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Introduction: Fungal identification through ITS sequencing is pivotal for
biodiversity and ecological studies, yet existing methods often face challenges
with high-dimensional features and inconsistent taxonomy predictions.
Method: We proposed HFTC, a hierarchical fungal taxonomic classifier built upon
a multi-level random forest (RF) architecture. Notably, HFTC incorporates a
bidirectional k-mer strategy to capture contextual information from both
sequence orientations. By leveraging Word2Vec embedding, it reduces feature
dimensionality from 4% to only 200, significantly improving computational
efficiency while preserving rich sequence context.

Result: Experimental results demonstrate that HFTC outperforms Mothur, RDP,
Sintax, QIIME2, and CNN-Duong, achieving a Matthews correlation coefficient
(MCC) of 95.31% despite uneven class distributions. Its overall accuracy (ACC)
reaches 95.25%. At the species level, it attains a hierarchical accuracy (HA) of
95.10%, surpassing the best-performing deep learning baseline, CNN-Duong, by
3.2%. Moreover, HFTC exhibits the smallest discrepancy between ACC and HA
(1.60%), in contrast to CNN-Duong, which shows the largest gap (35.00%),
highlighting HFTC's superior hierarchical consistency.

Discussion: HFTC offers a scalable and accurate approach for fungal taxonomic
classification. Its compact feature representation and hierarchical architecture
make it particularly suitable for microbial diversity research. The source code and
datasets are publicly accessible at https://github.com/wjjw0731/HFTC/tree/
master.

KEYWORDS

fungal identification, ITS sequencing, hierarchical classification, Word2Vec embedding,
random forests

1 Introduction

Fungi are indispensable to the Earth’s ecosystem balance and have a profound impact
on human life (Shoemaker et al., 2017) for their essential roles in biodiversity conservation,
organic matter decomposition, medicine and food production, and agricultural bio-control
application (Lennon and Locey, 2020). Despite their ecological and biotechnological
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significances, fungi remain vastly underexplored. Recent estimates
suggest that approximately 12 million fungal species may exist, yet
only approximately 150,000 have been formally described
(Hawksworth and Liicking, 2017), implying that over 99% of
fungal diversity remains undocumented. Therefore, accurate and
scalable species identification is essential to advance microbial
diversity research and functional inference.

Traditional fungal identification approaches, based on morphology,
anatomy, or sectional analysis (Raja et al., 2017), are impractical when
morphological traits are absent or ambiguous. Although whole-genome
sequencing provides the highest resolution for identification, it remains
expensive, computationally intensive, and time-consuming (Gan et al,,
2024; Saada et al., 2024). As a result, DNA metabarcoding has emerged
as a widely adopted alternative for microbial community profiling. This
approach targets a small, species-specific, and easily amplified genomic
region (Raja et al., 2017; Ficetola et al,, 2010). Several key rRNA gene
regions, such as ITS, LSU, SSU, RPB2, and TEF, have been used for
fungal species identification (Zhang et al., 2020; Schoch et al,, 2012).
Compared to LSU and SSU, which evolve slowly and lack resolution for
closely related species, ITS provides superior species- and strain-level
discrimination. Although slower-evolving than protein-coding markers
such as RPB2 or TEF, ITS offers a balanced level of variability and
conservation (Nilsson et al., 2019; Lindahl et al., 2013). Consequently,
ITS has been designated as the universal DNA barcode for fungi
(Bradshaw et al., 2023; Nilsson et al., 2008). To support ITS-based
research, several databases, including UNITE (Koljalg et al., 2020),
Warcup (Deshpande et al, 2016), and BOLD (Ratnasingham and
Hebert, 2007), have been developed. Among these, UNITE is
comprehensive and frequently updated, containing nearly 10 million
sequences grouped into 2.4 million species hypotheses (SHs) (Koljalg
et al, 2020). UNITE provides a valuable taxonomic database for
taxonomists. However, it also presents challenges such as data noise,
taxonomic imbalance, and ambiguous categories, which must be
addressed for reliable classification.

Barcoding-based methods for microbiome classification are
divided into alignment-based and alignment-free categories
(Borozan et al,, 2015). Alignment-based methods [e.g., BLAST
(Altschul et al, 1990)] rely on pairwise sequence similarity
searches, which are accurate but computationally intensive. In
contrast, alignment-free methods offer speed and scalability and
are increasingly adopted for high-throughput microbiome analysis
(van Zyl et al., 2025; Zhou et al,, 2019). These methods typically use
k-mer frequency vectors (KFVs) for sequence representation (Jenike
etal,, 2024), leading to high-dimensional (45, sparse representation,
sensitivity to noise, and limited interpretability (Wichmann et al.,
2023), which can hinder model performance and increase
computational burden. Most existing models adopt a flat
classification architecture, using a single model to predict all
taxonomic ranks simultaneously. This structure lacks hierarchical
awareness and often yields inconsistent predictions. For instance, a
sample misclassified at a higher level (e.g., phylum or class) may still
appear correct at lower levels (e.g., genus or species), which is
biologically invalid. Despite this, accuracy at each level is
typically reported in isolation, without accounting for upstream
errors. For instance, if one sequence has the correct phylum but
incorrect class and another has the wrong phylum but correct class,
one of them will always be counted as correct in single-rank
evaluations (either at the phylum or class level), although both
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are taxonomically inconsistent. This can inflate the perceived
performance and obscure the true reliability of the model in
practical taxonomic applications.

In this study, we address these challenges by proposing HFTC, a
hierarchical fungal taxonomic classifier based on ITS sequences.
First, to mitigate the effects of data imbalance and noise, we
rigorously curated the UNITE database to construct a high-
quality ITS dataset. Second, to reduce dimensionality and
improve contextual representation, we adopted a bi-directional
k-mer (Bi-kmer) strategy to capture richer sequence context
information and applied Word2Vec embedding (Wichmann
et al, 2023; Wang et al, 2020; Neelima and Mehrotra, 2023;
Asim et al.,, 2020) to compress the feature space from 4* to only
200 dimensions. Third, we developed a multi-level random forest
(RF) architecture to ensure taxonomic consistency. Together, these
efforts enable more accurate, efficient, and consistent classification
of fungal species. Experimental results demonstrate that HFTC
significantly outperforms baseline approaches in both feature
dimensions and hierarchical consistency.

2 Materials and methods

Figure 1 illustrates the overall workflow of HFTC, which
comprises four main stages—from raw ITS sequence processing
to final taxonomic prediction—to address key challenges in fungal
classification.

2.1 Data extraction and preprocessing

The UNITE database focuses on the eukaryotic nuclear
ribosomal ITS region, where sequences are clustered into SHs
based on pairwise similarity thresholds of 0.5% (Koljalg et al.,
2013; Karsch-Mizrachi et al., 2018). For this study, we retrieved
the full fungal ITS dataset from the UNITE dataset (v9.0) (UNITE
Community, 2023), which integrates fungal sequences from both
UNITE and INSD. The crude dataset includes 6,499,364 sequences.

To ensure data quality, we implemented a rigorous data
preprocessing pipeline. First, 1,325,964 sequences labeled as
(e.g.
66,707 erroneous sequences containing non-standard nucleotide

unidentified or ambiguous incertae  sedis) and
bases were excluded (Nilsson et al, 2018). To further improve
annotation reliability and reduce noise, 295,108 sequences from
SHs with fewer than 10 representative sequences were excluded.
These rare taxa typically lack sufficient intra-class variation to
support stable training and are more susceptible to
misannotation, potentially introducing bias. This filtering process
represents a necessary trade-off between taxonomic inclusiveness
and model reliability. Given the scale of this study—spanning over
25,000 fungal SHs—it constitutes a challenging large-scale multi-
class classification task. The exclusion of underrepresented SHs has
minimal impact on overall taxonomic coverage as the curated
dataset already captures the major fungal lineages. Instead, this
strategy significantly improves training efficiency and consistency
without compromising fungal diversity.

Among the remaining SHs, the number of sequences varied widely,
ranging from 10 to tens of thousands. To address this imbalance, we
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FIGURE 1

Schematic workflow of HFTC, a hierarchical fungal taxonomic classification framework. The pipeline consists of four main stages: data preparation,

feature engineering, model development, and model evaluation.

TABLE 1 Taxonomic coverage information for training and testing datasets.

Dataset Kingdom Phylum Class Order Family Genus Species Total no.
Training 1 15 56 181 604 2,683 25,163 251,630
Test10 1 15 52 164 520 2,034 15,027 150,270
Test15 1 14 48 146 452 1,646 9,965 149,475
Test20 1 12 44 138 417 1,398 7,082 141,640
Test25 1 12 40 120 360 1,165 5,304 132,600
Test30 1 9 36 110 335 1,029 4,149 124,441

randomly sampled 10 sequences from each SH with more than  particular, we constructed five independent test sets

10 sequences. This step minimized sequence redundancy and
ensured uniform representation across taxa. Since SHs in the
UNITE database are clustered based on ITS sequence similarity and
serve as proxies for species, this sampling strategy not only balances data
distribution but also approximates species-level stratified sampling. It
helps prevent model overfitting to overrepresented taxa, thereby
promoting robustness and generalizability. As a result, the final
training set comprised 251,630 sequences representing 25,163 fungal
species. The data and associated metadata have been deposited in
Zenodo in accordance with community metadata standards, available at
https://zenodo.org/uploads/14826761.

To rigorously assess model performance, we constructed five
independent test sets using only sequences that were completely
absent from the training set, ensuring that no sequences overlap. In
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(Test10-Test30) by randomly selecting 10-30 representative
sequences per species, respectively. Dataset distributions are
summarized in Table 1, and the most species-rich taxa at each
taxonomic level are given in Supplementary Image S1.

2.2 Sequence feature representation

In this work, we used Word2Vec to embed ITS sequences into
dense numerical vectors. Each ITS sequence was regarded as a
sentence, with k-mers serving as words whose contextual patterns
capture taxonomic information. To construct a comprehensive
sequence corpus, k-mers were extracted in both the forward and
reverse directions (Margais et al., 2024) using a sliding window of
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TABLE 2 Training procedure for the Hierarchical Fungal Taxonomic
Classifier (HFTC).

Algorithm 1 training HFTC

Input
Sequences for ITS_10 Dataset
Extracted sequence features
Output
Species-level taxonomics for fungal ITS sequences
1: Start taxonomic classification at the Kingdom level
2: Construct a sub-classifier to predict the Phylum level
3: if any Phylum contains fewer than 1,000 species then
4:  Group it as “Other Phyla” for direct species-level classification
5: end if
6: Continue to the next taxonomic level
7: while taxonomic levels remain to be classified do
8: Construct a sub-classifier to predict the next lower taxonomic level
9: if the lower-level taxonomic group contains fewer than 1,000 species then
10: Group it as “Other” for direct species-level classification
11:  end if
12:  Continue descending through the taxonomic hierarchy
13: end while
14: Perform direct species-level classification on all remaining taxonomic groups
15. return Species-level taxonomics for fungal ITS sequences

length k and stride length L. This bidirectional approach captures
richer local sequence context and improves embedding robustness.
For Word2Vec training, we adopted the skip-gram model instead of
Bag-of-Words (CBOW) model.
performs better in capturing rare or infrequent k-mers by

the Continuous Skip-gram
directly predicting surrounding context words from a given
center word (TH et al,, 2015). In contrast, CBOW averages the
context to predict the center word, which tends to oversmooth
representations and underperform on sparse biological sequences
such as fungal ITS data (Chiu et al., 2016).

After training, each k-mer was mapped to an N-dimensional
embedding vector. To represent a full ITS sequence, we computed
the average of all embedded k-mer vectors from each direction
separately and then concatenated them to obtain a final
2N-dimensional sequence-level vector.

2.3 Construction of HFTC

To address the inconsistency of classification results across
taxonomic levels, we proposed HFTC, a novel model that aligned
predictions with phylogenetic relationships from phylum to species (Ji
et al, 2023). Unlike conventional flat models, which predict all
taxonomic ranks simultaneously and may yield spuriously high
accuracy, HFTC decomposes the task into sequential subtasks, each
handled by an independently trained sub-classifier. By integrating
predictions across levels, HFTC reduces overall complexity and
ensures taxonomic consistency (Zhang and Zhou, 2013).

To further support this hierarchical design, we adopted random
forests (Breiman, 2001) as the base classifiers for each level. Compared
with more complex models such as neural networks (NNs), RFs are
more robust to class imbalance, require fewer computational resources,
and are less sensitive to hyperparameter tuning (Fernandez-Delgado
et al., 2014). Moreover, the hierarchical tree-like structure of HFTC
naturally aligns with the modular design, whereas NN struggle with
vanishing gradients and poor generalization in long-tailed settings
(Zhang et al,, 2023; Le Guillarme and Thuiller, 2022). Additionally,
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many taxonomic groups contain very few sequences, making it
infeasible to train dedicated classifiers. To address this, taxa with
fewer than 1,000 sequences were grouped into an “Other” category.
Due to the strong multi-class capability of RFs, a single classifier could
then be trained from this node to directly predict species-level labels,
despite the diversity and imbalance within the group. This strategy
reduces the number of required sub-classifiers and streamlines the
classification pipeline. Table 2 summarizes the recursive construction of
HFTC across taxonomic levels.

2.4 Model evaluation metrics

We adopt five metrics as foundational indicators to evaluate
model’s performance: accuracy (ACC), recall, F,-score (F,),
precision, and Matthews correlation coefficient (MCC) (GM]JP
and o, 2023; Boughorbel et al., 2017). They were calculated using
Equations 1-5:

TP + TN
ACC = TP+TN: FP + FN’ M
TP
Recall = PN (2)
TP
Precision = TP+ P (3)
Fl:z'z-TPfﬁhFN’ @

TP x TN — FP x FN
MCC = (5)
/(TP + FP) (TP + EN) (IN + FP) (IN + EN)

where TP represents true positive, FP represents false positive, TN
represents true negative, and FN represents false negative.
Conventional metrics in taxonomic classification assess
performance at individual levels but may overlook inconsistencies
across the hierarchy. To address this limitation, we adopted the
hierarchical accuracy (HA) (Tieppo et al., 2022) metric. HA counts a
sample as a true positive only if all its hierarchical predictions are
correct, quantifying fully correctly classified samples across the

taxonomic path, as presented in Equation 6:

TP*

HA= ———————
TP + TN + FP + EN

(6)
where TP* denotes the true positives on the complete taxonomic
classification path.

3 Result and discussion

3.1 Division of sub-classifiers in HFTC

HFTC is hierarchically constructed based on fungal phylogenetic
taxonomy. In particular, an RF classifier first assigns sequences to phyla at
the kingdom level. Phyla with fewer than 1,000 SHs are grouped into
“Other Phyla” for direct species-level classification. For the major phyla,
further hierarchical classification is performed. In this study,
Basidiomycota and Ascomycota are the two most abundant phyla; in
this study, Basidiomycota is divided into four specific classes and one
“Other Class” category, while Ascomycota is divided into Agaricomycetes
and “Other Class.” At the order level, 11 orders, except Agaricomycetes,
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FIGURE 2

Taxonomic-level optimization of Bi-kmer length. Classification accuracy of 21 sub-classifiers evaluated across Bi-kmer lengths (k = 7-11) on the
Test10 dataset. Taxonomic levels are abbreviated as follows: k, kingdom; p, phylum; c, class; o, order; f, family; s, species.

were trained at the species level due to a significant reduction in species
per order. For Agaricomycetes, RF classifiers are constructed at five order
and four family levels. As a result, we constructed a total of 21 RF-based
sub-classifiers. Considering the substantial variation in task complexity
among sub-classifiers—ranging from dozens to tens of thousands of
categories—establishing a unified confidence threshold becomes
challenging. Given that HFTC’s hierarchical architecture effectively
mitigates error propagation, we opted against implementing a
confidence-based early stopping mechanism. Instead, our approach
leverages the highest-confidence predictions from each RF-based sub-
classifier as the final output, ensuring robust taxonomic assignments
while maintaining computational efficiency. Nonetheless, users are
allowed to apply confidence thresholds depending flexibly on task-
specific requirements.

3.2 Strategy and optimization for
feature embedding

3.2.1 Evaluating the performance of various
k-values in HFTC

To optimize feature representation across the 21 derived
the
optimal Bi-kmer length k for each taxonomic level by five-fold

hierarchical ~sub-classifiers, we systematically evaluated

cross-validation. Initially, all sequences were represented as Bi-
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kmers and then embedded
vectors using Word2Vec. As the existing methods typically select
k-values between 7 and 10 (Schloss et al., 2009; Wang et al., 2007;
Edgar, 20165 Liimata et al., 2022; Vu et al., 2020), we evaluated the
k-values from 7 to 11 to select the optimal feature representation at

into 200-dimensional numerical

each taxonomic level. The accuracy achieved by sub-classifiers using
individual k-values is presented in Figure 2. The hierarchical
classification paths and optimal k-values of each sub-classifiers
are detailed in Supplementary Table SI.

The results indicate that classifiers across different taxonomic
levels exhibit an opposite trend in their optimal k-mer lengths. At
higher taxonomic levels (phylum to family), classification accuracy
generally peaked at k = 10. In particular, for phylum-level
classification, the sub-classifier achieved the highest accuracy of
98.42% at k = 10, followed by 98.01% at k = 11, representing a 1.08%
improvement over 97.34% at k = 7. For two representative class-level
classifiers, the highest accuracies were observed at k = 10 for 98.34%
(vs. 98.16% at k = 11) and k = 11 for 95.43% (vs. 95.42% at k = 10).
For order- and family-level classifications, k = 10 again yielded the
best accuracy—95.32% and 91.93%, respectively—surpassing all
other tested k-values. In contrast, species-level classification
exhibited an opposite trend, favoring shorter k-mers. Among the
16 species-level sub-classifiers, 13 achieved peak accuracy at k = 7.
Two exceptional cases achieved optimal performance with k = 8 for
98.62% (vs. 98.45% at k = 7) and 96.66% (vs. 96.48% at k = 7). One

frontiersin.org


mailto:Image of FGENE_fgene-2025-1650244_wc_f2|tif
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1650244

Wang et al. 10.3389/fgene.2025.1650244
(A) (B)
00 10-mer EEE 10-mer+7-mer ] 10-mer+8-mer HEM 10-mer+9-mer B 10-mer+11l-mer 00 N 7-mer B 7-mer+8-mer [ 7-mer+9-mer 1 7-mer+10-mer @8 7-mer+11l-mer
1.
% %
0.98 Z
a8 7
3 % z
5 7 g
3 % 5 0.90 I
g 7 g
< % <
g 0.85
é 0.80 e
O A9 AD AD A% A2 A% A2 AP AP N9 A9 NG AD NS AP
P S Y 0 0 TR P
D YNNI O AT A S 2 7 &
6:'&.0"& \\,&z Q\'o\e §e & & & ,o& 0‘0 @'0 &@ &@ Le)& d’}g/ S
&£ & & 09 o? & & Z (S\ @* é‘* @* é\* 18
DS CIPNS 27 02 & & 2l & S S @
& & ¢ & FE S S
& &L & € o & &
& o 06\ o & < o
¢

Model name

FIGURE 3

Model name

Comparison of single vs. hybrid k-mer strategies across taxonomic levels. (A) Accuracy of single k = 10 and its hybrid combinations (10 + 7, 10 + 8, 10
+9,and 10 + 11) in five higher-level sub-classifiers. (B) Accuracy of single k = 7 and its hybrid combinations (7 + 8,7 + 9, 7 + 10, and 7 + 11) in 16 species-

level sub-classifiers.

sub-classifier showed equal performance at k = 7 and k = 8 for
97.80%. As stated above, we identify k = 7 and k = 10 as the optimal
single k-value of k-mer for species-level and higher-level taxonomic
classification tasks, respectively.

To systematically evaluate the impact of k-mer combinations on
classification performance across different taxonomic levels, we
compared the optimal single k-values with their adjacent k-mer
combinations. Figure 3 presents the accuracy results of five
classifiers at higher levels in panel A and sixteen sub-classifiers at
the species level in panel B.

In higher-level classification (Figure 3A), using k = 10 achieved
the highest accuracy in two out of five sub-classifiers. In the
remaining three cases, k = 10 ranked second, with accuracy
reductions of less than 1% compared to the best hybrid
combinations. This indicates that the single k = 10 setting is
sufficient for robust performance at broader taxonomic ranks. At
the species level (Figure 3B), 10 of the 16 sub-classifiers yielded peak
accuracy with single k = 7; three cases reached optimal accuracy with
a combination of k = 7 and k = 8; one with the k = 7 and k =
9 combination; and two with the k = 7 and k = 11 combination.
These results suggest that hybrid k-mer features do not offer a
significant advantage over well-chosen single k-values.

Overall, the findings demonstrate that adopting the optimal
single k-value (k = 10 for higher levels, k = 7 for species level)
provides a favorable trade-off between accuracy and model
simplicity, without the need for additional complexity introduced
by combining multiple k-mer lengths.

3.2.2 Biological and statistical rationale for
k-mer selection

Biologically, sequences within the same genus often share highly
similar overall structures, with distinguishing signals typically
confined to subtle local variations such as point mutations and
short insertions or deletions (indels) (Mahadani and Ghosh, 2014).
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Therefore, species-level classification demands sensitivity to fine-
grained, localized sequence differences. Shorter k-mers (e.g., k =7 in
this study) are better suited to capturing these microvariations,
particularly within the hypervariable regions of the ITS sequence,
which are the primary source of discriminatory information among
closely related fungal taxa (Liu et al.,, 2025). Statistically, shorter
k-mers also increase the overlap between local motifs, enhancing the
resolution of small-scale mutations. This dense representation
improves the model’s ability to differentiate among species based
on minimal but biologically meaningful sequence differences. In
contrast, higher-level classifications (e.g., phylum or class) involve
greater evolutionary divergence, which manifests as broader
conserved motifs or structural variations (Tedersoo et al.,, 2018).
Statistically, longer k-mers yield sparser but more distinctive
representations, reducing feature redundancy and increasing
theoretical entropy across the k-mer space (Wang et al, 2018).
This enhances inter-class separability and improves the robustness
and accuracy of classification at broader taxonomic ranks.

Experiments highlight the advantage of a hierarchical feature
design, where shorter k-mers are better suited for capturing fine-
grained sequence variations at the species level, and longer
k-mers provide improved resolution for distinguishing broader
taxonomic groupings. The ability of HFTC to adaptively select
k-mer lengths according to taxonomic level is a key factor
underlying its robust and accurate performance across the
entire fungal taxonomic hierarchy.

3.2.3 Evaluation of sequence features embedding
using Word2Vec

After determining the optimal k-values for each taxonomic level,
we further evaluated the accuracy of Word2Vec embeddings by
comparing them to traditional KFVs and applied both methods to
five representative class-to-species sub-classifiers within the phylum
Ascomycota.
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Accuracy comparison between KFVs and Word2Vec embedding. Accuracy of the five class-to-species sub-classifiers in Ascomycota using KFVs and

Word2Vec embedding.

As shown in Figure 4, our method approach achieved an
accuracy that was comparable to that of the KFV method.
Traditional KFV methods produce extremely high-dimensional
and sparse feature spaces (4%), causing memory bottlenecks
during model training. In contrast, Word2Vec generates
compact, dense representations by learning distributed vector
embeddings for k-mers based on their contextual co-occurrence
patterns. Importantly, our method reduced the feature
dimensionality from 47 (e.g., 16,384 for k = 7) to only 200 by
applying average pooling over the Word2Vec-learned vectors of
each Bi-kmer in the sequence, highlighting the embedding model’s
ability to preserve relevant biological information with significantly
fewer features.

Although averaging simplifies computation and mitigates noise
from sequence length variation, it has limitations. In particular, it
discards positional information, potentially overlooking structural
motifs or taxonomically informative subsequences. Nonetheless, this
embedding strategy significantly reduces feature dimensionality,
mitigates sparsity, and captures essential compositional and
contextual information for downstream classification tasks.

3.3 Model performance evaluation

3.3.1 Hierarchical sub-classifier validation

The 21 sub-classifiers comprising the HFTC model were
systematically evaluated through five-fold cross-validation in both
the training and test datasets (Test_10). Three critical aspects are
evaluated in Table 3(left: training set; right: test set): the number of
taxonomic tasks covered (Shoemaker et al.,, 2017), the number of
sequences (Lennon and Locey, 2020), and classification accuracy
metrics (Hawksworth and Liicking, 2017).

Notably, the sub-classifiers maintained consistently high
accuracy across all hierarchical taxonomic levels, with 17/
21 achieving >95% classification accuracy (peak performance:

Frontiers in Genetics

Fungi2p reached 99.83% and 99.98% in training and test sets,
respectively). This robust performance demonstrates the model’s
dual capability in handling both coarse-grained (phylum-level) and
fine-grained (species-level) taxonomic assignments. These results
were all validated through 10-fold cross-validation experiments,
with most of the standard deviations not exceeding 0.01,
indicating stable model performance. The detailed standard
deviations and 95% confidence intervals for the accuracy of each
of the 21 sub-classifiers are also provided in Supplementary Table
S1. Moreover, the minimal differences in accuracy between the
training and test datasets highlight a strong generalization
capability, indicating that the sub-classifiers are not overfitting
and can reliably classify previously unseen data with high
precision. However, the Cortinariaceae_f2s classifier for
classifying species within the Cortinariaceae family of the order
Agaricales performed poorly, with an accuracy of only 83.54% and
80.71% in training and test sets, respectively. In contrast, the
classifier Inocybaceae_f2s for another family within Agaricales
achieved an accuracy of 98.26%.

To improve this model, we applied GridSearch on the training
dataset to find the best performance combination. We tuned two
hyperparameters: the number of features considered at each split
(max_features) was tuned using a combination of fixed values and
dynamic strategies commonly used in tree-based models, specifically
{2,5,10, ‘log2’, ‘sqrt’} (Shoemaker et al., 2017). The dynamic options
automatically select the number of features by taking either the base-
2 logarithm or the square root of the total number of input features;
the number of trees in the forest can be chosen from {50, 100, 200,
500, 800} (Lennon and Locey, 2020). Figure 5 shows heatmaps of
ACC, recall, Fy, and precision across the parameter combinations.

When the two hyperparameters approached values of 2 and 800,
the model achieved its highest accuracy of 0.8348. However, the
model’s performance remained suboptimal despite extensive tuning
via GridSearch. This indicates that the limited performance of the
Cortinariaceae_f2s model is unlikely to be attributable to
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TABLE 3 Information of sub-classifiers in the training and test datasets.

10.3389/fgene.2025.1650244

Model name No. of taxa No. of sequences Accuracy
Fungi2p 15/15 251,630/150,270 0.9983/0.9998
other_p2s 1,312/757 13,111/7,564 0.9679/0.9533

Ascomycota_p2c 21/19 106,760/60,984 0.9542/0.9973

Sordariomycetes_c2s 2,868/1,620 28,465/16,041 0.9612/0.9562

Dothideomycetes_c2s 1,978/1,165 19,655/11,578 0.9709/0.9656

Leotiomycetes_c2s 1,294/801 12,816/7,968 0.9629/0.9610

Eurotiomycetes_c2s 2,023/1,173 20,016/11,629 0.9403/0.9236

Pezizomycetes_c2s 1,148/763 11,443/7,621 0.9807/0.9814

Ascomycota_p_other_c2s 1,444/616 14,365/6,174 0.9648/0.9639
Basidiomycota_p2c 14/13 131,759/81,722 0.9861/0.9983
Agaricomycetes_c20 21/19 124,875/77,821 0.9532/0.9958

Agaricales_o2f 41/39 65,887/39,810 0.9193/0.9879
Cortinariaceae_f2s 1,175/679 11,733/6,772 0.8354/0.8071
Inocybaceae_f2s 1,377/982 13,761/9,820 0.9826/0.9778
Agaricales_o_otherl_f2s 2,239/1,330 22,267/13,259 0.9778/0.9596
Agaricales_o_other2_f2s 1,835/2,989 18,126/29,851 0.9765/0.9742
Russulales_o2s 1,746/1,214 17,402/12,100 0.9429/0.9376
Sebacinales_o2s 1,030/634 10,300/6,340 0.9520/0.9395
Cantharellales_o2s 983/628 9,784/6,220 0.9845/0.9848
Agaricomycetes_c_other_o2s 2,164/1,344 21,502/13,351 0.9780/0.9648
Basidiomycota_p_other_c2s 689/392 6,884/3,901 0.9640/0.9693
Accuracy Precision Recall F1 Score
Q-0.8069 0.8047 0.8014 0.8051 0.7960 Q- 0.8069 0.8047 0.8014 0.8051 0.7960 Q-0.8069 0.8047 0.8014 0.8051 0.7960  Q-0.8069 0.8047 0.8014 0.8051 0.7960
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FIGURE 5

Hyperparameter optimization for Cortinariaceae_f2s via GridSearch. Accuracy,

model constructed using different numbers of features and estimators.

hyperparameter settings. Default RF parameters proved satisfactory
results for most HFTC sub-classifiers; furthermore, tuning was
avoided to prevent unnecessary complexity. To explore other
potential causes, we examined the upstream and downstream
tasks of the Agaricales_o2f and Cortinariaceae_f2g models, with
the corresponding classification heatmaps presented in Figure 6.
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Fi-score, precision, and recall values of the Cortinariaceae_f2s

The heatmaps reveal that the upstream classifier for the
Agaricales order achieves nearly perfect accuracy in assigning
sequences to the Cortinariaceae family for 99.95%, indicating that
most errors in Cortinariaceae_f2s are not caused by upstream
misclassification. Within the Cortinariaceae family, notable
genus-level misclassifications with

occur, many
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Hierarchical error propagation analysis in HFTC's taxonomic classification pipeline. (A) Heatmaps of upstream tasks: Agaricales_o2f model and (B)

heatmaps of downstream tasks: Cortinariaceae_f2g model.

TABLE 4 Prediction performance for the HFTC in Test10.

Level ACC HA Recall Precision F, MCC
Phylum | 09997 | 09997  0.9997 0.9997 09997 = 0.9994
Class 09943 | 09943 09967 0.9943 0.9954 | 0.9920
Order 0.9747 0.9744 0.9956 0.9747 0.9845 0.9724
Family | 09648 | 09637 09648 0.9648 09799 | 0.9646
Genus | 09525 | 09510  0.9508 09525 09544 09531
Species | 09525 | 09510  0.9508 0.9525 09544 09531

genera—particularly Cystinarius, Hygronarius, Protoglossum, and
Volvanarius—erroneously predicted as Cortinarius. This bias likely
stems from the dominance of Cortinarius in the training data and
the limited representation of other genera. Additionally, Cystinarius,
Hygronarius, and Volvanarius, which only recently split from
Cortinarius (Liimata et al., 2022), remain phylogenetically close,
leading to similar ITS sequences and reduced resolution in k-mer-
based embeddings. These factors elevated false positives and
degraded the performance of the Cortinariaceae_f2s classifier. To
facilitate detailed analysis of how misclassifications at higher levels
(e.g., phylum) affect downstream accuracy, we generated heatmaps
of classification results for key taxonomic levels during training,
provided in Supplementary Image S2.

3.3.2 Comprehensive validation of the HFTC

After validating the robust performance of individual sub-
classifiers, we conducted a comprehensive evaluation of the
integrated HFTC system using
independent test sets. Table 4 summarizes the performance of
HFTC in the Test10 dataset, while detailed results for the other
test sets are provided in Supplementary Table S2.

six metrics across five
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Because HFTC achieves direct species-level classification
from the family level, bypassing the intermediate genus level,
the evaluation metrics at both the genus and species levels
remained consistent, each exceeding 95%. Similar performance
trends were observed across the remaining four independent test
sets, with species-level accuracies of 94.7%, 94.1%, 93.5%, and
93.3%, respectively. In addition, in addressing class imbalance,
the MCC surpassed 99.9% at the phylum level, 99.2% at the class
level, 97.2% at the order level, 96.5% at the family level, and
remained as high as 95.3% at the genus and species levels. These
results fully demonstrate that HFTC can maintain robust
performance even in the context of highly imbalanced
classification tasks involving over 25,000 species. The high
consistency between MCC and ACC further validates the
model’s strong adaptability to imbalanced datasets.

3.4 Comparison with existing predictors

Considering representativeness and availability, five
methods, namely, Mothur (Schloss et al., 2009), RDP (Wang
et al., 2007), Sintax (Edgar, 2016), QIIME2 (Liimata et al., 2022),
and CNN-Duong (Vu et al, 2020), were selected for model
performance comparison on an independent and identical test
dataset Test10. Mothur, Sintax, RDP, and QIIME?2 use traditional
machine learning, and CNN-Duong uses neural networks. In the
experiments, Mothur, RDP, and Sintax were all executed on an
AMD Ryzen Threadripper PRO 5955WX 16-Core Processor,
using their recommended default parameters: a k-mer size of
8 and a confidence threshold of 0.9 for Sintax. QIIME2 was
evaluated under the same environment with a k-mer size of 7 and
a confidence threshold of 0.7, as recommended. Similarly, CNN-
Duong was executed on GeForce RTX 4090 and evaluated using
its default recommended settings, including a k-mer size of 6 and
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TABLE 5 In-depth comparison of six classifiers on the test10 dataset.

Method Algorithm ACC HA ACC-HA Vector size Inference time (ms)
HFTC RF 0.9525 0.9509 1.60% 200 0.37
Mothur KNN 07115 0.7098 1.73% 65,536 092
RDP NB 0.9263 09125 13.73% 65,536 1225
Sintax NB 09221 0.9048 17.30% 65,536 057
QIIME NB 0.9444 0.9321 12.36% 16,384 58.50
CNN-Duong CNN 0.9543 09193 35.00% 4,096 2.02

Bold numbers indicate column-wise optimal values (highest ACC/HA, smallest ACC-HA, vector size, and inference time).

a CNN architecture, comprising two ConvlD layers and two
dense layers, with a total of 49.83 MB of parameters.

Figure 7 shows that HFTC achieved superior performance across
all metrics, with an ACC of 95.25%, an HA of 95.09%, a precision of
95.08%, a recall of 95.25%, an Fl-score of 95.80%, and an MCC of
95.31%. The CNN-Duong showed a slightly higher ACC of 95.43%
but showed a marked decrease in HA to 91.90%, suggesting potential
limitations in handling taxonomic hierarchies. QIIME2 ranked third
overall, with both ACC and related metrics at approximately 94.44%
and an HA of 93.21%. Notably, QIIME2, Sintax, and RDP are all
Naive Bayes-based methods; consistent with our earlier findings that
k = 7 is optimal for species-level classification, QIIME2 (k = 7)
outperformed RDP and Sintax (k = 8), which both achieved
approximately 92% metrics. In addition, Mothur exhibited the
poorest performance across all six evaluation metrics, showing an
overall accuracy, hierarchical accuracy, precision, recall, F1 score, and
MCC of 71.15%, 70.98%, 78.02%, 71.15%, 73.01%, and 74.28%,
respectively.
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In particular, Table 5 compares six models in terms of HA,
species-level accuracy (ACC), feature vector size, and per-
sequence inference time, which reflects the computational
efficiency gained through dimensionality reduction. HFTC
achieves the highest HA of 95.09% and a competitive ACC of
95.25%, only 0.18% lower than that of the best-performing CNN-
Duong model. However, HFTC exhibits a substantial advantage
in computational efficiency: its feature vector size is only 200,
which is less than 0.3% of the 65,536-dimensional vectors used in
traditional k-mer frequency-based models (Mothur, RDP, and
Sintax), 1.2% of QIIME2’s 16,384, and only 4.8% of CNN-
Duong’s 4,096. This low-dimensional embedding leads to

HFTC achieves the fastest
six models, requiring only

significantly faster inference.
inference time among all
0.37 milliseconds per sequence. It is 35% faster than the
second-fastest model, Sintax (0.57 ms), and significantly
outperforms the others—Mothur (0.92 ms), CNN-Duong
(2.02 ms), RDP (12.25 ms), and QIIME2 (58.20 ms). Notably,
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HFTC achieves high speed without sacrificing accuracy, showing
a good balance between efficiency and performance.
Importantly, HFTC achieves the smallest gap between ACC and
HA, with a difference of only 1.60%, indicating its strong ability to
produce hierarchically consistent predictions. In contrast, although
CNN-Duong attains a slightly higher accuracy of 95.43% at the
species level, its HA decreases significantly to 91.93%, resulting in
the largest ACC-HA gap of 35.00%. This performance gap reflects a
limitation of CNN-based models with flat
which do not taxonomic

fundamental
architectures, explicitly capture
dependencies and are, therefore, more prone to inconsistent
predictions across hierarchical levels. In contrast, HFTC uses a
hierarchical progressive classifier selection mechanism that
underpins its superior hierarchical consistency. Theoretically, this
design  also the potential risk of “higher-level

misclassifications confining lower-level classifiers to incorrect

carries

branches.” However, HFTC mitigates this risk through two
key features:

First, higher-level classifications in HFTC rely on highly
discriminative inter-group features and undergo specialized training,
minimizing misclassification rates and reducing the occurrence of
incorrect branch guidance. Second, unlike flat models that use a
single model to predict all taxonomic ranks simultaneously and
yield inconsistent predictions, HFTC decomposes the task into
sequential subtasks aligned with the biological taxonomic hierarchy.
This inherent structural advantage explains why HFTC maintains such
a narrow ACC-HA gap, outperforming flat architectures in preserving
taxonomic integrity across all levels.

4 Conclusion

We presented HFTC, a bioinformatics tool for fungal species-
level classification. To support a broad spectrum of fungal taxa,
we constructed an ITS reference dataset encompassing over
25,000 species and 4.4 million sequences. HFTC incorporates
three key innovations: a bi-kmer comprehensive feature
extraction strategy that captures sequence context from both
forward and reverse orientations (Shoemaker et al., 2017);
Word2Vec embedding to compress high-dimensional KFV
from 4% into only 200-dimensional

vectors, balancing

computational  efficiency ~with  contextual information
preservation (Lennon and Locey, 2020); and a hierarchical
classification framework that ensures taxonomic consistency
(Hawksworth 2017). These
HFTC state-of-the-art
performance at the species level, with 95.25% for ACC,
95.31% for MCC, and 95.10% for HA, while maintaining the
smallest discrepancy between ACC and HA of 1.60%. HFTC

shows excellent performance on fungal ITS data, and its

across levels and Liicking,

innovations enable to achieve

architecture is generalizable to other barcoding systems such
16S
optimization.

as rRNA, with appropriate retraining and k-mer

Despite these strengths, HFTC has limitations that warrant
future refinement. First, its performance is partially dependent
on the quality of the reference database, highlighting the
importance of accurate and comprehensive annotations such

as those provided by UNITE. Second, although HFTC
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demonstrates scalability on large datasets, further optimization
may be needed to efficiently handle ultra-large-scale sequencing
data in future applications. Third, the k-mer pooling step in
HFTC loses positional sequence information, which could limit
resolution for closely related taxa with subtle structural
variations. One promising direction is to leverage pre-trained
language models (PLMs), such as DNABERT (Ji et al.,, 2021;
Devlin et al., 2019), to complement HFTC’s current framework.
These models could provide two key advantages: their ability to
generate rich contextual embeddings from large-scale nucleotide
corpora may help capture patterns from rare species that HFTC
might overlook (Shoemaker et al., 2017), and their self-attention
mechanisms and positional encoding capabilities could help
recover the positional information lost during HFTC’s average
pooling step, thereby enabling better use of local k-mer-based
signals (Lennon and Locey, 2020). Although our study focused on
the non-coding ITS region, the same principle could extend to
coding markers such as RPB2 or TEF, which also contain
Additionally,
model compression techniques such as knowledge distillation

taxonomically informative sequence motifs.
could help reduce computational costs while maintaining
accuracy. With these advancements, HFTC could further
solidify its role as a cornerstone for scalable and accurate
taxonomic identification in microbial research. All source
code, datasets, and instructions for the experiments are
publicly available at https://github.com/wjjw0731/HFTC/tree/

master. The repository is documented and fully reproducible.
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