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In recent years, numerous studies have demonstrated that circRNAs play crucial
biological roles through their capacity to encode functional proteins.
Computational methods have become essential for investigating circRNA
translation. In this review, we first outline circRNA biogenesis and translation
mechanisms to establish the rationale for developing specialized computational
strategies. We then summarize experimental techniques and existing databases
that support computational method development. Subsequently, we provide a
systematic introduction to existing circRNA translation analysis tools and their
underlying algorithms, with emphasis on benchmarking the performance of
sequence-based methods using a unified dataset. Our benchmarking revealed
that: (1) cirCodAn achieved superior predictive accuracy while maintaining user
accessibility; (2) the training data selection during method development critically
impacts model performance. This review serves as a comprehensive reference
for the selection and application of circRNA translation analysis methods and
provides foundational guidance for the development and refinement of future
computational tools.
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1 Introduction

Circular RNAs (circRNAs) are covalently closed RNA molecules generated through
back-splicing. They originate from diverse genomic regions, including exonic, intronic, and
intergenic loci (Conn et al., 2024). Compared to linear mRNAs, circRNAs exhibit greater
exonuclease resistance, extended half-lives, and lower expression levels (Jeck et al., 2013).
Due to their low abundance and circular structure, circRNAs were initially regarded as
aberrant splicing byproducts or non-functional ‘splicing noise’. However, circRNAs are
now recognized as ubiquitous regulators (Liu et al., 2017). Recent advances reveal their
conservation across species and functional roles in metabolic pathways and disease
processes in both animals and plants (Ivanov et al., 2015; Zhang and Dai, 2022). The
most well-documented function involves acting as miRNA sponges to post-
transcriptionally regulate gene expression (Zhang et al., 2018; Zhang X. et al., 2020;
Hashemi et al., 2025; Marei et al., 2025). Additionally, circRNAs interact with RNA-
binding proteins (RBPs), modulate gene expression through RNA-RNA interactions, and
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can undergo cap-independent translation to produce functional
peptides or proteins with biological activity (Zhou et al., 2020;
Hossain et al., 2023; Yi et al., 2024).

Compared to proteins translated from linear mRNAs,
circRNA-derived proteins are generally shorter (typically
100–500 amino acids) yet play significant roles in development,
disease progression, and tumorigenesis (Peng et al., 2021; Wei
et al., 2025). For instance, Peng et al. identified the functional
peptide GSPT1-238aa encoded by circGSPT1, which interacts with
the vimentin/Beclin1/14-3-3 complex and regulates autophagy

through the PI3K/AKT/mTOR signaling pathway in gastric
cancer cells (Hu et al., 2022). Beyond disease regulation,
circRNAs are increasingly recognized as a promising platform
for vaccine development (Zhang et al., 2024), with most circRNA-
based vaccines designed around their encoded therapeutic
peptides/proteins (Chen et al., 2023). As vaccine vectors,
circRNAs achieve higher expression at lower doses than linear
mRNA counterparts, underscoring their therapeutic potential.
Hence, Further investigation into circRNA translation functions
and applications is warranted (Lokras et al., 2024).

FIGURE 1
Experimental techniques, translation mechanisms, databases, and computational strategies constitute the core components of circRNA translation
research. These elements interact synergistically to advance the field. Experimental methods uncover translation mechanisms and validate circRNA-
derived proteins, generating reliable data. Mechanism provide the theoretical foundation for computational strategy development. Both experimental
and computational data are deposited into databases, which serve as resources for researchers and support further method development. In turn,
computational analyses guide experimental validation and contribute newly predicted data to the databases.
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Due to their covalently closed structure, circRNAs lack 5′ caps
and 3′ poly(A) tails, resulting in a translation initiation mechanism
distinct from linear mRNA (Hwang and Kim, 2024). Canonical
mRNA translation employs the 5′ m7G cap structure and initiation
factors—including eIF4E, eIF4G, and eIF4A—to recruit ribosomes
(Gentry et al., 2025). In contrast, circRNAs rely cap-independent
mechanisms, including: internal ribosome entry site (IRES)-
mediated translation, N6-methyladenosine (m6A)-mediated
initiation (also referred to as MIRES), and other forms of
internal initiation (Nott et al., 2004; Yang and Wang, 2019;
Zhang G. et al., 2023). These pathways employ diverse regulatory
elements whose full functional repertoire remains incompletely
characterized and warrants further investigation.

Advances in circRNA functional research are critically
dependent on bioinformatics tools (Drula et al., 2024). Diverse
computational methodologies have been applied to circRNA
prediction and functional characterization, including detection
tools (e.g., CIRI2) (Gao et al., 2018), sequence assembly tools
(e.g., JCcirc) (Zhang J. et al., 2023), function prediction tools
(e.g., iCRBP-LKHA, MSMCDA, CircDA) (Niu et al., 2024; Yuan
et al., 2024; Zhang et al., 2025). For translation-specific prediction,
specialized algorithms have emerged. Experimental evidence-based
approaches integrate high-throughput data—such as ribosome
profiling (Ribo-seq) and mass spectrometry (MS)—to validate
translation events. Representative tools include MStoCIRC (Cao
and Li, 2022), CircCode (Sun and Li, 2019), and CircPro(Meng et al.,
2017). Complementarily, sequence-driven methods leverage
machine learning and deep learning frameworks to predict
translational potential from intrinsic circRNA features,
exemplified by cirCodAn and CICADA (Barbosa et al., 2024; Fan
et al., 2025). In conclusion, these methodologies enable a systematic
and accurate assessment of circRNA translation potential.

In this review, we systematically introduce the information
related to circRNA translation, as shown in Figure 1. First, we
outline circRNA biogenesis and translation mechanisms,
establishing the theoretical foundation and necessity for
specialized analysis strategies. We then summarized experimental
techniques and databases supporting computational methodology
development. Building on this foundation, we systematically
reviewed existing circRNA translation analysis tools and their
underlying strategies, with particular emphasis on practical
applicability across biological contexts. Finally, we benchmark
sequence-based methods using a unified dataset and propose
actionable directions for future methodology development in
circRNA translation prediction.

2 The biogenesis and translation
mechanism of circRNAs

2.1 Molecular mechanisms of circRNAs
biogenesis

The defining feature of circRNAs is their covalently closed
circular structure, formed through back-splicing—a regulated
splicing variant where a downstream splice donor covalently
joins an upstream splice acceptor via a 3′-5′ phosphodiester
bond, generating a continuous RNA circle (Kristensen et al.,

2019). This splicing mechanism provides the theoretical basis for
the identification of circRNAs from high-throughput sequencing
data. As illustrated in Figure 2A, circRNAs biogenesis occurs
through four mechanisms.

(i) Intron pairing-driven circularization. Dubin et al. provided
first evidence that long inverted repeats (IRs) flanking the
mouse Sry gene promote circSry formation in cultured cells
(Dubin et al., 1995). Subsequently, genome-wide analyses
identified enrichment of Alu repeats (a subclass of inverted
repeats) in introns adjacent to back-splice sites, establishing
complementary sequence pairing as a fundamental circRNA
biogenesis mechanism (Jeck et al., 2013). Notably, paired Alu
elements flanking circularized exons show ~5-fold
enrichment at human exon circularization sites compared
to linear splicing controls (Jeck et al., 2013). This principle of
cis-regulatory complementarity has been effectively utilized
in synthetic circRNA engineering, where flanking
complementary sequences dramatically enhance
circularization efficiency (Wesselhoeft et al., 2018).

(ii) RNA-binding-protein-driven circulatization. Ashwal-Fluss
et al. first identified that the splicing factor muscleblind
(MBL) in Drosophila and its vertebrate homolog,
muscleblind-like protein 1 (MBNL1), promote exon
circularization (Ashwal-Fluss et al., 2014). Among MBL
isoforms, only MBL-C (the MBL predominant isoform in
fly heads) and MBL-A enhance circularization. Furthermore,
both Drosophila MBL-C and MBL-A isoforms promote
circularization at the human MBNL1 locus, indicating
evolutionary conservation of this mechanism (Ashwal-
Fluss et al., 2014). Beyond MBL, multiple RBPs facilitate
exon circularization, including adenosine deaminases acting
on RNA (ADAR), quaking (QKI), FUS, ATP-dependent
RNA helicase A (DHX9), and SR-rich proteins (Conn
et al., 2015; Ivanov et al., 2015; Kramer et al., 2015; Aktaş
et al., 2017).

(iii) Exon-skipping-driven circularization. During alternative
splicing, pre-mRNA can generate both a linear mRNA
transcript and a lariat structure containing skipped exons.
The skipped exons within the lariat are subsequently
subjected to back-splicing, and circRNA formation may
occur. Notably, the exons incorporated into the resulting
circRNA are distinct from those present in the linear mRNA
transcript, as each originates from separate splicing events
within. This mechanism was first identified by
Zaphiropoulos, who found exon circularization in the rat
cytochrome P-450 2C24 gene (Zaphiropoulos, 1997).
Subsequent studies in human and mouse models revealed
similar exon skipping–mediated circularization events across
multiple genes, indicating that this pathway represents a
widespread and conserved mechanism of circRNA
biogenesis (Surono et al., 1999; Kelly et al., 2015).

(iv) Lariat-driven circularization. Pre-mRNA splicing involves
the removal of introns and the ligation of exons. During this
process, intron excision generates a lariat structure (Padgett
et al., 1984), a transient intermediate generated through a 2′-
5′ phosphodiester bond between the 5′ splice site and the
branch point, with a free 3′ tail (Keller, 1984; Yoshimoto
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et al., 2009; Borao et al., 2021). Typically, these lariats are
rapidly degraded by debranching enzymes and exonucleases
(Mohanta and Chakrabarti, 2021). However, it has been
hypothesized that some lariat structures can evade
degradation and serve as precursors for intron-derived
circRNAs(Zhang et al., 2013; Talhouarne and Gall, 2014).
Emerging evidence indicates that lariat-derived circRNAs
also play functional roles in animals (Stoll et al., 2020; Robic
et al., 2021).

2.2 Molecular mechanisms of circRNA
translation

For many years, circRNAs were regarded as non-coding RNAs.
However, emerging evidence now demonstrates that a subset of
circRNAs bind to polysomes and undergo translation. Unlike linear
mRNAs, circRNAs lack a 5′ cap structure and instead initiate
translation through cap-independent pathways (Figure 2B).

(i) Internal initiation of translation mediated by IRESs. IRESs
are cis-acting RNA elements that facilitate cap-independent
translation by directly recruiting ribosomes to internal
regions of transcripts (Yang and Wang, 2019). As
understanding of circRNA function has advanced,
functional IRES elements have been identified within
circRNA sequences, enabling their translation initiation
(O’Leary et al., 2025). Canonical IRESs function as
structural scaffolds recognized by eIF4G2 and the
eIF3 complex, which collaborates with eIF4A. This

facilitates recruitment of the 40S ribosomal subunit and
assembly of the 43S pre-initiation complex to initiate
translation (Chen and Sarnow, 1995; Roberts and Wieden,
2018; Shi et al., 2020). Moreover, IRES activity is modulated
by IRES trans-acting factors (ITAFs), including
heterogeneous nuclear ribonucleoprotein (hnRNP) family
(e.g., hnRNPI, hnRNPQ, hnRNPU), as well as
PABPC1 and QKI. These ITAFs enhance circRNA
translation efficiency by stabilizing IRES structures or
inducing RNA conformational changes (Kafasla et al.,
2009; Romanelli et al., 2013; Ashwal-Fluss et al., 2014;
Godet et al., 2019; Fan et al., 2022). Unbiased screening
using cell-based reporter system has also revealed that AU-
rich motifs (~10 nucleotides) exhibit IRES-like activity
capable of initiating circRNA translation (Wang, 2018;
Yang and Wang, 2019). Given the widespread occurrence
of such elements in circRNAs, IRES-mediated cap-
independent translation of circRNAs is likely a prevalent
and functionally significant mechanism.

(ii) Internal initiation of translation mediated by m6A
modification. Early studies demonstrated that m6A
methylation enables cap-independent translation of linear
mRNAs under cellular stress conditions (Meyer et al., 2015).
Subsequent work revealed that circRNAs are also methylated
by the METTL3/METTL14 complex, with m6A modification
influencing multiple aspects of circRNA biology, including
translation regulation, decay kinetics, and innate immune
modulation (Zhang L. et al., 2020). In the context of
translation, m6A-modified circRNAs recruit the reader
protein YTHDF3, which facilitates assembly of the

FIGURE 2
circRNA biogenesis and translation mechanisms. (A) circRNA biogenesis occurs in the nucleus and can be promoted through four major pathways:
(i) intron pairing-driven circularization, (ii) RNA-binding protein (RBP)-mediated circularization, (iii) exon skipping-driven circularization, and (iv) lariat-
driven circularization. (B) circRNA translation occurs in the cytoplasm and proceeds via cap-independent mechanisms, including: (i) IRES-mediated
initiation, (ii) m6A-mediated initiation, and (iii) EJC-mediated initiation.
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translation initiation machinery, notably through
eIF4G2 recruitment, to drive protein synthesis. Yang et al.
further showed that circRNA translation is promoted by the
METTL3/14 methyltransferase complex and suppressed by
the demethylase FTO (Yang et al., 2017). Moreover, short
RNA motifs containing m6A-induced ribosome engagement
sites have been identified as IRES-like elements capable of
driving circRNA translation (Huang et al., 2021). These
findings suggest an interplay between canonical IRES
elements and epitranscriptomic mechanisms in cap-
independent translation. To fully elucidate the
mechanisms underlying circRNA translation, further
comprehensive studies integrating IRES, m6A, and other
regulatory elements are warranted.

(iii) Internal initiation of translation mediated by the exon
junction complex (EJC). The EJC, a multi-protein
complex critical for circRNA biogenesis, includes
eIF4A3 as one of its core components (Zhang Y. et al.,
2023). Recent studies demonstrate that the EJC directly
facilitates internal initiation of circRNA translation
(Chang et al., 2023; Lin et al., 2023; Xiong et al., 2023).
Following its deposition on circRNAs, the EJC recruits the
eIF3 complex via interactions between eIF4A3 and the eIF3G
subunit (Chang et al., 2023). This suggests that the EJC
functions as a molecular scaffold that bridges the
eIF3 complex and the 40S ribosomal subunit to circRNAs,
enabling cap-independent translation initiation. Moreover,
eIF4A3 within the EJC context promotes internal translation
initiation in an eIF3-dependent manner, and this ability is
further enhanced by other components of the EJC.
Collectively, these findings indicate that both EJC
complexes deposited on circRNAs during back-splicing
and free eIF4A3 molecules on circRNAs can facilitate
ribosome recruitment and translation initiation.

In summary, circRNAs exhibit distinct structural properties and
employ cap-independent translation mechanisms. Therefore,
applying translation analysis methods designed for linear RNAs
is likely to yield inaccurate assessments of circRNA coding potential.
To address this limitation, dedicated computational approaches
must be developed that account for the unique sequence

architecture and translation mechanisms of circRNAs. Such
specialized tools will provide essential guidance for the functional
characterization of circRNA-encoded proteins.

3 Experimental strategies for analyzing
circRNA translation

Experimental strategies form the cornerstone of circRNA
research. For studying circRNA translation, these methods are
essential to determine coding capacity and elucidate initiation
mechanisms. The resulting data provide critical support for
developing computational methods to predict translatable
circRNAs. This section describes two categories of experimental
approaches for studying circRNA translation (Table 1): high-
throughput screening for genome-wide identification of
translated circRNAs, and targeted validation for mechanistic
investigation of individual circRNAs.

3.1 High-throughput techniques

(i) Ribosome profiling is a high-throughput technique that
captures ribosome-protected fragments (RPFs) from
actively translating RNA molecules (Ingolia et al., 2009).
In this approach, RNase digestion degrades single-stranded
RNA regions that are not protected by ribosomes, generating
~28–30 nucleotide RPFs for sequencing. These fragments are
derived from all translated RNAs, both linear and circular
RNAs. Detection of RPFs spanning a circRNA’s BSJ is a
hallmark of its translational potential (Sun and Li, 2019).
However, ribosome association alone does not confirm
functional protein production (Guttman et al., 2013), as
Ribo-seq signals may include nonproductive translation
events. Thus, additional experimental validation—such as
MS or Western blotting—is essential to verify protein
expression.

(ii) Polysomal fractionation separates translational complexes
via sucrose density gradient centrifugation, fractionating
RNAs based on their ribosomal engagement (Rodriguez-
Martinez and Young-Baird, 2025). RNAs co-sedimenting

TABLE 1 Overview of experimental approaches applied in circRNA translation research.

Method Throughput Advantages Disadvantages

Ribosome profiling High Transcriptome-wide analysis; Ribosome occupancy
and dynamics profiling.

Indirect evidence;
Lacks confirmation of protein expression;
Risk of false positives.

Polysomal fractionation High Established technique;
High reliability through combined transcriptomic and
quantitative analysis.

Limited resolution;
Unable to localize translation start sites;
Risk of false positives.

Mass spectrometry High High sensitivity;
Direct evidence of translation; Proteome-wide analysis.

Limited sensitivity for low-abundance peptides;
Database-dependent.

Western blot Low High specificity;
Intuitive results.

Low throughput;
Antibody design complexity.

Immunoprecipitation-mass spectrometry Low High sensitivity and specificity;
Enrichment of low-abundance proteins.

Antibody dependence;
High cost;
Risk of false positives.
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with multiple ribosomes—polysomes—typically reflect high
translational activity. In this approach, RNA is extracted
from different gradient fractions and subsequently
sequenced to identify circRNAs enriched in polysome-
associated fractions. Like ribosome profiling, this method
captures both linear and circular RNAs; thus, BSJ analysis is
required to confirm circRNA-specific translation. As
ribosome binding alone does not guarantee productive
translation, this technique may yield false-positive results
and requires additional validation (MS or Western blotting).
Compared to ribosome profiling, polysomal fractionation
avoids specialized footprint library construction, offering a
less technically demanding workflow. However, it exhibits
lower sensitivity in detecting low-abundance circRNAs.

(iii) Mass spectrometry provides the most direct evidence for
circRNA translation by identifying peptides derived from
circRNA open reading frames (cORFs) (Fang et al., 2022). In
this proteomic method, total cellular proteins are extracted
and digested into peptides, which are analyzed by MS.
Translation is confirmed when peptides uniquely map to
the BSJ region. MS enables proteome-scale screening for
circRNA-derived peptides but faces sensitivity limitations in
detecting low-abundance species due to ion suppression and
dynamic range constraints.

3.2 Verification techniques for
single circRNA

Although high-throughput techniques like ribosome profiling
and MS offer transcriptome- and proteome-wide perspectives on
circRNA translation, validating the coding capacity of specific
circRNAs requires targeted experimental approaches. These
methods distinguish circRNA-encoded proteins from products of
homologous linear transcripts.

Western blotting verifies circRNA-derived proteins using
custom antibodies against BSJ-spanning epitopes, unique
molecular signatures enabling discrimination from linear
homologous linear isoform products (Song et al., 2023).
Immunoprecipitation coupled with mass spectrometry (IP-MS)
offers a highly sensitive method for validating circRNA-encoded
proteins (Zang et al., 2024). This method employs antibodies
targeting circRNA-specific epitopes to enrich protein, followed by
high-resolution MS identification of BSJ-spanning peptides.
Identification of these junctional peptides provides presumptive
evidence of circRNA-derived translation. Despite its sensitivity
and specificity, the IP-MS approach depends heavily on antibody
specificity and requires substantial technical expertise. Collectively,
these targeted strategies complement bioinformatic and omics
methods for confirming individual circRNA translatability.

4 Databases supporting circRNA
translation research

Growing interest in functional circRNA analysis has established
translation studies as a key focus, driving the accumulation of
diverse translation evidence. Consequently, this information is

now integrated into major circRNA databases, including
specialized resources dedicated to circRNA translation. This
outlines the core data types, features, and applications of these
repositories. As cataloged in Table 2, circRNA translation-related
databases are categorized as: general circRNA databases and
specialized circRNA translation databases. These resources
support mechanistic research while providing valuable datasets
for the development, training, benchmarking, and validation of
computational tools designed for circRNA translation analysis.

(i) CircRNA translation databases curate evidence related to the
coding potential of circRNAs. These databases typically
provide core details such as genomic loci and host genes,
though they often lack comprehensive functional
characterization. riboCIRC and TransCirc are two databases
integrating computational predictions and experimental
evidence to investigate circRNA translation (Huang et al.,
2021; Li et al., 2021).

riboCIRC specializes in systematically identifying ribosome-
associated circRNAs from public Ribo-seq datasets. It also
predicts circRNA-specific ORFs and annotates key translation
initiation elements, including IRESs and m6A modification sites.
Furthermore, riboCIRC integrates evidence fromMS and provides a
manually curated catalog of experimentally validated translatable
circRNAs from the literature. TransCirc aggregates seven types of
evidence to infer circRNA coding potential. These include: (1)
ribosome and polysome profiling data; (2) experimentally
mapped translation initiation sites (TISs); (3) IRES elements; (4)
m6A modifications; (5) circRNA-specific ORFs length; (6) machine
learning-derived sequence composition scores; and (7) direct MS
detection of peptides spanning back-splice junctions. By integrating
the direct and indirect lines of evidence, TransCirc provides a
comprehensive platform for evaluating translation capacity and
putative products of human circRNAs.

(ii) Comprehensive circRNA databases systematically curate
extensive information on circRNAs, encompassing basic
annotations such as genomic coordinates, nucleotide
sequences, and host genes, as well as functional
annotations (e.g., miRNA/RBP binding sites), and coding
potential assessment.

circRNADb (Chen et al., 2016) offers comprehensive circRNA
annotations and evaluates coding potential through multiple
approaches. It predicts IRES elements using the VIPS algorithm
and identifies ORFs exceeding 300 nt. In addition, it annotates
functional protein domains and post-translational modification sites
using SMART and other established tools. The database also
integrates known human proteins (UniProt 2013_07) with
circRNA-encoded sequences and validates peptides through MS
data from PRIDE. CircInteractome integrates publicly available
circRNA, miRNA, and RBP datasets to facilitate the
bioinformatic analyses of circRNA binding sites and their
potential regulatory roles (Panda et al., 2018). In the context of
circRNA translation, researchers use experimentally validated IRES
sequences from the IRESite database to align with mature circRNA
sequences to identify putative IRES within circRNAs. Another
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representative resource, C2CDB, provides basic annotations for
circRNAs, including sequence and expression profiles, and
incorporates functional features such as miRNA and RBP
interactions, predicted coding potential, and secondary structure
information (Zuo et al., 2024). To assess translational potential,
circRNA sequences are annotated with translational elements based
on data from IRESbase and m6A-Atlas, and putative ORFs are
predicted with in-house algorithms. Moreover, C2CDB integrates
publicly available translatome datasets to provide in vivo evidence of
circRNA translation. circAtlas 3.0 is another large-scale resource
that collected circRNA data from 33 tissue types across 10 vertebrate
species (Wu et al., 2024). To explore the coding capacity of
circRNAs, IRESfinder and ORFfinder are employed to identify
potential IRES elements and coding sequences within circRNAs.

5 Computational methods for circRNA
translation

Computational tools for predicting circRNA translation are
indispensable for advancing circRNA functional studies. In recent
years, numerous bioinformatics methods have been developed to
assess the translational potential of circRNAs, including both novel
circRNA-specific algorithms and linear RNA predictors adapted for
circRNAs. To systematically categorize these methods, we classify
them into two groups: (1) Translational Regulatory Element
Predictors, (2) Integrated circRNA Translation Potential Predictors.

5.1 Translational regulatory element
predictors

The unique translation mechanisms of circRNA involve
multiple elements influencing, including IRESs, m6A
modifications, ORFs, and TISs. Corresponding computational
tools have been developed to detect these elements. For example,

ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/) identifies
ORFs within nucleotide sequences, providing genomic
coordinates and translated peptide sequences. IRESfinder
employs machine learning with framed k-mer features to predict
IRES elements, utilizing a logistic regression model trained on
experimentally validated sequences (Zhao et al., 2018).

Recently, several specialized computational methods have been
developed for analyzing translation-related elements in circRNAs.
Representative tools include CircTIS, TransRM, and DeepCIP
(Barbosa et al., 2023; Zhou et al., 2023; Liu et al., 2025). CircTIS
predicts TISs in circRNAs, considering both canonical (AUG) and non-
canonical, while accounting for circular topology. It employs a weighted
degree string kernel to encode sequence fragments surrounding
candidate TISs, with an SVM classifier estimating TIS probability.
TransRM is the first computational model developed to predict the
effects of base-resolutionm6Amodifications on circRNA translation. Its
weakly supervised learning framework integrates CNNs and BiGRUs.
Sequence features are extracted by two CNN layers, while m6A site
features are encoded using word2vec. The BiGRUmodule estimates the
contribution of each m6A site to translational potential, and a random
forest classifier integrates these features and predicts the likelihood of
circRNA translation. DeepCIP is a multi-model deep learning
framework designed to predict circRNA IRESs by integrating both
sequence and structural information. Sequence features, including one-
hot encoding, nucleotide chemical properties (NCP), and dinucleotide
physicochemical properties (DPCP), are learned using Sentence-State
LSTM (S-LSTM), while secondary structural features are
trained using GCN.

5.2 Integrated circRNA Translation Potential
Predictors

5.2.1 CircRNA-specific predictors
Ribo-Seq enables transcriptome-wide analysis of translated

RNAs, serving as primary evidence for circRNA coding potential

TABLE 2 Databases publicly available for circRNA translation research.

Database Class Description about translation URL Update

CircInteractome Comprehensive IRES elements in circRNA sequences were annotated based on the IRESite
database

https://circinteractome.nia.nih.gov/ 2020

C2CDB Comprehensive Translation-related elements in circRNA sequences were annotated using data
from the IRESbase and m6A-Atlas databases, with all putative ORFs predicted
by custom in-house scripts

http://pengyonglab.com/c2cdb/ 2024

circRNADb Comprehensive The VIPS tool was used to predict IRES elements within each circRNA
sequence, identify the longest ORFs, and characterize the corresponding
translated proteins

http://reprod.njmu.edu.cn/circrnadb 2024

circAtlas 3.0 Comprehensive IRESfinder and ORFfinder were applied to predict IRES elements and coding
peptides in circRNA. sequences

https://ngdc.cncb.ac.cn/circatlas 2023

riboCIRC Translation Translatable circRNAs were categorized into two groups: those predicted
through Ribo-Seq data analysis and those experimentally validated and curated
from the literature, with annotated positions of IRES and m6A modifications

http://ribocirc.com/index.html 2021

TransCirc Translation Multiple complementary methods were integrated to analyze translation
elements and comprehensively evaluate the translational potential of circRNAs,
including ORFs, IRES, m6A modifications, Ribo-Seq data, MS data, translation
initiation sites, and machine learning-based predictions of translation
probability

https://www.biosino.org/transcirc/ 2021
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assessment. Computational tools leveraging Ribo-seq data follow a
unified analytical framework (Figure 3). CircPro identifies protein-
coding circRNAs by integrating total/poly(A)- RNA-Seq and Ribo-
Seq data (Meng et al., 2017). It comprises three key modules: (1)
circRNA detection using CIRI2 from SAM files; (2) coding potential
evaluation via CPC, which provides classification, scores, and
detailed ORF information; and (3) junction read identification
from Ribo-Seq data. CircPro outputs predicted protein sequences
in FASTA format. CircCode identifies circRNAs with coding
potential using Ribo-Seq data (Sun and Li, 2019). Initially, it
employs Trimmomatic, Bowtie, and STAR to preprocess and
align raw Ribo-Seq reads to the reference genome. Unmapped
reads are then mapped to circRNA sequences to detect RMRJ
(Ribo-seq Read-Mapped Regions on Junctions). The mapped
sequences in the circRNAs are classified into coding or
noncoding circRNAs using BASiNET (J48 model). Finally,
translated short peptides are identified as putative coding regions
within circRNAs.

MS-based proteomics provides direct detection of translated
peptides, with its application to circRNA translation illustrated in
Figure 4. MStoCIRC utilizes MS data to evaluate the translational
potential of circRNAs (Cao and Li, 2022). The pipeline begins by
translating the BSJ regions of circRNAs in all six reading frames to

construct a reference peptide database. The raw MS data are then
searched against this database to identify peptides potentially
derived from circRNAs. Next, candidate cORFs are predicted,
and their translational potential is assessed using a Naive Bayes
classifier. The identified peptides are mapped to the predicted cORFs
to determine if they span the BSJ, providing direct evidence of
translation. Finally, overlapping peptides are merged to reconstruct
the longest contiguous peptide sequences spanning the BSJ, offering
strong support for circRNA translation.

Beyond Ribo-seq and MS-dependent approaches, sequence-
based methods enable coding potential assessment of circRNAs
without auxiliary experimental data. cirCodAn predicts circRNA
coding sequences using its GHMM-circ architecture, a customized
adaptation of the generalized hidden Markov model (GHMM)
originally implemented in the CodAn tool for linear transcripts
(Barbosa et al., 2024). GHMM-circ is specifically designed to capture
the distinctive translation mechanism of circRNAs by modeling a
transition from a non-coding state (NOCOD) through a defined
start region into an extended coding state (CDS). This framework
enables the accurate representation of the full circular translation
process. CICADA evaluates circRNAs coding potential through
multi-feature integration (Fan et al., 2025). It first identifies high-
potential coding regions (HPCRs) by employing a sliding window

FIGURE 3
Framework for circRNA translation analysis based on Ribo-seq data. During translation, ribosomes bind to RNA sequences and associated regions
from RNase digestion. After RNase treatment, the ribosome-protected fragments are isolated, used to construct sequencing libraries, and then
sequenced. The resulting reads aremapped to the reference genome, and unmapped readsmay originate from circRNAs. These candidate fragments are
further screened to identify potential translation events derived from circRNAs. Finally, various machine learning methods can be applied to assess
the translational potential of circRNAs in greater detail.
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strategy guided by the ANT scoring matrix, followed by a dynamic
programming algorithm to determine the optimal HPCR. To build
its predictive model, CICADA extracts a comprehensive set of
features from both coding and non-coding circRNA datasets,
including sequence composition, evolutionary conservation,
secondary structure, and mechanistic indicators. These features
are used to train a random forest classifier, which then performs
binary classification to predict whether given circRNAs are likely to
have coding potential. Additionally, CICADA also allows users to
submit sequences and obtain prediction results (http://121.196.54.
69:8002/CICADA/home).

CircPrimer 2.0 is a multi-evidence integration platform for
comprehensive circRNAs annotation and coding potential
assessment (Zhong and Feng, 2022). Beyond its core functions in
circRNA identification and primer design, the tool incorporates
three translational element predictors: ORFs, IRESs, and m6A
modification sites. IRES elements are predicted using TGBoost
models trained on global k-mer frequencies, while m6A
modification sites are identified by mapping high-confidence sites
from the m6A-Atlas database and detecting consensus DRACH/
RRACH motifs directly through the circPrimer 2.0 interface.

5.2.2 Linear RNA Predictors Adapted for circRNAs
In addition to methods specifically developed for circRNAs,

several tools originally designed for linear RNAs—such as CPC2,

CPAT, and CNCI—have also been applied in the early exploration
of circRNA translation potential. CPC2 (Coding Potential
Calculator 2) evaluates the protein-coding potential of transcripts
using four intrinsic features: Fickett TESTCODE score, ORF length,
ORF integrity, and isoelectric point (Kang et al., 2017). It employs an
SVM classifier trained on these features and is available as both a
user-friendly web server and a standalone package (http://cpc2.cbi.
pku.edu.cn). CPAT (Coding-Potential Assessment Tool) is an
alignment-free tool that distinguishes coding from non-coding
transcripts using logistic regression. It incorporates four
sequence-derived features: maximum ORF length, ORF coverage,
Fickett TESTCODE score, and hexamer usage bias (Wang et al.,
2013). CPAT also provides an intuitive web interface that allows
rapid submission and prediction of coding potential (https://wlcb.
oit.uci.edu/cpat/). CNCI (Coding-Non-Coding Index) is designed to
differentiate between coding and non-coding transcripts (Sun et al.,
2013). It employs a sliding window approach (optimized at 150 nt)
to scan all six reading frames and calculates an S-score for each
window. A dynamic programming algorithm then identifies the
Most-Like Coding Sequence (MLCDS) with the highest cumulative
S-score. Features derived from the MLCDS are used to train an SVM
classifier for final coding potential prediction.

Since linear RNA-based methods do not inherently account for
the covalently closed structure of circRNAs, dedicated sequence
preprocessing steps are necessary when adapting these tools for

FIGURE 4
Framework for circRNA translation analysis based on MS. MS directly detects protein fragments (peptides), which are then aligned to reference
protein sequences to determine their origin. For circRNAs, potential circRNA-encoded proteins are first predicted, and the presence of these proteins is
validated by matching the detected fragments to the predicted circRNA-derived sequences.
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circRNA translation prediction. Figure 5 illustrates the general
workflow for this adaptation, including sequence preprocessing,
feature engineering, model architecture, and cORF screening. The
primary goal of preprocessing is to enable the models can capture
sequence features flanking the BSJ, thereby preserving the complete
upstream and downstream context of the circular transcript.
Common preprocessing strategies include tandemly duplicating
the circRNA sequence or appending the 5′ fragment to the 3′
end to simulate circularity in a linear input format. During cORF
identification, all potential start codons are considered, and
candidate cORFs are required to span the BSJ, providing
evidence that the ORF originates from a circular rather than a
linear transcript.

6 Evaluation of circRNA
translation methods

In the previous section, we introduced various tools developed to
predict the translational potential of circRNAs. While some of these
tools can directly assess whether a circRNA is translated into a
protein, others are limited to predicting the presence of translational
regulatory features within the sequence. However, a unified
benchmark for evaluating the performance of circRNA
translation prediction methods is currently lacking.

6.1 Datasets and methods

(i) Benchmark Dataset Construction. To systematically evaluate
the performance of computational methods in predicting
circRNA coding potential, we constructed benchmark
datasets from public resources. Positive samples comprised

circRNAs with definitive translation evidence, while negative
samples consisted of circRNAs lacking any such support. To
ensure rigorous evaluation, all selected data were non-
overlapping with the training sets used by the assessed
methods. Specifically, we sourced positive samples from
two origins: a. Experimentally validated translatable
circRNAs manually curated from literature in the
riboCIRC database; b. Mass spectrometry (MS)-verified
translatable human circRNAs reported by Cao and Li
(2022). After removing sequence redundancies using CD-
HIT (100% identity threshold), we obtained 803 unique
positive sequences. Negative samples were selected from
the TransCirc database, which
catalogs >320,000 circRNAs with systematically annotated
translation potential across seven evidence tiers (including
IRES elements, m6A modifications, and Ribo-seq support).
We extracted circRNAs devoid of all translation evidence
and applied identical CD-HIT filtering, yielding
661 negative sequences.

(ii) Sequence Preprocessing and ORF Filtering. We evaluated
five computational methods: three originally designed for
linear RNA translation analysis and two specialized for
circRNA translation. To enable comparative assessment
within a unified framework, linear RNA methods require
sequence preprocessing for circRNA applicability.
Specifically, each input circRNA sequence (length n)
underwent tandem duplication to generate 3n-length
constructs, simulating circular topology. Following ORF
prediction, to identify circRNA-specific ORFs, only those
spanning the BSJ with an overlap of at least 10 nucleotides
were retained. In contrast, circRNA-specific methods
processed native sequences without preprocessing and
required no post-prediction filtering.

FIGURE 5
The workflow of linear RNA-based prediction tools adapted for circRNAs, including sequence preprocessing, feature engineering, primary network,
and cORF screening.
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(iii) Computational Implementation Details. All methods were
evaluated on a workstation with an Intel Core i7-12700KF
CPU (12 cores, 20 threads), 128 GB RAM, running Ubuntu
20.04 LTS. Python environments were configured according
to each tool’s requirements.

We evaluated five computational tools for circRNA coding
potential prediction. CICADA analysis was performed via its web
server with the “Top 5 ranked ORFs” option. cirCodAn utilized the
vertebrate-specific model (-m models/VERT_circ) for human
circRNAs, reporting only translatable candidates with ORF
coordinates. CPAT employed its human logistic regression model
with coding/noncoding classification at CP ≥ 0.364 cutoff.
CPC2 requires a minimal input FASTA file and an output prefix
to generate coding classifications and ORF positions. CNCI
implemented its vertebrate model (-m ve), outputting coding
labels and ORF coordinates in CNCI. index files.

(iv) Performance Evaluation Metrics. For performance
evaluation, we employed classification metrics, including
accuracy, precision, recall, and F1-score.

Accuracy � TP + TN

TN + FP + TP + FN

Precision � TP

TP + FP

Recall � TP

TP + FN

F1 score � 2 × Precision × Recall

Precision + Recall

6.2 Evaluation results

When applying linear RNA-based methods to predict circRNA
translation potential, we introduced a filtering step aimed at
reducing false-positive predictions. After filtering, all three
evaluated linear RNA-based methods exhibited varying degrees of
decline in accuracy and F1 scores (Table 3). Prior to filtering, CPAT
achieved the highest performance, achieving an accuracy of 87.98%
and an F1-score of 89.29%, outperforming other methods. However,
after applying the filtering criteria, CPAT’s accuracy and F1-score
decreased by 3.35% and 4.01%, respectively, resulting in the loss of
its top-ranking status. Moreover, given the stringent requirements
specific to circRNA translation prediction, the post-filtering
performance metrics of linear RNA-based methods may still
represent an overestimation.

In addition, we systematically compared several computational
methods that utilize only circRNA sequences as input, with the
results summarized in Figure 6. Among them, cirCodAn
consistently demonstrated the best overall performance, achieving
the highest accuracy (85.31%), recall (84.06%), and F1-score
(86.26%). CPAT ranked second in accuracy, recall, and F1-score,
reflecting stable and reliable performance. Notably, CPC2 achieved
the highest precision, indicating superior specificity in its
predictions. Interestingly, CICADA—despite being specifically
developed based on circRNA features—demonstrated relatively
lower performance, achieving an accuracy of 73.22% and an

F1-score of 73.15%. This discrepancy may stem from the
differences in the training data of CICADA. Its positive samples
comprised experimentally validated circRNAs from the TransCirc
database, while negative samples consisted of intronic sequences.
However, the negative set used during evaluation comprised
circRNAs from TransCirc lacking experimental evidence of
translation; these sequences derived from exonic regions, and
they present a greater challenge for accurate discrimination,
potentially impairing the model’s predictive performance.
Regarding computational efficiency, all methods completed their
computations within 3 minutes (Table 4), with CPC2 exhibiting the
fastest runtime and CNCI the slowest. Due to its complex
deployment requirements, CICADA was run via its online web
server, resulting in runtime exceeding 1 day. Taken together, these
findings suggest that cirCodAn currently represents the most
reliable tool for assessing the translational potential of circRNAs.

Artificial intelligence technologies have been widely employed in
the study of circRNA translation. Initial approaches, primarily based
on linear RNA, utilized conventional machine learning algorithms
such as SVM and logistic regression. These methods depend on
handcrafted features (e.g., k-mer composition, ORF length, or GC
content), which are biologically interpretable and directly related to
RNA translation mechanisms. With the advancement of
computational methods, more recent methods have increasingly
incorporated deep learning architectures, such as CNNs, LSTMs,
and GCNs. These models automatically learn complex
representations from raw sequence and structural data, thereby
obviating the need for manual feature engineering. Nonetheless,
deep learning methods often face challenges such as reduced
interpretability, higher demands for large-scale annotated
datasets, and increased computational resource requirements.

Given the limited availability of well-annotated circRNA
translation data, traditional machine-learning approaches retain
utility for circRNA translation prediction. Tools such as
cirCodAn and CNCI exemplify such methods, but due to scarce
high-quality circRNA training data coupled with the critical need for
prediction accuracy, fine-tuning large language models (LLMs)
presents a promising strategy. LLMs are advanced deep learning
architectures pretrained on massive datasets, enabling them to

TABLE 3 Comparison of the performance of linear RNA-based analysis
methods prior to and following filtering.

Method Data
Status

Accuracy Precision Recall F1
score

CNCI Raw 84.90% 95.05% 76.46% 84.75%

Filtered 80.19% 94.61% 67.75% 78.96%

Difference 4.71% 0.44% 8.72% 5.79%

CPAT Raw 87.98% 87.28% 91.41% 89.29%

Filtered 84.63% 89.81% 81.20% 85.28%

Difference 3.35% −2.53% 10.21% 4.01%

CPC2 Raw 80.40% 96.24% 66.87% 78.91%

Filtered 79.17% 96.80% 64.13% 77.15%

Difference 1.23% −0.57% 2.74% 1.76%

Frontiers in Genetics frontiersin.org11

Zhang et al. 10.3389/fgene.2025.1654305

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1654305


capture complex contextual representations and transfer knowledge
across tasks (Kim et al., 2023). This facilitates robust performance
through fine-tuning even with limited task-specific data. Recently
developed RNA-specific LLMs—such as RNA-FM and
RNAErnie—provide new opportunities to improve circRNA
translation prediction (Shen et al., 2024; Wang et al., 2024). Fine-
tuning these large pretrained models may significantly enhance
performance in circRNA translation analysis, particularly under
data-constrained conditions.

7 Concluding remarks

circRNA translation has emerged as a frontier in RNA biology,
with increasing evidence revealing its pivotal roles in cellular
regulation and disease pathogenesis. Several circRNA-encoded
proteins have shown significant promise as biomarkers and
therapeutic targets in cancer and other major diseases (Lu et al.,
2021; Wen et al., 2022). In this review, we first present a
comprehensive overview of circRNA biogenesis, translation
mechanisms, and relevant databases that provide the theoretical
framework and data foundation for method development.
Subsequently, we introduce existing circRNA translation analysis

tools along with their underlying methodologies, and conduct a
systematic performance comparison of various sequence-based
prediction methods using a unified benchmark dataset.

Despite recent advances, key limitations constrain the accuracy
and generalizability of circRNA translation prediction. Current
bioinformatic tools predominantly rely on high-throughput
sequencing data (e.g., Ribo-seq, mass spectrometry),
which—while powerful—introduce substantial costs and
analytical complexity. Simultaneously, machine learning
approaches for direct sequence-based prediction face multifaceted
constraints.

A limitation stems from inaccurate full-length circRNA
sequences generated through short-read assembly (Huang et al.,
2021; Li et al., 2021). Most entries in translational databases derive
from short-read assembly, where misassembly sequences may
propagate biases into downstream predictions. Long-read
sequencing technologies address this limitation by capturing
complete circRNA isoforms (Hou et al., 2023), enabling precise
identification of BSJ-spanning ORFs and regulatory motifs essential
for translation initiation.

The environmental dependency of circRNA translation
further complicates predictions: translation occurs exclusively
during cellular stress, differentiation, or disease states in many
cases. Bulk sequencing methods ignore such heterogeneity by
averaging signals across cell populations, masking rare
translational events. Integrated single-cell RNA sequencing
and proteomics will resolve this by detecting cell-type-specific
circRNA-derived peptides with unprecedented resolution (Peng
et al., 2023). In addition, low-abundance circRNA peptides often
evade detection in conventional bulk MS/Ribo-seq datasets, this
approach will provide high-quality training data for
predictive models.

The high cost of experimental validation further limits access to
high-quality, well-annotated circRNA datasets. In terms of data, in
silico data augmentation offers a practical solution

TABLE 4 Runtime Comparison of circRNA Translation Prediction Methods.

Method Runtime

cirCodAn 5.191s

CNCI 164.164s

CPAT 3.194s

CPC2 2.464s

CICADA -

FIGURE 6
Performance evaluation of circRNA translation analysis methods.

Frontiers in Genetics frontiersin.org12

Zhang et al. 10.3389/fgene.2025.1654305

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1654305


(Shorten et al., 2021): by exploiting the covalently closed circular
topology of circRNAs, the circular sequence can be virtually broken
at any position along the loop, generating multiple linear sequence
variants of the same molecule. This approach artificially expands
training samples for both coding and non-coding circRNAs,
enhancing model robustness without incurring experimental
costs. In terms of model architecture, transfer learning represents
a compelling strategy to enhance model generalizability. In this
framework, LLMs can be pre-trained on extensive linear RNA
datasets to capture generalizable sequence and structural features,
and subsequently fine-tuned on circRNA-specific tasks to exploit
shared biological characteristics (Thirunavukarasu et al., 2023).
Furthermore, implementing multi-task learning architectures that
jointly optimize auxiliary objectives—such as ORF identification or
the detection of cis-regulatory elements (e.g., IRES motifs and m6A
modification sites)—can promote the learning of robust, shared
representations (Yang, 2024). Such approaches have the potential to
substantially improve prediction accuracy and model robustness
across diverse biological contexts.

In summary, circRNA translation analysis remains
challenging in several aspects, including data integration and
model optimization. However, with ongoing advancements in
computational approaches and experimental technologies, more
comprehensive and accurate identification of circRNA
translation events is anticipated, facilitating deeper insights
into disease mechanisms and broader clinical applications.
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