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Background: Macrophages contribute to the immune dysregulation observed in
chronic obstructive pulmonary disease (COPD). Additionally, lactylation exerts an
indirect influence on COPD pathogenesis. However, the specific biomarkers
linked to macrophage activation in COPD and the underlying molecular
mechanisms remain poorly understood. This study aimed to identify these
biomarkers and elucidate the associated molecular pathways.

Methods: Data were retrieved from public databases. A comprehensive analysis
was conducted using weighted gene co-expression network analysis (WGCNA),
immune infiltration analysis, differential expression analysis, correlation studies,
machine learning, receiver operating characteristic (ROC) analysis, and
expression level validation to identify macrophage lactylation-related
biomarkers in COPD. The nomogram model, Gene Set Enrichment Analysis
(GSEA), molecular regulatory networks, compound predictions, and molecular
docking were employed to further explore the roles of these biomarkers in
COPD. Clinical samples were used to validate the expression levels of the
identified biomarkers.

Results: Three key biomarkers—ALDH2, ASGR2, and CYP1Bl1—were identified.
The nomogram model based on these biomarkers accurately predicted the
mortality of patients with COPD. GSEA suggested that the biomarkers are
likely involved in metabolic pathways and B-cell receptor signaling. Five
transcription factors (TFs), including STAT3, were associated with all identified
biomarkers. Eight compounds, including bisphenol A, were linked to multiple
biomarkers, with CYP1B1 exhibiting the strongest binding affinity to benzo(a)
pyrene. In vitro experiments confirmed the validity of the bioinformatics findings.
Conclusion: This study identified three biomarkers, offering new perspectives on
potential therapeutic targets for COPD.

chronic obstructive pulmonary disease, macrophage, lactylation, biomarkers,
experimental verification
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a
heterogeneous respiratory disorder characterized by concurrent
injury and remodeling of the airways, lung parenchyma, and
These lead to

progressively worsening airflow limitation, which in turn results

pulmonary vasculature. lung impairments
in increased dyspnea, functional disability, and premature death
(Qian etal., 2023). COPD is a major global health burden, ranking as
the fourth leading cause of death worldwide, characterized by high
prevalence, high mortality, and significant healthcare resource
consumption (Wen et al., 2018; Ferrera et al, 2021). It showed
an annual incidence rate of roughly 12%, with a global prevalence
ranging from 9% to 10% among people aged 40 and older (Adeloye
etal., 2015; Diseases and Injuries, 2020). The development of COPD
involves a complex interplay of genetic susceptibility (e.g., al-
antitrypsin deficiency), environmental exposures (e.g., smoking,
(e.g.
protease-antiprotease
imbalance). Dysregulation of immune responses in COPD leads

air pollution), and dysregulated immune

neutrophil/macrophage

responses
activation,

to the activation of multiple immune cells, such as neutrophils,
macrophages, lymphocytes, and eosinophils (Rabe et al., 2023).
These cells secrete a large number of inflammatory mediators
and cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8),
tumor necrosis factor-a (TNF-a), and chemokines. They can recruit
more immune cells to the lungs, perpetuate the inflammatory
process, and contribute to airway remodeling and lung tissue
destruction. However, the complex pathogenesis of COPD
remains incompletely understood (Zhu et al, 2025). Early
diagnosis and timely therapeutic intervention are critical in
improving prognosis and survival rates for individuals with
COPD (Lin et al., 2023). Current diagnostic methods for COPD
mainly include pulmonary function tests, chest X-ray radiography,
and computed tomography (CT), etc. Due to the limited sensitivity
and specificity of the equipment, there are certain difficulties in
distinguishing COPD from other lung diseases. Moreover, these
methods have poor visualization of mild lesions and suboptimal
performance in the differential diagnosis of early-stage COPD
2024; Chen et al, 2025).
pharmacological treatments currently focus on antibiotics and

(Kumar et al, In addition,

corticosteroids to manage inflammation, yet no clinically effective
targeted therapies are available. Therefore, understanding the

underlying molecular mechanisms and identifying new

Abbreviations: COPD, Chronic obstructive pulmonary disease; CT,
Computed tomography; TRMs, Tissue-resident macrophages; DEGs,
Differentially expressed genes; WGCNA, Weighted gene co-expression
network analysis; GSEA, Gene Set Enrichment Analysis; GEO, Gene
Expression Omnibus; LRGs, Lactylation-related genes; MRGs, Macrophage-
related genes; MLRGs, Macrophage lactylation-related genes; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ROC,
Receiver operating characteristic; SVM-RFE, Support Vector Machine-
Recursive Feature Elimination; AUC, Area under curve; MSigDB, Molecular
Signatures Database; TFs, Transcription factors; MOE, Molecular operating
environment; RT-gPCR, Reverse transcription quantitative PCR; BP, Biological
process; CC, Cellular components; MF, Molecular functions; BPA, Balloon
pulmonary angioplasty; CTEPH, Chronic thromboembolic pulmonary
hypertension; CRC, Colorectal cancer; CSE, Cigarette smoke extract.
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biomarkers are essential for establishing early diagnostic
standards and discovering precision therapeutic targets for COPD.

Lactylation, a novel post-translational modification that involves
the covalent attachment of lactate to lysine residues, has emerged as
a critical regulatory mechanism in various cellular processes (Zhang
et al., 2019; Gaffney et al,, 2020). Recent studies indicate that
lactylation plays a pivotal role in diverse physiological and
pathological processes, including immunity (Chen et al, 2022),
metabolism (Chen et al.,, 2021; Merkuri et al., 2024), and cancer
(Yu et al, 2021), by modifying both histones and non-histone
proteins. A recent study demonstrated that lactylation
significantly influences the phenotype and functional properties
of immune cells, including macrophage polarization (Irizarry-
Caro et al, 2020) and T cell reprogramming (Lopez Krol et al.,
2022). Pulmonary macrophages, encompassing tissue-resident
(TRMs)
(Hashimoto et al., 2013; Byrne et al., 2016), play pivotal roles in
COPD pathophysiology. The M1 and M2 phenotypic states of these
macrophages mediate distinct functional outcomes (Kim et al,
2024). Notably, lactylation has been identified as a key modulator

of macrophage polarization, influencing both inflammatory

macrophages and monocyte-derived macrophages

mediator production and tissue repair capacity (Irizarry-Caro
et al, 2020). Moreover, lactylation regulates gene expression
related to inflammation, cytokine synthesis, and metabolic
pathways in macrophages, ultimately affecting their activation
states and functional outcomes (Cui et al, 2021; Wang et al,
2022; Li et al, 2024). Abnormal macrophage function, immune
dysregulation, and sustained inflammation are well-established
contributors to COPD pathogenesis (Lee et al., 2021). Therefore,
investigating the role of lactylation in macrophage activation is
essential for advancing our understanding of COPD pathogenesis
and for developing novel therapeutic approaches and
molecular targets.

This study utilized two transcriptomic datasets comprising
blood samples from smokers with COPD and smokers with
normal lung function. Differentially expressed genes (DEGs)
related to macrophage lactylation between COPD and control
identified

approaches, including differential expression analysis, immune

samples ~ were through  various  bioinformatics

infiltration analysis, and weighted gene co-expression network
(WGCNA).
biomarkers in COPD were further explored using a nomogram

analysis The underlying mechanisms of these
model, Gene Set Enrichment Analysis (GSEA), molecular regulatory
docking.
Additionally, clinical samples were analyzed to validate the

networks, compound prediction, and molecular

expression levels of the identified biomarkers, confirming the
bioinformatics findings. In summary, this study provides a solid
foundation for a deeper understanding of the molecular

mechanisms driving COPD and offers potential avenues for
novel therapeutic strategies.

2 Materials and methods
2.1 Data collection
Transcriptome data (GSE100153, GSE124180) for COPD were

sourced from the GEO database (https://www.ncbinlm.nih.gov/
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geo/). Based on the sample size and homogeneity, use GSE100153 as
the training set and GSE124180 as the validation set. The training set
GSE100153 based on the GPL6884 platform (Illumina HumanWG-
6 v3.0 Expression BeadChip) included 19 COPD and 24 control
whole blood samples, while the validation set GSE124180 based on
the GPL16791 platform (Illumina HiSeq 2000 RNA Sequencing)
comprised 6 COPD and 15 control whole blood samples.
Lactylation-related genes (LRGs) were identified, including a
lactylation enzyme, EP300, and 6 delactylases (HDACI1-3, SIRT1-
3), as well as 327 lactylated proteins documented in the literature
(Cheng et al, 2023). 332 LRGs
(Supplementary Table S1).

Finally, were acquired

2.2 Differential expression analysis

For the GSE100153 dataset, differential expression analysis was
performed using the “limma” package (v 3.54.0) (Ritchie et al,
2015), identifying DEGs between COPD and control samples
(COPD vs. control) with [log, fold change (FC)| > 0.5 and P <
0.05. Volcano plots were generated using the “ggplot2” package (v
3.4.1) (Gustavsson et al., 2022) to visualize all DEGs, with the top
5 up- and downregulated DEGs labeled. Additionally, a heatmap
displaying the expression levels of the top 25 up- and downregulated
DEGs was created using the “pheatmap” package (v 1.0.12) (Gu and
Hubschmann, 2022).

2.3 Immune infiltration

To investigate immune cell variations in COPD development,
the xCell algorithm was applied to assess the infiltration levels of
34 immune cell categories in the GSE100153 dataset (Aran et al.,
2017). The Wilcoxon test was used to compare immune cell
infiltration between COPD and control groups, and differential
immune cells were identified (P < 0.05). Results were visualized
using the “ggplot2” package (v 3.4.1).

2.4 Acquisition of macrophage-related
module genes

Focusing on immune cells with significant differences between
COPD and control groups and those associated with macrophages,
WGCNA was conducted to identify module genes linked to
macrophages in the GSE100153 dataset using the “WGCNA”
package (v 1.72) (Langfelder and Horvath, 2008). Initially, the
“GoodSamplesGenes” function was employed to cluster samples
and remove outliers, with a height threshold of 70 for the clustering
tree. The optimal soft threshold (power) above the red cut line was
determined by setting R* = 0.8. Based on the selected soft threshold,
genes were classified into multiple modules. The minModuleSize
was set to 30, and the module merging parameter (mergeCutHeight)
was 0.25. Key modules were identified by correlating modules with
phenotypic traits, and a correlation heatmap was generated using the
“pheatmap” package (v 1.0.12) (|cor| > 0.3, P < 0.05). Genes within
the key modules were classified as macrophage-related genes
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(MRGs), reflecting their association with macrophage-related
phenotypic traits.

2.5 ldentification and function of
candidate genes

To identify genes associated with macrophage lactylation, the
“cor” function was used to examine the correlation between LRGs
and MRGs (|cor| > 0.3, P < 0.05) (Xie et al.,, 2024; Li Y. M. et al.,
2025). Genes with significant correlations were considered
LRGs (MLRGs). These MLRGs then
intersected with DEGs to obtain candidate genes, using the

macrophage were
“ggvenn” package (v 0.1.9) (Mao et al, 2022). Enrichment
analyses for Gene Ontology (GO) functions and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were
performed on the candidate genes, with significance set at P <
0.05, using the “clusterProfiler” package (v 4.2.2) (Wu et al., 2021).
The top 10 most significant GO functions and all relevant KEGG
pathways were presented based on P values.

2.6 ldentification of biomarkers

To identify potential biomarkers, further analyses were
conducted on the candidate genes. First, in the
GSE100153 dataset, the “Boruta” package (v 8.0.0) (Zhou et al,
2023) was used to apply the Boruta algorithm (7x cross-validation)
to identify important genes among the candidate genes. The “e1071”
package (v 1.7-13) (Yang et al., 2022) was then used to implement
the SVM-RFE algorithm (with 10x cross-validation) to identify key
genes at the lowest error rate. The genes identified by both
algorithms were intersected using the “ggvenn” package (v 0.1.9).
The intersecting genes were then subjected to receiver operating
characteristic (ROC) analysis. In both the GSE100153 and
GSE124180 datasets, the “pROC” package (v 1.18.0) (Robin et al.,
2011) was used to perform ROC analysis, and the area under the
curve (AUC) values were calculated. Genes with an AUC >0.7 in
both datasets were selected for expression level analysis. The
Wilcoxon test was applied in both datasets to compare gene
expressions between COPD and control samples (P < 0.05).
Genes that exhibited significant expression differences between
the COPD and control groups with consistent trends across the
two datasets were defined as biomarkers.

2.7 Construction of nomogram model

To assess the role of biomarkers in COPD, the “rms” package (v
6.7-0) (Xu et al., 2023) was used to construct a nomogram model
based on the identified biomarkers. Each biomarker was assigned a
score, and the total score was derived from the sum of the individual
scores. Patients with COPD exhibiting higher total scores showed
increased mortality rates. The correctness and reliability of the
nomogram model were assessed using the ROC curve (generated
with the “pROC” package, v 1.18.0) and the decision curve analysis
(using the “rmda” package, v 1.0.2) (Kerr et al., 2016).
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2.8 Gene set enrichment analysis (GSEA)

To investigate the pathways enriched by the biomarkers, the
GSE100153 samples were divided into low- and high-expression
groups based on the average expression of the biomarkers. The
“limma” package (v 3.54.0) was used to calculate log,FC values
between the two groups. The calculated log,FC values were then
ranked from largest to smallest. GSEA was performed using the
“clusterProfiler” package (v 4.2.2) with parameters P < 0.05 and |
NES| > 1. The gene
“c2.cp.kegg.v7.0.symbols.gmt” from the MSigDB ((https://www.

reference collection  was
gsea-msigdb.org/gsea/msigdb). The top 5 significantly enriched
pathways were displayed.

2.9 Prediction of transcription factors (TFs)
and compounds

To further investigate the potential molecular regulatory
mechanisms of  the identified  biomarkers, the
KnockTF2.0 database (https://bio.liclab.net/KnockTFv2/search.
php) was utilized to predict TFs that target these biomarkers.
Additionally, the CTD database (https://ctdbase.org/) was
employed to identify compound-biomarker interaction pairs
and determine potential therapeutic compounds targeting the
biomarkers. The regulatory networks between biomarkers and
TFs, as well as between biomarkers and compounds, were
visualized using Cytoscape software (v 3.8.2) (Shannon et al.
, 2003).

2.10 Molecular docking

To explore the binding capacity between biomarkers and
compounds, molecular docking studies were conducted with
compounds targeting multiple biomarkers simultaneously. The
3D structures of the compounds were obtained from the
PubChem database (https://pubchem.ncbinlm.nih.gov/), while
the 3D structures of the biomarkers were retrieved from the
UniProt database (https://ctdbase.org/) and downloaded from the
PDB database (https://www.rcsb.org/). All files were preprocessed
using the QuickPrep module of the molecular operating
environment (MOE) software (v 2022.02) (Dong et al., 2024).
Molecular docking was performed using the Dock module of
MOE software (v 2022.02). The molecular docking results were
then presented.

2.11 Clinical sample verification

To further validate the expression levels of biomarkers
between COPD and
bioinformatics analysis results, RT-qPCR was conducted. Ten

control samples and confirm the
frozen whole blood samples (5 COPD and 5 control samples)
were collected at Tianjin Chest Hospital. All participants
provided informed consent, and the study received ethical
approval from the Ethics Review Committee of Approval No.

2025LW-16. Total RNA was extracted from the samples using
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TRIzol reagent (Vazyme, Nanjing, Jiangsu, China). RNA
concentrations were measured using a NanoPhotometer N50.
Subsequently, mRNA was reverse transcribed into cDNA using a
commercial kit (Yeasen, Shanghai, China), and RT-qPCR was
performed under the conditions outlined in Supplementary
Table S2. The relative expression of biomarkers was calculated
using the 27**“" method, with GAPDH as the reference gene. The
results were analyzed using GraphPad Prism (v 10.0) (Guo et al,,
2022). The expression differences between COPD and control
samples were compared using a t-test (P < 0.05).

2.12 Statistical analysis

All statistical analyses were performed using R software (v 4.2.2).
Wilcoxon tests and t-tests were applied to compare differences
between the two groups, with significance set at P < 0.05.

3 Results
3.1 Identification of MRGs

Using the xCell algorithm, the infiltration levels of 34 immune cell
types between the COPD and control groups were assessed
(Figure 1A). Among these, the infiltration levels of 9 immune cell
types showed significant differences between the two groups (P <
0.05) (Figure 1B). three
macrophages—macrophages, M1 macrophages, and

Specifically, types  of
M2 macrophages—demonstrated marked distinctions between
COPD and control samples. Given the critical role of macrophages
in COPD pathogenesis, these three macrophage subtypes were
selected as phenotypic traits for the WGCNA. Outlier samples
were identified in the GSE100153 dataset (Figure 1C) and removed
(Figure 1D). The power was set to 5 when R*> > 0.8 (Figure 1E). A
scale-free network was constructed, resulting in the identification of
30 gene modules (Figure 1F). Among these, three modules were
significantly associated with the phenotypic traits (cor >0.3, P <
0.05) (Figure 1G).

3.2 Function of candidate genes in COPD

Differential expression analysis revealed 341 DEGs in the
COPD group compared to the control group, consisting of
106 up-regulated and 235 down-regulated genes. A volcano plot
visualized all DEGs, with the top five up- and downregulated DEGs
labeled based on their log,FC values (Figure 2A). A heatmap
displayed the expression levels of the top 25 DEGs with the
and downregulation (Figure 2B).
analysis identified 3,667 genes as MLRGs
2C). By DEGs with MLRGs,
47 candidate genes were obtained (Figure 2D). These candidate

most  significant up-
Correlation
(Figure intersecting the
genes were enriched in 390 functional categories, including
315 biological process (BP) terms (e.g., positive regulation of
phospholipase C activity), 30 cellular component (CC) terms
(e.g., ficolin-1-rich granule lumen), and 45 molecular function
(MF) terms (e.g., mannose binding) (P < 0.05) (Figure 2E;
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FIGURE 1

Identification of MRGs. In the GSE100153 dataset, (A,B) Immune infiltration analysis of 34 immune cell types (control vs. COPD) is shown in the
heatmap (A) (Yellow represents high expression, blue-green represents low expression) and box plot (B), ns p > 0.05, *p < 0.05. (C-G) Macrophages,
M1 macrophages, and M2 macrophages were used as phenotypic traits for WGCNA. All samples are shown in (C), and outlier samples were removed in
(D). The appropriate soft threshold (R? = 0.8, power = 5) was selected in (E). The scale-free network construction yielded 30 gene modules (F).
Heatmap in (G) shows that all three modules are related to phenotypic traits (cor >0.3, P < 0.05).

Supplementary Table S3). KEGG pathway analysis indicated that  results suggest that candidate genes may be involved in
the candidate genes were significantly enriched in 5 pathways,  phospholipase regulation, molecular binding, or
including histidine metabolism (P < 0.05) (Figure 2F). These  metabolic processes.
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Identification of biomarkers in COPD. The 17 genes identified by the Boruta algorithm are shown in (A), and the 47 genes identified by the SVM-RFE

algorithm are shown in (B,C). The 17 overlapping genes, obtained from the intersection of the two algorithm-based screening methods, are shown in (D).
Five genes (ALDH2, ASGR2, CYP1B1, CATSPER1, GM5) had AUC values greater than 0.7 in both GSE100153 (E) and GSE124180 (F). Among these genes,
only ALDH2, ASGR2, and CYP1B1 exhibited significant distinctions and consistent expression trends (control vs. COPD) (P < 0.05), in both

GSE100153 (G) and GSE124180 (H), *p < 0.05, **p < 0.01, ***p < 0.001. The transcription factor (TF) regulatory network for key genes is shown in (I).

3.3 Three biomarkers in COPD

The Boruta algorithm identified 17 key genes (Figure 3A), and
the SVM-RFE algorithm selected 47 genes (Figures 3B,C). By
intersecting these two sets of genes, 17 candidate genes were
subjected to ROC analysis (Figure 3D). The AUC analysis data
were provided in Supplementary Table S4. Of these, five genes
showed AUC values greater than 0.7 in both the GSE100153
(Figure 3E) and GSE124180 (Figure 3F) datasets. These genes
were selected for further analysis. Notably, ALDH2, ASGR2, and
CYP1BI1 showed significant differences and consistent expression
trends between COPD and control groups in both GSE100153
(Figure 3G) and GSE124180 (Figure 3H) datasets (P < 0.05). The
expression levels of ALDH2, ASGR2, and CYP1B1 were significantly
higher in patients with COPD compared to controls (P < 0.05).
Therefore, ALDH2, ASGR2, and CYP1B1 were identified as the
biomarkers for this study. Further analysis revealed that 154 TFs
were associated with the biomarkers, with 5 TFs simultaneously
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targeting all three biomarkers, including STAT3 and SOX9
(Figure 3I). The regulatory relationships between biomarkers and
TFs were visualized in a regulatory network, highlighting, for
example, that ASGR2 and CYP1BI1 are targeted by MYB.

3.4 Ability of biomarkers to predict
COPD mortality

A nomogram model based on the identified biomarkers was
developed (Figure 4A). This model demonstrated its ability to
predict the risk for patients with COPD, with the mortality rate
increasing in correlation with the total score from the nomogram.
An AUC of 0.893 confirmed the model’s accuracy (Figure 4B), while
the maximum net benefit further validated its reliability (Figure 4C).
The performance metrics of the model are presented in
Supplementary Table S5. Overall, the biomarkers -effectively
predicted the mortality of patients with COPD.
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FIGURE 4
Ability of biomarkers to predict COPD mortality. In the GSE100153 dataset, a nomogram model was constructed based on biomarkers (A). The
AUC = 0.893 indicates the accuracy of the nomogram model (B). The net benefit of the nomogram model further confirms its accuracy (C).
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FIGURE 5
Enrichment pathways of biomarkers. GSEA was applied to explore the pathways enriched by CYP1B1 (A), ALDH2 (B), and ASGR2 (C).
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FIGURE 6
Ability of compounds to bind to biomarkers. The relationship network between biomarkers and compounds is shown (A). ASGR2 exhibited strong

binding affinity for CGP 52608, benzo(a)pyrene, and bisphenol A (B). CYP1B1 exhibited strong binding affinity for benzo(a)pyrene, bisphenol A, and
CGP 52608 (C).

TABLE 1 Molecular docking results.

Biomarkers Compound CID Binding energy (kcal/mol)
ALDH2 INZX Arsenic 5359596 —
Benzo(a)pyrene 2336 —
bisphenol A 6623 —
CGP 52608 6509863 —
Ethanol 702 —
ASGR2 8URF Arsenic 5359596 —
Benzo(a)pyrene 2336 —4.82352352
bisphenol A 6623 -4.95880175
CGP 52608 6509863 —5.11861801
Ethanol 702 —
CYP1B1 3PMO Arsenic 5359596 —
Benzo(a)pyrene 2336 —6.17870951
bisphenol A 6623 —5.83354139
CGP 52608 6509863 —5.58286047
Ethanol 702 —

3.5 Enrichment pathway of biomarkers

GSEA analysis revealed that CYP1B1 was enriched in
359 pathways, including translation, nucleic acid catabolic
processes, and RNA processing (Figure 5A; Supplementary
Tables S4, S6). ALDH2 was involved in 517 pathways, such as
microvillus assembly and antibacterial humoral responses
(Figure 5B; Supplementary Table S7). ASGR2 was associated with
32 pathways, including B cell receptor signaling, wound healing, and
antibacterial humoral responses (Figure 5C; Supplementary Table
S8). These results suggest that the biomarkers are linked to
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metabolic processes, B cell receptor pathways, and antibacterial
humoral immune responses.

3.6 Ability of compounds to bind to
biomarkers

A database search identified 59 compounds related to the
biomarkers. The relationship network revealed 8 compounds
biomarkers, arsenic

associated  with ~ multiple including

(Figure 6A). Of these, protein structures for 5 compounds were
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FIGURE 7

Expression levels of biomarkers in clinical samples. In the RT-gPCR experiment, the expression levels of ALDH2 (P < 0.01), ASGR2 (P < 0.0001), and
CYP1B1 (P < 0.0001) were significantly higher in the COPD group compared to the control group (n = 5 per group). *p < 0.05, **p < 0.01, ***p < 0.001,

**kkn < 0.0001.

available and subjected to molecular docking (Table 1). Notably,
ASGR2 demonstrated a relatively strong binding affinity for CGP
52608 (Figure 6B). Additionally, ASGR2 exhibited binding
capabilities with benzo(a)pyrene and bisphenol A (Figure 6B).
CYP1BI1 showed significant binding affinity for benzo(a)pyrene,
bisphenol A, and CGP 52608 (Figure 6C), with the strongest binding
energy observed for benzo(a)pyrene at —6.17870951 kcal/mol.

3.7 Expression levels of biomarkers in
clinical samples

RT-qPCR analysis confirmed that the expression levels of
ALDH2 (P < 0.01), ASGR2 (P < 0.0001), and CYPIBI (P <
0.0001) were significantly higher in the COPD group compared
to the control group (Figure 7). These findings aligned with the
bioinformatics analysis results, reinforcing the validity of the
conclusions drawn.

4 Discussion

COPD is a prevalent respiratory disorder and the fourth leading
cause of global disease-related mortality, posing a significant
economic burden worldwide (Brassington et al., 2022; Safiri et al.,
2022). Given its profound impact, early detection is critical to
slowing disease progression and

alleviating pressures on

healthcare systems. Emerging research underscores the close

association between immune cell infiltration and COPD
pathogenesis. In particular, macrophage polarization and
lactylation—a recently identified post-translational

modification—play central roles in immune dysregulation during
COPD progression (Cruz et al, 2019; Bu et al, 2020). Thus,
exploring the immune microenvironment, especially lactylation-
related mechanisms, could provide novel diagnostic biomarkers
that enhance clinical management and personalized therapies
(Huang et al, 2022; MacDonald et al, 2023). In the present
study, the infiltration levels of nine immune cell types showed
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significant differences between COPD and control groups,
including both M1
M2 phenotypes. Additionally, three biomarkers associated with
macrophage lactylation—ALDH2, ASGR2, and CYP1Bl—were
identified through bioinformatics analysis and further validated

particularly among macrophages, and

with clinical samples. GSEA analysis suggested that these
biomarkers are primarily associated with metabolic pathways and
B-cell receptor signaling. Furthermore, five TFs, including
STAT3 and SOX9, were found to be linked to all three
biomarkers. This study aims to identify significant novel
biomarkers related to macrophage lactylation, which may aid in
the early diagnosis and therapeutic management of COPD.
COPD is a chronic airway inflammatory disorder involving the
participation of various immune cells and inflammatory mediators.
Among them, macrophages, as the first line of defense in innate
immunity, are one of the earliest immune cells to respond to
COPD, play
pathophysiological role via distinct M1 and M2 phenotypes (Lee

inflammation.  In macrophages a  key
et al., 2021). M1 macrophages, linked to infections or smoking-
induced lung damage, promote Thl-type inflammation through
pro-inflammatory cytokines (e.g., IFN-y, TNF-a), exacerbating
inflammation and tissue damage. In contrast, M2 macrophages,
active in non-inflammatory states, aid tissue repair/remodeling and
maintain homeostasis by secreting anti-inflammatory cytokines and
clearing debris. Lactylation is a post-translational modification that
adds lactate groups to proteins, thereby altering their function and
stability. Recent study indicates that lactylation plays essential roles
in regulating the M1/M2 polarization of macrophages (Bao et al.,
2025). Research has showed that bone marrow-derived
macrophages (BMDMs) stimulated with LPS and IFN-y exhibited
an M1 phenotype and increased lactylation. Following 24-48 h of
M1 polarization, they began expressing M2-like genes (e.g., ARGI,
VEGFA). In contrast, BMDMs treated solely with lactate displayed
an M2-like phenotype and elevated lactylation without an initial
M1 phase. These results indicate that lactylation induces an M2-like
phenotype and facilitates the return of BMDMs to homeostasis
during the late stage of M1 polarization (Zhang et al.,, 2019).

However, the precise regulatory effects of lactylation on
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macrophage function have not been fully elucidated and need
further investigation.

Through the application of machine learning algorithms and
subsequent RT-qPCR validation of clinical samples, three
diagnostic biomarkers associated with macrophage lactylation in
COPD were identified. Aldehyde dehydrogenase 2 (ALDH2), a key
enzyme involved in the metabolism of acetaldehyde, a product of
alcohol metabolism, was one of these biomarkers (Wang et al,
2020). This tetrameric allosteric enzyme is highly expressed in
critical organs such as the heart, brain, liver, and lungs (Ma et al.,
2011; Koppaka et al., 2012). Reduced enzyme activity is associated
with increased susceptibility to various diseases, including
coronary heart disease (Xu et al., 2011), late-onset Alzheimer’s
disease (Zhu Z. Y. et al., 2022), and cancer (Zhang and Fu, 2021;
Tran et al, 2023). One study demonstrated that upregulating
endogenous ALDH2 expression in fibrotic cells using CRISPR
activation effectively inhibited the expression of profibrotic genes
(Tan et al, 2021). Moreover, the ALDH2 loss-of-function
polymorphism is linked to subtle alterations in pulmonary
tissues, some of which resemble changes seen in normal
pulmonary aging, suggesting a “premature lung aging” effect
(Kuroda et al,, 2017). A recent study has identified ALDH2 as a
critical pathogenic mechanism linked to endogenous lactate
accumulation in acute kidney injury and proposes it as a
ALDH2
52 promotes PHB2 degradation via the ubiquitin-proteasome

potential therapeutic target. lactylation at lysine
system, thereby inhibiting PHB2-mediated mitophagy and
exacerbating mitochondrial dysfunction (Li J. et al, 2025).
However, ALDH2 has not been studied in COPD. In this study,
ALDH2 was significantly upregulated in COPD patients and may
be involved in macrophage lactylation in the development of
COPD, which might be helpful in the
treatment of COPD.

Asialoglycoprotein Receptor 2 (ASGR2), a subunit of the

diagnosis and

asialoglycoprotein  receptor, is a transmembrane protein
predominantly expressed in hepatocytes. It specifically recognizes
N-acetylgalactosamine and galactose and functions primarily in the
internalization and degradation of glycoproteins via desialylation, a
process essential for maintaining serum glycoprotein homeostasis
(Grewal, 2010). ASGR2 expression correlates significantly with the
clinical stage of hepatocellular carcinoma (Zhang et al., 2021). In
gastric cancer, ASGR2 contributes to the manifestation of cancer
hallmarks upon PS exposure and confers resistance to both
chemotherapy and monoclonal antibody-based therapies (Kim
et al., 2022). A recent study indicated that serum ASGR2 levels
could serve as a biomarker for assessing the therapeutic effects of
balloon pulmonary angioplasty (BPA) in patients with chronic
thromboembolic pulmonary hypertension (CTEPH). Prior to
BPA, ASGR2 levels were associated with HDL-C levels and
platelet counts. Post-BPA, ASGR2 levels correlated with LYM%,
which may provide insights into the immune and inflammatory
states of patients with CTEPH (Xu et al., 2024). However, the
specific regulatory mechanism of ASGR2 in COPD remains
unclear and requires further in-depth exploration.

Cytochrome P450 Family 1 Subfamily B Member 1 (CYP1B1), a
member of the CYP450 enzyme family, is expressed in both hepatic
and extrahepatic tissues and plays a critical role in metabolizing a
broad range of xenobiotics, including the metabolic activation of
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polycyclic aromatic hydrocarbons. CYP1B1 has been implicated in
processes such as metabolism, inflammation, angiogenesis, and
anticancer drug resistance (Li et al., 2017). CYP1B1 contributes
to colorectal cancer (CRC) resistance to ferroptosis, with its
metabolite, 20-HETE, mediating this resistance (Chen et al,
2023). Furthermore, CYPIBI1 significantly influences CRC liver
metastasis by regulating tumor cell proliferation through the
“CYP1B1-LCFAs-G1/S transition,” suggesting its potential as a
therapeutic target for CRC liver metastasis (Jin et al., 2023). It
was reported that long-term exposure to incense smoke induces
CYP1A1, CYP1A2, and CYP1BI in rat lung and liver tissues with
tissue-specific differences, accompanied by increased oxidative
stress (elevated MDA and GSH levels, altered catalase activity in
the liver) and inflammation (increased TNF-a and IL-4 levels),
thereby potentially promoting and health
complications in chronically exposed individuals (Hussain et al.,
2014). And CYP1B1 has been shown to play a protective role in
preventing the exacerbation of allergic airway inflammation by

carcinogenesis

ragweed extract and house dust mite, including increased IgE
levels, infiltration of inflammatory cells, and especially an
increase in Th2 cells (Alessandrini et al., 2022). In summary,
these genes—ALDH2, ASGR2, and CYP1Bl—are involved in key
processes such as metabolism and inflammation. However, their
expression and roles in COPD remain unexplored and need further
exploration.

Previous studies have highlighted significant changes in the
cellular components of the small airways in patients with COPD,
with key alterations including epithelial cell senescence (Wu et al.,
2022), a notable increase in neutrophils (Kapellos et al., 2023),
elevated macrophage numbers accompanied by phenotypic shifts
and impaired phagocytic function (Eltboli et al., 2014; Eapen et al.,
2017), augmented T and B cell populations, and the proliferation
and activation of epithelial dendritic cells (Stoll et al., 2015). In
COPD, dysregulated immune cell activation and the release of
immune mediators contribute significantly to the exacerbation of
pulmonary inflammation. The altered immune microenvironment
in COPD has gained increasing attention, and targeting immune
cells could offer potential avenues for precision therapy (Tzortzaki
et al, 2013; Lan et al, 2025). In the present study, immune
infiltration analysis of MRGs revealed significant differences in
the infiltration levels of nine immune cell types between the
COPD and control groups, particularly monocytes, macrophages,
dendritic cells, B cells, and CD8" T cells. Macrophages, as integral
components of the innate immune system, displayed significant
differences between MI1 and M2 phenotypes. Macrophage
dysregulation is closely associated with COPD pathology and
severity. Thus, strategies aimed at restoring the macrophage
phenotype, improving phagocytosis, reducing inflammation, and
addressing foamy macrophages may provide promising therapeutic
targets for COPD. Furthermore, the role of innate immunity in
COPD pathogenesis is complex, with different macrophage subsets
contributing to proinflammatory responses, while M2 macrophages
are involved in attenuating inflammation, promoting tissue repair,
and decreasing the secretion of proinflammatory cytokines (Kim
et al, 2024). Further analysis of the core genes identified their
primary enrichment in metabolic pathways, B-cell receptor
signaling, wound healing, and antibacterial humoral immune
responses. Previous research has suggested that B cells, through
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antibody production, may play a role in airway inflammation in
patients with COPD. B lymphocytes infiltrate the adventitia of small
airways in patients with COPD, with a rise in lymphocyte fractions
and lymphoid aggregates containing germinal centers as the disease
progresses (Caramori et al., 2016). Previous research has indicated
the antioxidant and wound-healing properties of baru nut extract in
lung epithelial cells, suggesting its potential for COPD treatment
(Coco et al,, 2022). These findings offer valuable insights for future
treatment strategies and further mechanistic
investigations into COPD.

Database-based predictions identified 154 TFs associated
with the biomarkers, with five TFs—STAT3, SOX9, TFAP4,
IKZF2, and TP63—targeting all biomarkers. As is well
established, the chronic inflammatory response plays a central
role in the pathogenesis and progression of COPD. The JAK-
STAT signaling pathway is crucial in the activation of cytokines
during inflammation, significantly contributing to COPD
development (Purohit et al., 2023). SOX9 alleviates cigarette
smoke extract (CSE)-induced inflammatory injury in human
bronchial epithelial cells by suppressing stromal interaction
molecule 1 (STIM1) expression (Zhu X. et al., 2022). TFAP4,
predominantly recognized as an oncogene (Wong et al., 2021),
has recently been implicated in exacerbating liver fibrosis and
tissue inflammation in mice by promoting the activation of the
STING signaling pathway (Han et al., 2025). Moreover, the
predicted compounds targeting the biomarkers primarily
included CGP 52608, benzo(a)pyrene, and bisphenol A. These
compounds warrant further exploration and may serve as the
basis for the development of new targeted drugs, offering novel
treatment options for COPD.

The PCR validation results provide strong evidence that the
expression levels of biomarkers such as ALDH2, ASGR2, and
CYPI1BI1 are significantly higher in patients with COPD. These
the

bioinformatics analysis and validate the reliability of the results.

findings, confirmed by clinical samples, align with
Consequently, this study offers clinical value for diagnosing COPD
and identifying novel potential immune targets for COPD
immunotherapy.

However, this study still has some limitations. Firstly, the
clinical sample size of this study is relatively small, which may
compromise the generalizability of the conclusions. Secondly, the
samples validated via RT-qPCR in this study were whole blood,
rather than those of purified macrophages or lung tissues, and
thus may be confounded by the influence of other blood cell types.
Thirdly, alterations in mRNA levels can be affected by multiple
factors; relying solely on such changes is insufficient to definitively
elucidate the lactylation status. There is a paucity of experimental
validation and biological functional verification that directly link
these biomarkers (ALDH2, ASGR2, and CYP1B1) to lactylation,
coupled with potential batch effects in public databases (e.g., data
from acute exacerbation phases, which fail to fully capture the
heterogeneous features of chronic obstructive pulmonary disease).
In addition, the data acquisition technologies used for the training
set and validation set in this study are different (microarray
technology and RNA sequencing). Such a difference may cause
some DEGs to fail to be validated across platforms, which may
further affect the completeness of candidate gene screening. In

future studies, we will perform additional experiments to validate
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the findings. Firstly, we will employ macrophage-specific gene
knockout models or organoid technology to mechanistically
dissect how ALDH2/ASGR2/CYP1B1 regulates cell polarization
through lactylation. Secondly, we will collect a more diverse set of
samples (e.g., macrophages or lung tissues) for RT-qPCR or
proteomic assays to validate changes in protein levels and their
functional implications, thereby mitigating the influence of other
blood cells. Thirdly, we will expand the scale of the dataset,
attempt to use data from the same technical platform to reduce
the impact of technical bias on the results, and strive to evaluate
the
stages—especially those biomarkers associated with metabolic

relationship ~ between  biomarkers and  disease
syndrome in COPD. Additionally, we will incorporate mass
spectrometry (MS) analyses to detect whether these proteins
undergo lactylation under specific conditions, and validate the
lactylation status of relevant enzymes or target proteins via
Western blotting using anti-lactylation-specific antibodies, so as
to more precisely characterize the modification status of proteins.
Furthermore, the
CYPIB1 and benzo[a]pyrene, develop targeted

inhibitors or environmental exposure interventions. We aim to

leveraging strong interaction between

we  will
fill existing gaps through these studies and lay the groundwork for
an in-depth understanding of the immunometabolic mechanisms
of chronic obstructive pulmonary disease and their translational
applications.

5 Conclusion

In conclusion, this study identified ALDH2, ASGR2, and
CYP1B1 as biomarkers related to macrophage
lactylation in COPD, demonstrating their roles in regulating

novel

the immune microenvironment (e.g., macrophage polarization)
and metabolic pathways (e.g., oxidative stress, B-cell signaling).
These findings provide new targets for early diagnosis
and therapy.
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