic models, distance-based
learning, and neural networks. All selected models are widely
used in biomedical research and offer complementary strengths.
Each algorithm was chosen for its balance between
interpretability and capacity to capture complex linear or
nonlinear relationships among input features.

2.5 Model evaluation

To assess the models’ discriminative power, receiver operating
characteristic (ROC) curves were plotted, and the area under the
curve (AUC) was calculated. Mul-tiple evaluation metrics were
computed to comprehensively assess classification performance,
including precision, recall, accuracy, and F1-score, all derived
from the confusion matrix.

To rigorously evaluate model performance and minimize the
risk of overfitting, stratified 10-fold cross-validation was
conducted on the training dataset ensuring class balance
across folds. Average performance across all folds was
reported to ensure robustness and generalizability of the
models. Model calibration was assessed by generating
calibration (reliability) curves, and the Brier score (BS) was

TABLE 2 ROC Analysis of selected features for distinguishing CAL in KD.

Features Area Std. Error 95% confidence interval p value

APTT 0.7404 0.02812 0.6853 to 0.7955 <0.0001

FIB 0.7380 0.03032 0.6786 to 0.7974 <0.0001

CK-MB 0.6896 0.02985 0.6311 to 0.7481 <0.0001

RDW-SD 0.6754 0.02945 0.6177 to 0.7332 <0.0001

PT 0.6500 0.03303 0.5853 to 0.7148 <0.0001

INR 0.6409 0.03345 0.5753 to 0.7065 <0.0001

CRP 0.5775 0.03059 0.5175 to 0.6374 0.0110

CHE 0.5008 0.03811 0.4261 to 0.5755 0.9796

Note. Activated partial thromboplastin time (APTT), fibrinogen (FIB), creatine kinase-MB (CK-MB), red cell distribution width-standard deviation (RDW-SD), prothrombin time (PT),

international normalized ratio (INR), C-reactive protein (CRP), cholinesterase (CHE).
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computed as a quantitative measure of the accuracy of
probabilistic predictions. Lower BS indicate better calibrated
models. In addition, the Kolmogorov–Smirnov (KS) test was
applied to evaluate the separation between predicted
probability distributions of the positive and negative classes.

Finally, to evaluate the temporal robustness and real-world
applicability of the developed models, external validation was
performed using a temporally independent test cohort collected
after the model development period. This prospective validation

strategy provided further evidence of the model’s generalizability to
future clinical data.

2.6 Mendelian randomization analyses

Summary data on outcomes were collected from published GWAS
meta-analyses and publicly available data. These summary data were
analyzed by MR to determine if there was a causal association between

FIGURE 3
Test set performance of eight machine learning models. (A) ROC curves demonstrating the classification performance of each model on the
independent test set; (B–I) Confusion matrices based on test set predictions, with rows corresponding to the actual labels and columns to the predicted
labels. Support Vector Classifier (SVC), Logistic Regression (LR), Random Forest (RF), Extra Tree (ET), Decision Tree Classifier (DT), Gaussian Naïve Bayes
(Gaussian NB), K-Nearest Neighbors (KNN), Multi-Layer Perceptron Classifier (MLPC).
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selected features and the risk of coronary artery disease. In order to
increase the reliability of the study results, the causal relationship
between selected features and coronary artery disease risk was
investigated using five Mendelian randomization methods. They are
MR Egger, weighted median, inverse variance weighted (IVW), simple
mode and weighted mode. IVW, which assumes that each genetic
variant exists independently and can influence outcome only through
the exposure of interest and combines the Wald ratios of individual
SNPs, was employed as the principal method of analysis in this study.
However, causality may be biased in the presence of pleiotropy
(Bowden et al., 2015; Grover et al., 2017). The remaining four
methods were used as complementary methods to IVW, although
they are less powerful (Chen et al., 2020). A statistically significant
association between exposure and outcome was deemed to be present
when the p-value was found to be less than 0.05.

2.7 Sensitivity analysis

Heterogeneity tests were carried out for statistically significant
results using Cochran’s Q-test (p < 0.05 was considered
heterogeneity). Meanwhile, we used MR-Egger intercept tests to
detect pleiotropy (p < 0.05 was considered pleiotropy) (Burgess and
Thompson, 2017; Chen et al., 2023). Finally, the leave-one-out
sensitivity analysis was performed to examine if one single SNP
drove the causal association. In this study, R software and the “Two
Sample MR” package were used for all MR analyses.

2.8 Statistical analysis

SPSS 25.0 was used for data analysis. For measurement data, the
D’Agostino-Pearson omnibus test was first used to assess normality.
The measurement data conforming to normal distribution were
expressed as mean ± standard deviation (�X ± S), and non-normally
distributed measurement data were expressed as median (Interquartile
range) (M (Q25, Q75), %). The differences between two groups were
compared using an independent samples t-test or the non-parametric
Mann-Whitney U test. P < 0.05 was considered statistically significant.

3 Results

3.1 Data exploratory analysis

A comparative analysis delineated multiple laboratory biomarkers
between KD patients with and without CALs. The two groups showed
significant differences in a variety of indicators (Figure 1A). KD patients
with CALs predominantly fell into the high-risk of abnormalities in
coagulation system, including activated partial thromboplastin time
(APTT), thrombin time (TT) and prothrombin time (PT). We further
performed a correlation analysis of laboratory biomarkers in KD
patients to explore potential physiological or pathological
associations. The results, shown in Figure 1B, illustrate the
correlations among several key laboratory biomarkers in KD patients.

3.2 Feature selection

To reduce the risk of overfitting and improve the generalizability of
the ML models, a comprehensive feature selection strategy was
implemented. The results of feature importance ranking and selection
across different classifiers are presented in Figure 2 and Supplementary
Tables S1, S2. By integrating the results of ROC analysis with differential
expression analysis, we identified a core set of seven key laboratory
biomarkers as the most informative for model construction (Table 2).
Cholinesterase (CHE) was excluded because it did not reach statistical
significance in ROC curve analysis. These selected features included
creatine kinase-MB (CK-MB), fibrinogen (FIB), international
normalized ratio (INR), APTT, PT, red cell distribution width-
standard deviation (RDW-SD), and C-reactive protein (CRP).

3.3 Model development

Based on selected features, different methods were used in order to
get the best CALs risk predictionmodel. Figure 3 and Table 3 shows the
results of the 8MLmodels testing. Concerning thewhole dataset, the RF
model achieved the best performance with AUC of 0.90, whereas most
other models gave an AUC above 0.8 (Figure 3A). However, LR and

TABLE 3 Model results of testing dataset.

Model KD without CALs KD with CALs Accuracy

Precision Recall F1-score Support Precision Recall F1-score Support

SVC 0.92 0.86 0.89 109 0.58 0.72 0.65 29 0.83

LR 0.93 0.86 0.90 110 0.58 0.75 0.66 28 0.84

RF 0.93 0.85 0.89 112 0.53 0.73 0.61 26 0.83

ET 0.93 0.83 0.88 114 0.47 0.71 0.57 24 0.81

DT 0.88 0.84 0.86 107 0.53 0.61 0.57 31 0.79

Gaussian NB 0.95 0.82 0.88 119 0.39 0.74 0.51 19 0.80

KNN 0.95 0.84 0.89 115 0.50 0.78 0.61 23 0.83

MLPC 0.94 0.86 0.90 112 0.56 0.77 0.65 26 0.84

Note. Support Vector Classifier (SVC), Logistic Regression (LR), Random Forest (RF), Extra Tree (ET), Decision Tree Classifier (DT), Gaussian Naïve Bayes (Gaussian NB), K-Nearest

Neighbors (KNN), Multi-Layer Perceptron Classifier (MLPC).
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MLPC stand out with the high prediction accuracy 0.84. It means these
models have excellent discriminating power in predicting CALs.

These parameters are defined as follows: Precision = True
Positive/(True Positive + False Positive), Recall = True Positive/
(True Positive + False Negative), Accuracy = True Positive + True
Negative /(True Positive + True Negative + False Positive + False
Negative), F1-score = 2×Precision × Recall/(Precision + Recall).

3.4 Model performance

We further evaluated themodels using the BS to assess the accuracy
of probabilistic predictions. Among all models, RF, MLPC, and LR
achieved the lowest BS, with values of 0.097, 0.110, and 0.113,
respectively (Figure 4A), indicating superior probability calibration.
Additionally, we applied K-fold cross-validation to compare model
performance based on average test error. The top-performing models

achieved a training accuracy converging around 0.8. RF demonstrated
the highest overall accuracy on the test set (84.5%), followed by LR
(83.9%) and ET (83.9%) (Figure 4B). The KS test results are shown in
Figures 4C–J. A larger KS statistic indicates stronger discrimination
between positive and negative classes. Interestingly, while RF performed
well in overall accuracy, it showed relatively poor discrimination
capability based on the KS statistic. In contrast, DT and MLPC
models yielded KS curves closest to the true distribution, suggesting
better class separation performance.

3.5 Model validation and web design

Based on the results of the above model evaluation, we selected
three models with better performance for data validation. They were
MLPC, ET and RF. We proposed a time-cross validation in total of
74 KDpatients collected from future (2022–2023), including 36 patients

FIGURE 4
Evaluation and comparison of model performance. (A) Reliability curves based on Brier score calculations. “Blue” and “Red” represent KD patients
without and with CALs, respectively. Brier scores range from 0 to 1, with lower values indicating better probabilistic calibration; (B) Accuracy of each
model based on K-fold cross-validation; (C–J) Kolmogorov–Smirnov (KS) curves for different models, where a larger separation between the cumulative
distributions indicates stronger discriminative ability. Support Vector Classifier (SVC), Logistic Regression (LR), Random Forest (RF), Extra Tree (ET),
Decision Tree Classifier (DT), Gaussian Naïve Bayes (Gaussian NB), K-Nearest Neighbors (KNN), Multi-Layer Perceptron Classifier (MLPC).
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with CALs and 38 patients without CALs. The external validation
results were shown in Figure 5 and Table 4. The accuracy of MLPC is
0.78, ET is 0.76, and RF is 0.72. Therefore, we chose MLPC as our final
prediction model. To facilitate the use of our prediction models, we
developed this model (http://127.0.0.1:5000).

3.6 Mendelian randomization

To further confirm the reliability of the model, Mendelian
Randomization analysis was performed to confirm the
relationship between selected features and CALs. Among all

FIGURE 5
Temporal validation of ML models. (A) Confusion matrix of MLPC model; (B) Confusion matrix of ET model; (C) Confusion matrix of RF model.

TABLE 4 Time-cross validation.

Model KD without CALs KD with CALs Accuracy

Precision Recall F1-score Support Precision Recall F1-score Support

RF 0.66 0.92 0.77 38 0.86 0.50 0.63 36 0.72

ET 0.70 0.92 0.80 38 0.88 0.58 0.70 36 0.76

MLPC 0.70 1.00 0.83 38 1.00 0.56 0.71 36 0.78

Note. Random Forest (RF), Extra Tree (ET), Multi-Layer Perceptron Classifier (MLPC).
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FIGURE 6
Mendelian randomization analysis of selected features. (A)Odds ratio plot of APTT (id: bbj-a-7), RDW-SD (id: ebi-a-GCST9002404) and CRP (id: ebi-
a-GCST90018950)/with coronary artery disease (id: bbj-a-159)/. OR: odds ratio; IVW: inverse variance weighted; (B–D) Scatter plot of the causal effect of
APTT, RDW-SD, CRP on coronary artery disease.
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selected features, three features have a clear causal relationship
with coronary heart disease. Figure 6A displays the other four
additional MR analysis techniques results (MR-Egger, weighted
median, simple model, and weighted model). IVW method
results revealed evidence of a significant connection between
APTT and CALs risk (OR = 0.809, 95% CI = 0.70–0.94, p =
0.004), as well as RDW (OR = 0.935, 95% CI = 0.88–1.00, p =
0.04). This association was further supported by the scatter plot
(Figure 6B). Finally, we performed the leave-one-out analysis by
removing each instrumental SNP to ensure that no single SNP
heavily influenced the causal estimate. Forest plots were
generated for each variable (Supplementary Figure S1). No
SNP had a substantial effect size on the study’s estimation,
indicating the robustness of the findings. The above findings
demonstrate a consistent, genetically-based causal relationship
between APTT or RDW and CALs.

4 Discussion

KD is the leading cause of childhood-acquired heart disease in the
developed world (Miyabe et al., 2019; Miura et al., 2018). It can cause
multiple cardiovascular complications, which is known to induce
pathological alterations in medium-sized arteries, particularly coronary
arteries. Exploring the high-risk factors of coronary injury complicated by
KDhas always been a research hotspot for scholars around theworld, due
to the low sensitivity and specificity of the existing research methods
(Beltran et al., 2023; Xie et al., 2018; El-Askary et al., 2017). The analysis of
clinically related indicators is particularly important. This study
retrospectively analyzes the clinical data of 506 children with KD in
the Children’s Hospital of Fudan University, and discusses the high-risk
factors of KD complicated by CALs. We hope to predict coronary artery
injury early, and provide a basis for effective treatment measures.

Recently, an increasing number of studies have been
conducted on KD diagnosis using artificial intelligence (AI)
(Lam et al., 2022; Kostik et al., 2021). For example, Wang
et al. used retrospective retrieval of clinical electronic case
information, and then successfully identified KD patients
through deep learning algorithms (Wang et al., 2020). In our
study, we analyzed a range of laboratory indicators and
developed a series of novel predictive models. Our RF model
accurately predicts CALs risk in KD patients (AUC: 0.84,
accuracy: 80%). It uses routine lab markers (APTT, PT, RDW-
SD) instead of advanced imaging, making it practical for
emergency or resource-limited settings. The model highlights
two key risk drivers: coagulation dysfunction (prolonged APTT,
elevated FIB) and systemic inflammation (RDW-SD, CRP).
APTT has been used to evaluate endogenous coagulation
pathway (Depasse et al., 2021; De Vries et al., 2019;
Oskarsdottir et al., 2021). Recent evidence suggests that
coagulation-related indicators may be promising markers for
the diagnosis of cardiovascular disease (Slack et al., 2022).
RDW has been shown to be significantly associated with CRP
and cardiovascular disease mortality. The greater the RDW in
patients with acute myocardial infarction, the greater the
likelihood of another major adverse cardiovascular event
within 1 year (Li and Xu, 2023).

According to the obtained results, 8 models were impressive
with an average accuracy of 0.80. MLPC, ET and RF models stand
out with the high AUC values and favorable accuracy in
classification between KD with or without CALs. We also made a
time-cross validation study to verify the models’ performance.
MLPC had the highest accuracy, so we chose it as our final
prediction model. MLPC is a feedforward artificial neural
network model that maps multiple input data sets to a single
output data set. It can handle nonlinear relationships and has
good fitting ability. Features can be extracted automatically,
reducing the effort of manual feature engineering (Li et al., 2019;
Chen et al., 2018). Although big data is often required, MLPC has the
advantage of being able to learn complex interactions through
hidden layers. Moreover, we are able to adjust the network
structure and parameters to make it more suitable (Dimitriadis
et al., 2018; Guo et al., 2020; Ueno et al., 2020). This feature gives it
the possibility that it can be implemented even in different hospitals
in different regions.

Beyond merely building models, we also applied univariable MR
methods, using the largest number of SNPs identified from the latest
GWAS for APTT, RDW- SD, FIB, PT, CK-MB and coronary artery
disease. Among the 7 features, APTT, RDW, CRP exhibited strong
correlation with coronary artery disease. The acquired results
corresponded to our data and confirm the reliability of the
model. Studies which have used genetic variation in coronary
disease genes do give some support to our findings (Aragam
et al., 2022). This dual-validation framework (ML + MR)
enhances clinical confidence in the model’s predictions and
establishes a paradigm for integrating AI with genetic
epidemiology in pediatrics.

A strength of our work is the universal availability of features
and the time-across validation. Although the gold standard for CALs
diagnosis is echocardiographic findings, it would not be readily
available in an emergency room. Our model uses routinely ordered
laboratory studies and assessable clinical features, making it an
effective screening tool at the point of initial evaluation before
more costly testing is ordered.

We also recognized the limitations of our work due to the lack of
multicenter sites data for external validation. Besides, the current
algorithm is only optimised for laboratory test values collected at the
time of initial evaluation, and it is unknown how it would perform
with data collected at a later timepoint.

In summary, our study demonstrates that ML models,
combined with genetic validation through MR, can effectively
predict CALs risk in KD patients. By providing a reliable,
interpretable, and clinically actionable tool, this approach has
the potential to transform the management of KD. Future work
will include retrospective validation in external patients with KD,
as well as refining the implementation within the
clinical workflow.
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