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Background: Infertility remains a prevalent global health concern, with
Premature Ovarian Insufficiency (POI) and Recurrent Spontaneous Abortion
(RSA) being common causes of female infertility.
Objective: This study aims to identify new central genes and potential therapeutic
drugs for RSA and POI by integrating multi transcriptome data and machine
learning algorithms.
Methods: This study utilized RNA sequencing data from patients with POI and
RSA to identify key hub genes associated with these diseases. The analysis
involved machine learning algorithms, mcode and Cytoscape, revealing
important hub genes. The comprehensive evaluation includes functional
annotation, protein-protein interaction (PPI) network, transcription factor (TF)
gene regulatory network, microRNA (miRNA) gene regulatory network. Genome
enrichment analysis (GSEA) and immune infiltration studies elucidated the
potential mechanism between POI and RSA. Drug target enrichment analysis
highlighted promising therapeutic agents against RSA and POI. Validation of
granulosa cells and endometrial tissue samples using quantitative real-time
polymerase chain reaction (qRT-PCR) highlighted the importance of the
identified hub genes.
Results: This study identified a total of six hub genes—— CENPW, ENTPD3,
FOXM1, GNAQ, LYPLA1, and PLA2G4A. Immunoassay revealed an increase in
activated NK cells. Furthermore, significant differences were observed in the
proportions of other immune cell types, such as resting memory CD4 T cells,
compared to the control group. Significantly, these six genes participate in diverse
metabolic pathways linked to RSA and POI, particularly in oxidative
phosphorylation, ribosome processes, and steroid biosynthesis pathways.
Additionally, ten potential drugs (Rifabutin, Methaneseleninic Acid,
Carbamazepine, Dasatinib,Troglitazone, Tamoxifen, Enterolactone,
Anisomycin, Testosterone, 5-Fluorouracil) targeting key genes were identifed.
Conclusion: Targeting these genes shows promise for preventing and treating
both POI and RSA, providing crucial insights into addressing these complex
conditions at molecular level.
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1 Introduction

As a highly prevalent condition affecting populations globally,
infertility has been formally acknowledged by the World Health
Organization as a critical public health issue requiring international
attention (Boivin et al., 2007). Some studies have noted that the
success rate of assisted reproductive technology decreases with
increasing age, resulting in a number of embryos facing
Recurrent Spontaneous Abortion (RSA) (Wright et al., 2005).
Women experiencing RSA may suffer from both emotional
distress and physical complications, including diminished
endometrial receptivity (Voss et al., 2020; Achache and Revel,
2006). Despite advances in medical research, around 50% of RSA
cases are idiopathic, and there is a significant gap in the development
of reliable early warning systems and treatment options (Abdollahi
et al., 2015). Premature ovarian insufficiency (POI), alongside RSA,
is a common factor in female infertility. It triggers short-term
complications such as menopausal symptoms and exerts long-
term effects on skeletal health, cardiovascular systems, and
cognitive performance (Mishra et al., 2021; Webber et al., 2016).
It seriously affects women of childbearing age. However, the
pathogenesis of POI is complicated and remains unclear. POI
and RSA are common, but the etiology and treatment
mechanism are not clear. Thus, it is highly important to clarify
the pathogenesis of these two diseases and develop preciseiy
targeted therapies.

From a hormonal perspective, women with RSA exhibit an
increased predisposition to developing POI, as indicated by
reduced levels of anti-Müllerian hormone (AMH) and lower
Antral Follicle Count (AFC). This association is particularly
pronounced in cases of unexplained RSA, where low AMH levels
serve as a key indicator (Bunnewell et al., 2020). Scientific findings
reveal a distinct immunological link between these two disorders,
particularly through the involvement of CD16− and CD56+ cells,
essential components of theNK cell population. Comparative analyses
show decreased levels of these cellular subtypes in both POI and RSA
patients relative to healthy controls, indicating common
immunological disturbances. These observations are consistent
with the autoimmune pathogenesis underlying both conditions
(Zhang et al., 2023; Lachapelle et al., 1996). As the most abundant
immune cells in the ovaries, macrophages secrete TNF-α, a cytokine
highly expressed in POI. This mechanism is implicated in RSA
through the regulation of stathmin-1 expression. (Zheng et al.,
2023; Guenther et al., 2012). Statistical analysis revealed that the
Robertsonian translocation of chromosomes was associated with an
increased incidence of POI and RSA (Park et al., 2022; Jiao et al., 2012;
Ishizuka et al., 2019). In addition, oocyte-specific genes can control
oocyte quality, embryogenesis, and the uterine microenvironment,
thereby influencing oocyte superiority and RSA development, and
most of these genes are also associated with POI (Dean et al., 2018).
Molecular studies have demonstrated that FOXL1 gene mutations in
the coding region, identified in POI patients, cause critical
substitutions that lead to gene silencing and subsequent alterations
in conserved amino acid residues (Harris et al., 2002). The
FOXL2 transcription factor has been demonstrated to regulate
endometrial gene expression patterns, with its reduced expression
exerting detrimental effects on uterine receptivity and compromising
embryo implantation potential (Elbaz et al., 2018).

The study findings indicate that human amniotic epithelial cells
(hAECs) can mediate partial functional recovery of ovarian activity in
premature ovarian failure via paracrine signaling pathways, with their
therapeutic efficacy potentially mediated through the downregulation of
transforming growth factor-β1 (TGF-β1) expression in stimulated CD4+

T lymphocytes from RSA patients (Yao et al., 2016; Motedayyen et al.,
2018). Vitamin D has been shown to modulate the immune response at
the fetomaternal interface and adequate vitamin D levels may play an
important therapeutic role in RSA. (Sharif et al., 2018). Higher levels of
vitamin D may trigger different anti-inflammatory functions including
the function of T regulatory cells (Tregs) and/or increasing their
numbers (Sakaki et al., 2005). Moreover, the inflammation caused by
the excessive deposition of neutrophil extracellular traps (NETs) is an
important factor in the pathogenesis of POI (Chen et al., 2023).
However, the pathogenesis of RSA and POI is not well understood.
The therapeutic effects and potential of these two medicines are still
unclear and further exploration is necessary to determine whether they
can effectively treat both diseases andwhether they can be used clinically.
Therefore, in order to understand the mechanism of comorbidity
therapeutic measures have been proposed to clarify the diseases’
pathogenesis and to develop precise targeted therapies.

There are significant limitations in the current bioinformatics research
on POI and RSA comorbidity genes. Firstly, most analyses rely on a single
dataset and lack multi omics integration, resulting in insufficient
robustness of the results. Secondly, it lacks clinical translational value
and fails to systematically explore potential applications for diagnosis or
treatment. Therefore, there is an urgent need to adopt more powerful
computational biologymethods to systematically elucidate its comorbidity
mechanisms and explore clinical potential.

In this study, we explored the hub genes between POI and RSA and
investigated their diagnostic value and target enrichment. We collected
RNA sequencing data from the GEO database on the granulosa cells of
POI patients and the endometrial tissue of RSA patients and screened
the hub genes associated with these two diseases. Function annotation,
protein–protein interaction (PPI) network, transcription factor (TF)-
gene regulatory network, microRNA (miRNA)-gene regulatory
network, diagnostic histogram, and gene interaction network were
constructed based on the DEGs and hub genes. A diagnostic
prediction model for these two diseases is proposed, which provides
a basis for further exploration of the relationships between immune cells
and these diseases. In addition, drugs that may be effective against RSA
and POI are predicted using drug target enrichment analysis. These
studies provide new insights into common molecular mechanisms of
disease and demonstrate the potential of diagnostic markers of disease.
Our results suggest that the copathogenesis of RSA and POI is
significantly positively correlated with CENPW, ENTPD3, FOXM1,
GNAQ, LYPLA1, and PLA2G4A (Figure 1).

This study may improve fertility and pregnancy outcomes in
many women and provide new insights into treatment strategies and
the management of RSA and POI.

2 Materials and methods

2.1 Research object

Select 30 POI patients who underwent in vitro fertilization
(IVF)/intracytoplasmic sperm injection (ICSI) assisted pregnancy
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at the Reproductive Medicine Center of the Fourth Affiliated
Hospital of Jiangsu University in 2023 and 2024, and 10 patients
who received treatment due to tubal and/or male factors during the
same period, and collect granulosa cells (Supplementary Table 1).
Select 15 patients who underwent abortion due to recurrent

miscarriage at the Reproductive Medicine Center of the Fourth
Affiliated Hospital of Jiangsu University in 2023 and 2024, and
10 patients who did not have a history of adverse pregnancy and
childbirth during the same period, and collect tissue (Supplementary
Table 2). Exclusion criteria: 1. Use of steroid drugs within the past

FIGURE 1
Flow diagram of the study.

Frontiers in Genetics frontiersin.org03

Chen et al. 10.3389/fgene.2025.1652519

mailto:Image of FGENE_fgene-2025-1652519_wc_f1|tif
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1652519


3 months; 2. Organic lesions of the uterus; 3. History of autoimmune
diseases; 4. History of radiotherapy and chemotherapy.

2.2 Methods

2.2.1 Data collection and preparation
The data sets related to POI and RSA were screened in the Gene

Expression Omnibus database (GEO) (http://www.ncbi.nlm.nih.
gov/geo/) since both diseases were designed in this study. For
RSA, we used the keyword “RSA” or “endometrial tissue” to
search gene expression profiles. Inclusion criteria were as follows
(1): RSA patients and normal controls must be included in the
profiles (2) endometrial tissue should be used for sequencing.
Accordingly, we selected five datasets numbered GSE180485,
GSE183555, GSE165004, GSE111974 and GSE26787. The RSA
dataset is relatively small, and recurrent implantation failure
(RIF) patients GSE111974 were included in the study cohort. The
clinical background of this sample is highly similar to the RSA
population (with no clear history of infertility, only recurrent
miscarriage), and can be used as a ’parallel validation group’ for
the RSA cohort. Additionally, some RSA patients ultimately need to
achieve pregnancy through IVF. The core function is to validate the
biological pathways discovered by the RSA queue, rather than
independently supporting the clinical conclusions of RSA. For
POI, the eligibility criteria were as follows (1): the profiles must
include normal controls and the POI patients, and (2) the sample
source must be granulosa cells. So, we selected two datasets
numbered GSE232306, GSE201276 (Supplementary Table 3).

2.2.2 Differential gene expression analysis
We employed the “sva” R package to identify and construct

surrogate variables for high-dimensional datasets, effectively
removing batch effects. Following data preparation for each
condition, we conducted a comparative analysis of RSA and POI
datasets using the Linear Models for Microarray (LIMMA) package
in R (version 4.1.2). Differentially expressed genes (DEGs) were
calculated between disease and control groups with it. For RSA, the
DEG threshold was set as P value <0.05. For POI, the P value to
0.05 were used to identify the DEGs. And finally use Principal
Component Analysis (PCA) to check the batch effect before and
after correction. Next, the results of the differential analysis for each
group were displayed using volcano plots, with blue indicating low
expression and red representing high expression. Using the Venn
Diagram tool, we pinpointed key genes that were jointly upregulated
and downregulated in RSA and POI patients, which may serve as
potential biomarkers for these two diseases.

2.2.3 GO and KEGG analysis and validation of
key genes

Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis (Sherman
et al., 2022) were conducted on differentially expressed genes
(DEGs) identified from the endometrial tissue of RSA patients
and granulosa cells of POI patients. Utilizing the “clusterProfiler”
package, these analyses aimed to elucidate the biological functions
and associated pathways of the DEGs. GO analysis and KEGG
enrichment analysis were statistically significant at P < 0.05. GO

analysis included three components, biological process (BP), cellular
component (CC), and molecular function (MF).

2.2.4 Construction of protein-protein interaction
network and hub genes selection

PPI networks play a crucial role in advancing functional biology
research. Using the STRING database (version 11.5, available at
https://string-db.org) (Szklarczyk et al., 2015), a PPI network for the
shared DEGs was constructed.

The CytoHubba plugin algorithm was employed to identify hub
genes within the PPI network using multiple topological analysis
methods, including EPC, MCC, Radiality, Closeness, and Degree.
Additionally, the online Hiplot platform (https://hiplot.com.cn/
cloud-tool) was utilized to identify co-hub genes by intersecting
the candidate genes derived from CytoHubba and
MCODE analyses.

GeneMANIA finds other genes that are related to a set of input
genes, using a very large set of functional association data (Franz
et al., 2018). Association data include protein and genetic
interactions, pathways, co-expression, co-localization and protein
domain similarity. In this study, GeneMANIA was used to analyze
the PPI networks of our signature genes.

2.2.5 Identification of relevant transcription factors
and TF-miRNAs regulatory network

Transcription factors control chromatin and transcription by
means of identifying specific DNA sequences. Using the
NetworkAnalyst 3.0 platform (https://www.networkanalyst.ca/)
and H. sapiens data, to predicte potential transcription factors
(TFs) for the hub genes by accessing the ENCODE database
(Zhou et al., 2019). The TF-gene regulatory network was then
mapped and visualized using Cytoscape.

2.2.6 Feature selection by three well-established
machine learning algorithms

Three machine learning algorithms: LASSO, Random Forest
and SVM-RFE, were used to screen signature genes. The hub genes
were initially assessed by least absolute shrinkage and selection
operator (LASSO) Cox proportional hazards regression using the
“glmnet” R package. The optimal model was selected by identifying
the penalty parameter (λ) value associated with the minimum partial
likelihood deviance, determined through 10-fold cross-validation. A
random forest algorithm was used to rank the importance of marker
genes associated with RSA. SVM-RFE was used to further screen for
signature genes, preserve genes with high average rankings for
subsequent analyses. Genes identified using LASSO, random
forest and SVM-RFE were intersected to obtain our signature genes.

2.2.7 Modeling and testing of two diseases
diagnostic nomogram

Using the rms R package, we constructed a nomogram to aid in
the diagnosis of RSA and POI. The risk score was determined by
aggregating the expression-based risk scores of individual core
genes, resulting in a total risk score. The diagnostic value of the
nomogram for two diseases was assessed using decision tree,
calibration and ROC curves. The expression level and diagnostic
value of the obtained hub genes were constructed by receiver
operating characteristic (ROC) curves and the area under the
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curve (AUC) with 95% confidence intervals (CI) to assess the levels
of hub genes distinguishing on POI and RSA using R software.

2.2.8 Gene set enrichment analysis
MSigDB (c2.cp.kegg_legacy.v2023.2.Hs.entrez0) was used to

download gene sets. We used the ssGSEA function in the GSVA
package to calculate the GSVA score for each gene set in different
samples. Enrichplot was used to show the top five activating and
inhibiting pathways for each gene in the two disease groups.

2.2.9 Differences and correlation analysis of
immune cell infiltration

CIBERSORTx is a computational tool designed to estimate the
proportions of immune cell subpopulations within tissue samples by
employing a deconvolution algorithm based on gene expression data
(Newman et al., 2019). Gene expression profile data from both disease-
affected and healthy individuals were uploaded to CIBERSORTx to
evaluate the proportions of immune cell subpopulations in patients with
POI and RSA.The LM22 signature matrix file, encompassing
22 immune cell components, served as the reference for immune
cell quantification. Pearson correlation analysis was employed to
assess the relationships between different immune cell types.

2.2.10 The relationship of hub genes and immunity
The correlation between immune infiltrated cells and diagnostic

target biomarkers was determined by Pearson correlations. And the
correlation of hub gene expression with several immunoregulators
were evaluated using Pearson’s correlation coefficients.

2.2.11 Drug-targeted GSEA enrichment analysis
To identify key drugs targeting specific genes, we utilized the

Drug Signature Database (DSigDB) available through the web server
(https://maayanlab.cloud/Enrichr/). This database provides
comprehensive drug-gene interaction information and facilitates
gene set enrichment analysis (GSEA). We identified drug candidates
for the possible treatment of two diseases based on a statistical
threshold of p-value <0.05 and drug targets ≥ 2.

2.2.12 Genetic validation
The KGN cell line involved in this study was purchased from the

cell bank of the Chinese Academy of Sciences. Cultivate in a DMEM/
F12 medium containing 10% fetal bovine serum and 1% penicillin
streptomycin at 37 °C and 5% CO2. Inoculate KGN cells with 6-well
plates and add Cytoxan (CTX) to construct an oxidative stress
model (Zhang et al., 2025). According to the instructions, TRIzol
reagent (Invitrogen, USA) was used to lyse cells and extract total
RNA. HiScript II Q RT SuperMix (Nanjing Novozan Biotechnology
Co., Ltd.) was used to reverse transcribe the total RNA to obtain
cDNA. ChamQ Universal SYBR qPCR Master Mix (Nanjing
Novozan Biotechnology Co., Ltd.) was used for RT-qPCR.
GAPDH is used as an endogenous reference. All primers were
designed and synthesized by Shanghai Shenggong Biotechnology
Co., Ltd. Related gene RT qPCR amplification primers can be found
in Supplementary Table 1.

2.2.13 Statistical analyses
All data are expressed as mean ± S.E.M, all follow a normal

distribution. Statistical analysis was performed using GraphPad

Prism 9.0 software. Differences between two independent groups
were calculated using unpaired Student’s t-test. Statistical
significance was set at P < 0.05; *<0.05, **<0.01, and ***<0.001.

3 Results

3.1 Identification of differentially expressed
genes and functional enrichment analysis of
the gene set

We obtained datasets from the GEO database and DEGs using
the limma tool overlapping genes among these microarray datasets.
In the POI datasets, we identified 3449 DEGs including
1782 upregulated genes and 1,677 downregulated genes (P <
0.05, |log2FC| > 2) (Figure 2A). For the RSA datasets, we
detected 1,596 DEGs comprising 686 upregulated genes and
910 downregulated genes (P < 0.05, |log2FC| > 2) (Figure 2C).
The DEGs from both groups are represented with heatmaps (Figures
2B,D). Through a comparison of these two datasets we identified
136 DEGs between POI and RSA, comprising 93 upregulated genes
and 43 downregulated genes. These DEGs may contribute to the
onset and progression of POI and RSA (Figure 2E). Due to the
different sources of the dataset, when using PCA to check the batch
effects before and after correction, it can be seen that there is a
significant batch effect before batch removal, but there is no
significant batch effect after batch removal
(Supplementary Figure 1).

To delve deeper into potential molecular mechanisms associated
with RSA and POI comorbidity we integrated GO and KEGG
pathway annotations to characterize the 136 DEGs obtained in
the previous screening step. Notably, among the enriched GO terms
we identified several significantly enriched biological process
pathways, such as regulation of cholesterol biosynthetic processes
(Figure 2F). With respect to KEGG pathways, examples include
metabolic pathways and purine metabolism (Figure 2G).

3.2 Protein-protein interactions and
identification of hub genes using MCODE
and CytoHubba

We integrated the shared DEGs into a PPI network to explore
potential interactions (Figure 3A). Utilizing the CytoHubba plug-in
within Cytoscape we conducted topological analysis employing five
algorithms to pinpoint hub genes. A total of 23 common DEGs were
subsequently identified through the intersection of CytoHubba and
visualized via Venn diagrams. We then overlapped the candidate
DEGs from CytoHubba with the 23 shared DEGs from MCODE
analysis, revealing 19 shared genes that are illustrated through Venn
diagrams (Figures 3B,C).

To delve deeper, GeneMANIA biological function analysis was
implemented to explore genes with functions similar to those of the
aforementioned 19 shared DEGs and to elucidate the interactive
functional association network among genes. The results revealed
73.53% co-expression between genes, 21.49% physical interactions,
3.27% pathway interactions, 1.71% co-localization, and 0.00%
genetic interactions (Supplementary Figure 2). The functions
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attributed to these genes were primarily linked to immune response-
regulating cell surface receptor signaling pathways involved in
mitotic nuclear division, chromosome centromeric region,
regulation of nuclear division, nucleoside phosphate catabolic
processes, mitotic cell cycle checkpoints, and negative regulation
of organelle organization.

3.3 Identification of potential shared
diagnostic genes based onmachine learning
algorithms and validation of hub genes via
RT‒PCR in human tissues and KGN

To screen for candidate diagnostic gene targets with distinct
characteristics, three machine learning algorithms (LASSO, SVM-
RFE, and random forest) were employed on 19 shared genes
identified previously. In the POI group, regarding SVM-RFE, the
classifier error was minimized with 17 features (Figure 4A). By
analyzing LASSO coefficient profiles and selecting the optimal
tuning parameter, λ was set at 0.001792538 for POI, resulting in
the discovery of eight genes with nonzero coefficients (Figure 4B).
Additionally, using the random forest algorithm 15 feature genes
with a relative importance score of two were distinguished

(Figure 4C). Through the overlap of these three algorithms seven
shared biomarkers were subsequently established (Figure 4D).

Similarly, for the RSA group, 15 featured genes were extracted
when a subset of 18 hub genes was revealed using the SVM-RFE
algorithm (Figure 4E). The top 17 genes based on the importance scale
are displayed in Figure 4. F, where 17 genes with importance >4 were
chosen as the RSA result. The λ value was subsequently determined to
be 0.0010173 using the LASSO algorithm (Figure 4GH). By
intersecting the machine learning results between the RSA and
POI groups, six shared diagnostic genes were identified: CENPW,
ENTPD3, FOXM1, GNAQ, LYPLA1, and PLA2G4A (Figure 4I).

RT-PCR was conducted on follicular fluid-derived granulosa
cells from normal women and POI patients, as well as on
endometrial tissues from healthy individuals and RSA patients.
This verified the gene expression levels of the six diagnostic
biomarkers. Compared with the data analysis, our results
indicated that the expression patterns of the six genes in KGN
cells were consistent with the aforementioned analysis outcomes
(Figure 3J). In the granulosa cells of POI patients the expression of
PLA2G4A and CENPW was upregulated, while the expression of
GNAQ was downregulated (Figure 4K). In the decidual tissue of
RSA patients, with the exception of CENPW and GNAQ, the results
were in accordance with the data analysis (Figure 4L).

FIGURE 2
Identification and functional enrichment analysis of differentially expressed genes in two diseases. (A,B) DEG heatmap and volcano plot in POI
group. (C,D) DEG heatmap and volcano plot in RSA group. (E) The intersection of DEGS of two diseases. (F,G) GO enrichment analysis and KEGG
enrichment analysis of POI-RSA-DEGs DEG. (P < 0.05).
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3.4 Construction of transcriptional-level
regulatory networks and testing of a
signature gene-based line graph for
prediction

To elucidate the biological processes underlying disease
pathogenesis we examined the interplay between integrated
transcription factors, miRNAs, and hub genes. In this investigation,
we utilized the Networkanalyst platform, which incorporates data from
ENCODE (https://www.encodeproject.org/), and RegNetwork (http://
www.regnetworkweb.org) databases to construct the TF‒gene
interaction network and TF‒miRNA coregulatory networks.

The TF-gene network involved 25 transcription factors, six hub
genes, and 41 edges, delineating their interactions. Concurrently, the
TF‒miRNA coregulatory network revealed a total of 91 edges, with
61 miRNAs and 22 TF genes engaging in regulatory associations
with the six hub genes (Figures 5A,B). This detailed analysis
illuminates the intricate relationships among transcription
factors, miRNAs, and hub genes, enriching our comprehension
of the regulatory mechanisms driving disease pathogenesis.

We employed diagnostic genes (CENPW, ENTPD3, FOXM1,
GNAQ, LYPLA1, and PLA2G4A) and the “Rms” R package to
develop diagnostic histogram models for RSA and POI. The
predictive power of these models was evaluated through calibration
curves (Figure 5C). Notably, the calibration curves exhibited minimal
variances between the true and predicted disease risks, indicating the
high accuracy of the bar graph model (Figure 5D).

DCA indicated potential benefits for POI patients utilizing such
nomograms (Figure 5E). Furthermore, the model’s validity was

confirmed via ROC curve analysis (Figure 5F). These analyses
were similarly conducted for RSA (Figures 5G–J), providing a
robust framework for predicting both RSA and POI basis of the
signature gene expression.

3.5 Diagnostic efficacy and external
validation of signature genes in POI and RSA

The expression levels of the six hub genes were statistically
significant in both the POI and RSA samples (Figures 6 A,C). The
diagnostic performance of these signature genes was estimated for
predicting POI using AUC values: 0.693 for CENPW, 0.909 for
ENTPD3, 0.826 for FOXM1, 0.902 for LYPLA1, 0.727 for GNAQ,
and 0.894 for PLA2G4A. For the prediction of RSA the AUC values
were as follows: 0.947 for CENPW, 0.645 for ENTPD3, 0.603 for
FOXM1, 0.727 for LYPLA1, 0.805 for GNAQ, and 0.627 for
PLA2G4A (Figures 6B,D).

These findings highlight the potential diagnostic efficacy of the
identified signature genes in distinguishing between POI and RSA.
The AUC values signify the discriminatory power of these genes and
their ability to serve as reliable markers for these conditions.

3.6 GSEA of diagnostic genes

We subsequently conducted GSEA on the diagnostic genes in
both the RSA and POI datasets. The top five upregulated and
downregulated pathways were visualized using the “GSEA” package.

FIGURE 3
Analyzing the protein-protein interaction network of DEGs through MCODE and CytoHubba and further analyzing hub genes. (A) The protein-
protein interaction network of POF-RSA-DEGs. (B) Intersection of five cytohubba algorithms. (C) Intersection of MCODE and Cytohubba.
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FIGURE 4
The screening of candidate POI and RSA diagnostic genes using threemachine learning algorithms.Validation of RT qPCR in human tissues and KGN
cells. POI: (A) Biomarker signature gene expression validation via support vector machine recursive feature elimination (SVM–RFE) algorithm selection.
(B) Adjustment of feature selection in the minimum absolute shrinkage and selection operator model (LASSO). (C) The top 20 relatively important genes.
(D) Three algorithmic Venn diagram screening genes. (E-H) For RSA, same as before. (I) Intersect the genes obtained from the above intersection
again. (J) Expression levels of six hub genes in normal KGN and CTX models (K) Expression levels of hub genes in granulosa cells of normal and POI
patients. (n = 30) (L) Expression levels of hub genes in endometrial tissues of normal and RSA patients. (n = 15).
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In both the POI and RSA datasets, CENPW, GNAQ, LYPLA1,
and PLA2G4A were found to be associated with the ribosome
pathway. ENTPD3 is linked to the oxidative phosphorylation,
ribosome, and steroid biosynthesis pathways. FOXM1 is involved
in base excision repair, the cell cycle, and DNA replication pathways
(Supplementary Figures 3A,B).

These results provide insights into the potential biological
mechanisms and pathways associated with the diagnostic genes
in RSA and POI, shedding light on their functional roles and
implications in disease pathogenesis.

3.7 Assessment and visual analysis of
immune infiltration

The abundances of immune cells in different groups were
analyzed using CIBERSORT, with the proportions of
19 immune cells depicted in bar plots. Notable findings include
the following:

POI Samples:T cells CD4 memory resting, monocytes, mast
cells activated, and activated neutrophils were prominent in
POI samples (Supplementary Figures 4A,B). Compared with

FIGURE 5
Transcriptional Level Regulatory Networks and construction and validation of POI and RSA diagnostic column line graphmodel. (A) PPI network. The
nodes represent proteins, the edges represent their interaction. (B) TF-gene interaction network and TF-miRNA co-regulatory networks.Green rectangle:
hub gene related mirRNA. Blue arrow: TF (C) Column line graphs were used to predict the occurrence of POI. (D) Calibration curves assessed the
predictive power of the column line graph model. (E) DCA curves were used to assess the clinical value of the column line graph model. (F) ROC
curves assessed the clinical value of the column line graph model. (G) Column line graphs were used to predict the occurrence of RSA. (H) Calibration
curves assessed the predictive power of the column line graph model. (I) DCA curves were used to assess the clinical value of the column line graph
model. (J) ROC curves assessed the clinical value of the column line graph model.
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those in the control samples, increases in the numbers of
resting memory T cells and monocytes werer observed in
the POI samples (Figure 7A). Further analysis revealed
significant negative correlations between immune cell types
in the POI datasets, such as memory T cells CD4 resting with
CD8, and NK cells activated with resting memory CD4 T cells
and resting NK cells. Monocytes were significantly positively
correlated with CD8 T cells (Figure 7C).

RSA Samples:
Activated NK cells, resting memory CD4 T cells, and activated

memory CD4 T cells were predominant in the RSA samples
(Supplementary Figure 3 C, D). Compared with those in
control samples reductions in naive B cells and gamma delta
T cells were observed in RSA samples (Figure 7B). A
correlation analysis of the RSA datasets revealed significant
negative correlations between naive B cells, resting B cells, and
M0 macrophages. In addition, T-cell regulatory Tregs were
significantly positively correlated with resting mast cells and
eosinophils (Figure 7D).

These findings offer insights into the immune cell composition
and interactions within POI and RSA samples, providing valuable
information on immune infiltration patterns associated with these
conditions.

3.8 Correlations between hub genes and
immune points

The correlation between immune cell infiltration and the shared
hub genes was examined to elucidate differences in the immune
microenvironment between diseased patients and healthy controls.
Key findings include the following:

POI datasets: The most significant positive correlation with
resting memory CD4 T cells was observed for most biomarkers,
except CENPW, which displayed a negative correlation (Figure 8A).

RSA datasets: ENTPD3, LYPLA1, and PLA2G4A exhibited
positive correlations with plasma cells in RSA samples.
Additionally, PLA2G4A was negatively correlated with activated
NK cells (Figure 8B).

Moreover, the TISIDB database was used to acquire immune
checkpoint, immune activation point, and immune
inhibition point data.

For both diseases: CENPW was positively correlated with most
immune checkpoint points. PLA2G4A, ENTPD3, and
LYPLA1 exhibited strong positive correlations with immune agonists
specific to RSA, such as TNFSF13, NT5E, MICB, and TNFRSF13C.With
respect to immune inhibition points, PLA2G4A and LYPLA1 displayed
inverse correlations with most points (Figures 8 C–H).

FIGURE 6
Diagnostic efficacy of the target genes in the prediction of POI and RSA. (A) The violin plot shows the mRNA expression of six hub genes in the
disease and control groups in the datasets of POI. (B) ROC curves estimating the diagnostic performance of the six hub genes in the datasets of POI. (C,D)
Same as before, the violin plot and ROC curves of RSA.
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These analyses provide insights into the relationships between
hub genes and immune cell infiltration, shedding light on the
complex interplay between genetic markers and the immune
microenvironment in POI and RSA conditions.

3.9 Identification of drug candidates

To facilitate the development of therapeutics for RSA and POI,
we performed targeted drug enrichment analysis on the basis of six

FIGURE 7
Analysis of POI and RSA immune cells. (A, B) Violin diagram indicated that the POI and RSA group exhibited a significantly different type of immune
cell. (C) The correlation between immune cells in POI. (D) The correlation between immune cells in RSA.
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diagnostic genes and identified 12 drug candidates (Figure 9A).
Coumestrol can target three hub genes (CENPW, FOXM1, GNAQ),
whereas Calcitriol could target three different hub genes. The
remaining 10 drug candidates (Rifabutin, Methaneseleninic Acid,

Carbamazepine, Dasatinib, Troglitazone, Tamoxifen, Enterolactone,
Anisomycin, Testosterone, 5-Fluorouracil) could target two
different hub genes.We speculate that these 12 drugs may exert
therapeutic effects on POI and RSA by targeting proteins encoded by

FIGURE 8
The relationship between diagnostic genes and immune cells and immune genes. (A,B) The expression of immune cells of CENPW, ENTPD3, FOXM1,
GNAQ, LYPLA1, and PLA2G4A in the POI and RSA groups was detected separately. (C) The correlation between hub genes and immune checkpoints in the
POI and RSA groups. (D) The correlation between hub genes and immune activate in the POI and RSA groups. (E) The correlation between hub genes and
immune inhibit in the POI and RSA groups.
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the identified key genes. Using molecular docking simulations to
elucidate the therapeutic mechanisms of top2 drugs. The binding
energies of CENPW, FOXM1, and GNAQ docked with Coumestrol
are −8.2, −7.18, and −6.0 (kcal/mol), respectively. The binding

energies of CENPW, FOXM1, and ENTPD3 docked with
Calcitriol are −8.6, −6.83, and −7.1 (kcal/mol), respectively.
Hydrogen bonding is a key molecular interaction force that
stabilizes ligand receptor complexes and ensures binding

FIGURE 9
Prediction of candidate drugs. (A) Top 12 therapeutic drug candidates generated. (B) The molecular docking simulations of Coumestrol to CENPW/
FOXM1/GNAQ. (C) The molecular docking simulations of Calcitriol to CENPW/FOXM1/ENTPD3.
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specificity. Among the six molecular docking sites, except for the
docking site between Calcitriol and ENTPD3 where no hydrogen
bonds were present, all other docking sites had hydrogen bonds
present (Figure 9B,C).

4 Discussion

POI exhibits a diverse clinical spectrum and serious health
consequences, such as RSA, highlighting the need to explore
shared pathogenesis between these diseases. Using MCODE,
CytoHubba, and three machine learning methods, we identified a
common gene set and six diagnostic genes—CENPW, ENTPD3,
FOXM1, GNAQ, LYPLA1, and PLA2G4A—significantly linked to
both POI and RSA. Further immune infiltration and checkpoint
analyses revealed distinct patterns of abnormal immune activation
associated with these hub genes. Our findings provide new clinical
insights and potential targeted strategies for diagnosing and treating
POI and RSA.

In screening 93 significantly upregulated DEGs and
43 significantly downregulated DEGs from seven datasets,
subsequent GO enrichment analysis highlighted pathways such as
positive regulation of transcription by RNA polymerase II and
metabolic pathways. KEGG enrichment revealed that the DEGs
were predominantly involved in pathways such as metabolic
pathways and purine metabolism, suggesting a potential close
association with the progression of POI and RSA.

CENPW, a key element of the CENPA-NAC (nucleosome-
associated) complex, critically contributes to kinetochore
assembly, mitotic progression control, and faithful chromosome
segregation (as suggested by sequence homology) (Nishino et al.,
2012). As a key regulator of kinetochore assembly and function,
CENPW is essential for forming proper centromere-microtubule
attachments during oocyte maturation. It ensures normal spindle
formation and chromosome arrangement, supporting oocyte
development progression from mid to late stages (Wang et al.,
2020). Major pathological mechanisms of female infertility
include disrupted oocyte meiotic maturation and aberrant
chromosome segregation. Meanwhile, ENTPD3—characterized by
threefold greater catalytic activity toward ATP than ADP
hydrolysis—is involved in breast cancer-driving molecular
pathways (Li et al., 2019). As a key transcriptional regulator,
FOXM1 controls cell cycle genes involved in DNA replication
and mitosis. It acts as a hub gene in POI pathogenesis, regulating
proliferation, self-renewal, and tumor development (Liu D. et al.,
2023; Liao et al., 2018). FOXM1 is essential for human stromal cell
decidualization. Its uterine-specific deletion causes localized
decidualization defects, impairing stromal cell mitosis and
increasing polyploidy at the implantation site (Gao et al., 2015).
GNAQ functions as a modulator or transducer in multiple
transmembrane signaling pathways. Studies have demonstrated
that overexpression of GNAQ can exert antioxidant and
cytoprotective effects, counteracting aging processes driven by the
accumulation of reactive oxygen species (ROS) (Sun et al., 2020).
LYPLA1, which functions as a palmitoyl thioesterase, catalyzes
protein depalmitoylation and can depalmitoylate GPCPD1,
leading to mitochondrial autophagy and promoting tumor
growth and metastasis in triple-negative breast cancer (TNBC)

patients (Liu Y. et al., 2023). Current research indicates high
LYPLA1 expression in malignant cervical cancer tissues (Kwon
et al., 2023). PLA2G4A is a key enzyme in membrane lipid
remodeling and lipid mediator biosynthesis during inflammation,
and triggers prostanoid production essential for embryo
implantation and parturition (Jin et al., 2023). Inhibiting
PLA2G4A may improve placental perfusion and lower
miscarriage risk by modulating prostaglandins (Johansen et al.,
2000). As a specific necroptosis gene linked to POI, PLA2G4A
expression is positively correlated with this condition (Ge et al.,
2014).These findings support the identification of diagnostic genes
related to POI and RSA, offering potential targets for investigating
the molecular mechanisms underlying the progression of
these diseases.

To explore the pathogenic associations and mechanisms
between POI and RSA further, we conducted GSEA on the six
diagnostic genes within the two disease groups. CENPW, GNAQ,
LYPLA1, and PLA2G4A are linked to the ribosome pathway. In
previous studies on spontaneous abortion (SA), Mendelian analysis
revealed that GNAQ is closely related to the disease and is enriched
in the ribosome pathway (Xiang et al., 2025). Whereas ENTPD3 is
associated with the oxidative phosphorylation, ribosome, and
steroid biosynthesis pathways. FOXM1 participates in base
excision repair, cell cycle, and DNA replication pathways. Its
collaboration with the androgen receptor (AR) promotes DNA
synthesis and cell proliferation (Liu et al., 2014), while inherent
differences in FOXM1 signaling contribute to varied responses to
cell cycle therapy (Jawwad et al., 2025). FOXM1 is also established as
a DNA repair gene in lung adenocarcinoma (Yang et al., 2020).
Meanwhile, mitochondrial ribosomes are essential for ovarian
function (Kline et al., 2022), and homozygous missense variants
in the NOP14 gene—critical in 18S rRNA processing and 40S
ribosome assembly—cause ribosome defects linked to RSA
(Suzuki et al., 2018). Subsequent ROC analysis indicated that all
central genes have potential diagnostic value in the clinical
management of POI and RSA.

To validate the clinical diagnostic value of these six genes
(including PLA2G4A and FOXM1), we analyzed KGN cells,
granulosa cells from POI patients, and decidual tissue from RSA
patients. Potential confounders such as age and BMI were controlled
during sample selection. The expression patterns of these genes were
consistent with dataset findings, supporting their potential
diagnostic relevance for POI and RSA. Due to the difficulty of
obtaining clinical samples, it is expected to expand the sample size in
subsequent studies to support the results.

The immune cell composition in POI and RSA samples reveals
distinct immunological profiles: POI is marked by resting
CD4 memory T cells and activated NK cells, while RSA features
naive B cells and activated γδ T cells, indicating condition-specific
immune mechanisms. Elevated B-cell counts correlate with higher
antiphospholipid antibody levels in the Antiphospholipid Antibody
Syndrome (APS), suggesting B-cell involvement in the immune
dysregulation of RSA (Youinou and Renaudineau, 2004). The case
analysis of a woman with a history of RSA and infertility, showing
low levels of memory B-cells, suggests a potential association
between abnormal B cell subsets and reproductive issues (Sung
et al., 2016). Additionally, activated γδ T cells increase during
pregnancy and appear protective (Mincheva-Nilsson et al., 1994;
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Meeusen et al., 1993), whereas their decrease in RSA patients
suggests a negative correlation with the condition. These immune
characteristics enable precise patient stratification and offer direct
therapeutic targets. CENPW, a core cell cycle regulator, is closely
associated with cell proliferation (Nishino et al., 2012). We found
that it is positively correlated with most immune checkpoints in
both diseases. Studies have shown that rapidly proliferating cells,
including tumor cells and activated immune cells, typically
upregulate immune checkpoint molecules as a feedback self-
protection mechanism to prevent excessive immune responses
from causing self damage (Sandberg et al., 2008). The high
expression of PLA2G4A directly indicates a strong inflammatory
response (Leslie, 2015). TNFSF13 (April) and its receptor
TNFRSF13C (BAFFR) are crucial for B cell activation,
differentiation, and survival. Their co-upregulation indicates
abnormal local B cell responses, potentially leading to
autoantibodies against trophoblast or embryonic antigens
(Vincent et al., 2013). Therefore, these hub genes likely form a
complex immune network rather than functioning alone.
Correlations between hub genes and specific immune cells or
markers in POI and RSA patients reveal potential molecular
drivers of these diseases.

Based on the drug targeted enrichment results, we found
interesting aspects of coumestrol and calcitriol. Coumestrol,
which acts as an estrogen receptor agonist (Jiang et al., 2013). In
POI, hormone replacement therapy (HRT) should be considered as
a physiological substitute for estrogen and progesterone The effect of
coumarin may be similar to estrogen in HRT, thereby slowing down
POI (Ishizuka, 2021). As the active hormone form of vitamin D,
calcitriol may be an effective therapeutic approach for managing
reproductive disorders by simultaneously regulating immune
function and regulating endocrine pathways that are crucial for
optimal reproductive health (Gonçalves et al., 2018; Kebapcilar et al.,
2013). This study identified candidate drugs for POI and RSA via
bioinformatics analysis, offering new treatment directions.
However, translating these predictions into clinical use remains
complex and long-term. Future efforts should establish a multi-
index evaluation system to prioritize the most promising
compounds, followed by in vitro and in vivo validation, as well
as clinical cohort studies.

This study has certain limitations: the complexity of in vitro
fertilization data regarding hormonal effects on infertility, a small
sample size limiting external validation of hub genes, and potential
bias in immune infiltration analysis when applying CIBERSORTx to
homogeneous cell samples. Nevertheless, the findings offer valuable
insights. Future research should expand datasets for robustness,
perform prospective clinical validation, and extend molecular
investigations beyond the transcriptome.

In conclusion, this study elucidates the intricate immune cell
profiles of patients with POI and RSA, revealing promising
biomarkers and pathways for further investigation. By addressing
these limitations and building upon the identified diagnostic genes,
including CENPW, ENTPD3, FOXM1, GNAQ, LYPLA1, and
PLA2G4A, we pave the way for innovative approaches to
understanding and potentially treating POI and RSA. This study
sets the stage for collaborative efforts toward improving outcomes
for individuals affected by these reproductive disorders.
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