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Objective: As a leading cause of cancer-related mortality, liver cancer was
associated with metabolic dysregulation. We aimed to identify metabolism-
related prognostic biomarkers and therapeutic targets.
Methods: Transcriptomic data from TCGA were analyzed using EdgeR to identify
differentially expressed genes (DEGs). WGCNA was applied to unveil the
metabolism-related genes in liver cancer. Machine learning algorithms (RF,
SVM, LASSO) refined marker genes. GSEA and ssGSEA were conducted to
identify pathway associations and immune interactions of marker genes.
DGIdb database predicted candidate therapeutics targeting these biomarkers.
The independent queue (GSE54236) was verified as an external dataset. RT-PCR
validated gene expression in clinical samples.
Results: A total of 234 metabolism-related genes were identified in liver cancer.
Through undergoing machine learning by RF, SVM, and LASSO algorithms, seven
marker genes (ACADS, ALDH8A1, COX4I2, CYP2C8, DBH, NDST3, and PLA2G6)
were obtained. Except for PLA2G6, the other genes were correlated with the
survival of patients with liver cancer and immune cells infiltration. Additionally,
ACADS, ALDH8A1, CYP2C8, DBH, and NDST3 were downregulated, and
COX4I2 was upregulated in dataset of GSE54236, which were consist with
those in TCGA database. However, RT-PCR validation in 10 paired clinical
samples confirmed significant downregulation of ACADS, ALDH8A1, COX4I2,
CYP2C8, DBH, and NDST3 in tumor tissues (all P < 0.05). Immune infiltration
analysis revealed these genes might influence immune cell infiltration in the
tumor microenvironment. And the candidate drugs were unveiled, including
PAZOPANIB, SUMATRIPTAN, ETOPOSIDE, etc.
Conclusion: The metabolism-related biomarkers ACADS, ALDH8A1, COX4I2,
CYP2C8, DBH, and NDST3 demonstrated significant potential for predicting
liver cancer prognosis and may serve as candidate therapeutic targets.
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Introduction

Liver cancer is the top 5 leading cause of death related to cancer,
having affected 905,700 individuals worldwide in 2020. It is
predicted to affect 1.4 million persons by 2040 (Rumgay et al.,
2022). Recent data reveal that the 5-year relative survival rate for
liver cancer remains alarmingly low at approximately 20%, with only
marginal improvements over the past decade (Tapper and Parikh,
2023; Chen et al., 2024). The risk factors for liver cancer include viral
hepatitis, alcohol, and cirrhosis, etc. (Konyn et al., 2021). Even
though surgery is the primary treatment for early-stage liver cancer,
postoperative mortality ranges from 20% to 40% (Maki and
Hasegawa, 2022). In addition, most patients are diagnosed at
end-stage, where tyrosine kinase inhibitors (TKIs) are applicable.
However, TKIs are available for only 30% of patients and the
survival is slightly improved (Chidambaranathan-Reghupaty
et al., 2021). It has been reported that immunosuppression,
metabolic alterations, and inflammation, etc. contribute to the
progression of liver cancer (Li et al., 2021). However, it is not
fully understood. Further investigation of the underlying
mechanisms is valuable to identify candidate therapeutic targets
against liver cancer.

Metabolic reprogramming is recognized as a key hallmark of
hepatocellular carcinoma (HCC), and it plays a crucial role in
promoting cancer cell proliferation and survival (Bergers and
Fendt, 2021). Alterations in metabolic pathways, including
glycolysis (Zhang D. et al., 2019), lipid metabolism (Wu et al.,
2024), and amino acid catabolism (Mossmann et al., 2023),
enable tumor cells to meet the high demands of biosynthesis
and energy production. In HCC, increased glycolytic flux (the
Warburg effect) and changes in mitochondrial function facilitate
tumor growth under both normoxic and hypoxic conditions
(Paul et al., 2022). Key regulatory enzymes such as pyruvate
kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) have
been identified as critical factors in driving HCC progression.
Additionally, the accumulation of reactive oxygen species (ROS)
and the altered balance of oxidative phosphorylation further
contribute to genomic instability and tumor metastasis.
Critical genes involved in the dysregulation of these metabolic
pathways, for instance, ALDH8A1 (Aldehyde Dehydrogenase
1 Family, Member A1) is involved in detoxifying aldehydes,
with its altered expression linked to tumor progression and
chemotherapy resistance (He et al., 2020). COX4I2
(Cytochrome C Oxidase Subunit 4, Isoform 1), part of the
mitochondrial electron transport chain, is vital for oxidative
phosphorylation, and its dysfunction is associated with
increased ROS production in HCC (Xue et al., 2023). These
metabolic genes contribute to the complex metabolic
phenotype of HCC and offer valuable insights into potential
therapeutic targets. Understanding how these genes interact can
pave the way for new treatment strategies and diagnostic
approaches, emphasizing the importance of metabolic
interventions in HCC therapy.

Machine learning offers an efficient approach to identify the
genes that have critical roles in the progression of disease. Some
algorithms such as Least Absolute Shrinkage and Selection Operator
(LASSO), Support Vector Machine (SVM), and RandomForest are
usually used to carry out the machine learning. In addition, the

Weighted Gene Co-expression Network Analysis (WGCNA) can
identify hub genes which are significantly correlated with the
disease. Hence, these methods accelerate discovery of key genes
associated with disease. Previously, machine learning has been used
to seek out the biomarkers in liver cancer (Lv et al., 2023). However,
no study has identified metabolism-related marker genes in liver
cancer using machine learning. In our study, we aimed to perform
machine learning to identify the metabolism-related marker genes in
liver cancer. A total of 7 genes (ACADS, ALDH8A1, COX4I2,
CYP2C8, DBH, NDST3, and PLA2G6) were obtained. By
investigating their expressions and correlations with survival, as
well as unveiling the related pathways and their associations with
immune cells infiltration, the potential roles of these metabolism-
related marker genes were uncovered.

Materials and methods

Data collection and processing

The transcriptional profiles of liver cancer were downloaded
from the TCGA database, including 374 samples with liver cancer
and 50 normal samples. The raw data were converted into an
expression matrix, which was normalized with transcripts per
million (TPM). The dataset of GSE54236 was obtained from the
Gene Expression Omnibus database, comprising 81 tumor samples
and 89 adjacent normal tissue samples. Raw expression data
underwent log2 transformation followed by quantile
normalization to minimize technical variations between samples.
Probes were mapped to gene symbols, and duplicate gene entries
were resolved by retaining the probe with the highest mean
expression intensity per gene, yielding unique gene-level
expression profiles. Normalized expression data were subjected to
Student’s t-tests to identify differentially expressed genes (DEGs)
between tumor and normal groups. Genes with an absolute log2 fold
change (FC) > 1 and p-value <0.05 were considered statistically
significant. Receiver Operating Characteristic (ROC) analysis was
performed using GraphPad Prism software. And the area under the
ROC curve (AUC) was used to indicate the diagnostic potential for
distinguishing tumor from normal tissues. A total of
5871 metabolism-related genes were obtained from the KOBAS
software using the keyword “metabolic pathways”.

Identification of differentially expressed
genes (DEGs) in liver cancer

The “edgeR” (3.42.4) package in R (4.3.1) was used to identify
the DEGs in liver cancer by setting the criteria as p < 0.05 and |
log2FC|>1. And statistical significance was defined as a false
discovery rate (FDR) < 0.05.

Functional enrichment analyses

The gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed using the
KOBA software by setting the p-value less than 0.05.
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Weighted gene co-expression network
analysis (WGCNA)

Gene co-expression networks were constructed using
WGCNA (v1.72-1) in R (4.3.1) to identify modules of co-
expressed genes and their associations with cancer phenotype
(Xu et al., 2023). Initially, an appropriate soft thresholding power
(β) was determined to transform the gene correlation matrix into
a weighted adjacency matrix, adhering to scale-free topology
criteria (selecting the smallest β where the scale-free topology
model fitted R2 exceeded 0.9) to approximate a scale-free network
while preserving connectivity information. Using this β, the
adjacency matrix was calculated and subsequently transformed
into a Topological Overlap Matrix (TOM) to account for shared
neighbors. Genes were then hierarchically clustered based on
TOM dissimilarity, and dynamic tree cutting with a merging
threshold (set to 0.4) groups closely related branches into distinct
modules, each represented by a unique color and potentially
sharing functional coherence. The module eigengene (ME),
representing the first principal component of a module’s gene
expression, was extracted for each module. Module-trait
association analysis assessed the correlation (using Pearson’s
correlation coefficient) and its significance (p-value) between
each ME and the binary phenotypic trait of cancer status (disease
vs. control). Modules demonstrating significant association
(p-value <0.05) with cancer status were prioritized for further
investigation. Relationships between modules were also analyzed
via eigengene network analysis. Within the cancer-associated
modules, hub genes functionally linked to the module’s
behavior and the trait were identified based on high module
membership (MM, correlation between a gene’s expression and
the module eigengene, MM > 0.6) and high gene significance (GS,
absolute correlation between the gene’s expression and the cancer
trait, GS > 0.5), resulting in a set of candidate genes potentially
related to cancer pathogenesis.

Identification of metabolism-related DEGs
in liver cancer

The DEGs of liver cancer, hub genes identified by the
WGCNA, and the metabolism-related genes obtained from the
KOBAS software were used for the Venn analysis. The
intersecting genes were considered as the metabolism-related
DEGs in liver cancer.

Machine learning algorithms

To identify crucial genes associated with metabolic
alterations in cancer, we used three machine learning
algorithms: Random Forest (RF), Support Vector Machine
(SVM), and Least Absolute Shrinkage and Selection Operator
(LASSO) regression. These models were applied to the
234 metabolism-related genes obtained from previous
differential analysis and WGCNA. And a total of 424 samples
were randomly split into training and test sets in a 3:7 ratio. All
models were implemented in R (4.3.1) with 10-fold cross-

validation to ensure robustness. The intersection of genes
selected by the three models served as marker genes for liver
cancer onset, aiming to identify the key genes that can truly
distinguish cancer patients from healthy individuals.

RF was performed using the RandomForest package. A 10-
fold cross-validation was applied were used to ensure robust
model performance. Feature genes were selected based on the
following criteria: MeanDecreaseAccuracy >0 (improvement in
classification accuracy) and MeanDecreaseGini >0 (contribution
to node purity), which indicates the importance of each gene in
differentiating the two groups. Model performance was
internally validated through out-of-bag (OOB) error
estimation during the 10-fold CV process. The model
parameters were set as: method = “rf”, summaryFunction =
“twoClassSummary”, and tuneLength = “10”.

The “kernlab” package was employed to implement the SVM. A
10-fold cross-validation approach was used. Linear and RBF kernels
was tested by varying loss function parameters in a range from 0 to
1 to train the model. Feature genes were selected based on their
performance in the model, ensuring that only those consistently
contributed to classification accuracy across CV folds were retained.
The model parameters were set as: method = “svmRadial”,
summaryFunction = “twoClassSummary”, Cost = “seq (0.1, 2)”,
length = “10”, and sigma = “0.1”.

For LASSO regression, the “glmnet” and “foreign” R packages
were used. cv.glmnet with binomial family for binary classification
was employed for training. Features with non-zero coefficients were
selected as the final set of important genes, which were used for
further analysis and model development. The model parameters
were set as: Family = “binomial”, alpha = “1”, type.measure = “class”,
and nfolds = “10”.

Gene set enrichment analysis (GSEA)

GSEA was performed using the “clusterProfiler” package to
assess the enrichment of marker genes in predefined gene sets.
The background datasets utilized in this analysis were derived
from the Gene Ontology (GO, 2018) and Kyoto Encyclopedia of
Genes and Genomes (KEGG, 2019) collections. The analysis was
conducted in three major steps: (1) Calculation of Enrichment
Score (ES), the ES for each gene set was calculated by ranking all
genes in the dataset based on their correlation with the
phenotype of interest. (2) Estimation of Significance of
Enrichment Score, to determine the statistical significance of
the observed ES, a permutation-based approach was applied.
Gene set enrichment scores were computed for a large number of
random gene set permutations, generating a null distribution of
ES values. The empirical P was then derived by comparing the
observed ES to the null distribution. A lower P indicates a more
significant enrichment of the gene set. (3) Multiple Hypothesis
Testing, given the large number of gene sets tested, multiple
hypothesis testing correction was applied using the Benjamini-
Hochberg (BH) method to control the False Discovery Rate
(FDR). Gene sets with an FDR-adjusted P < 0.05 were considered
significantly enriched. This adjustment ensures that the analysis
accounts for the inherent multiple testing burden, minimizing
the likelihood of false-positive findings.
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Survival

Survival analysis of marker genes was conducted based on their
expression levels. The expression levels of marker genes were
categorized into two groups: high and low expression. The high
expression group consisted of samples with expression levels above
the median, while the low expression group included samples with
expression levels below the median. For survival analysis, the marker
gene expression levels were correlated with the survival time of cancer
patients. Kaplan-Meier survival curves were generated to evaluate the
association between marker gene expression and patient survival
outcomes. The hazard ratios (HR) and log-rank P were calculated to
assess the impact of gene expression on overall survival. The analysis
was performed using the survival package in R, with the survfit function
employed to fit the survival model. The resulting survival curves were
visualized using the ggsurvplot function from the survminer R package,
which provides a graphical representation of the survival data.

Patients and sample processing

Clinical specimens comprising cancerous tissues (n = 10) and
histologically normal hepatic tissues (n = 10) were acquired from
10 patients with liver cancer in Sun Yat-Sen Memorial Hospital
following diagnostic confirmation. All samples were collected before
therapeutic interventions. Specimens underwent immediate
cryopreservation through liquid nitrogen immersion followed by
long-term storage at −80 °C until experimental processing. The
patients exclusively consisted of HBV-positive individuals with no
recorded alcohol usage history, exhibiting tumor progression stages
between II and IIIC. This investigation received ethical validation from
the Institutional Review Board of Sun Yat-Sen Memorial Hospital
(Authorization Code: SYSKY-2023-010-01). And the informed
consent form was obtained from all patients. And all methods were
performed in accordance with the guidelines and regulations of the
Institutional Review Board of Sun Yat-Sen Memorial Hospital.

RNA extraction and quantitative real-
time PCR

Total RNA isolation was performed employing TRIzol reagent
(R21086, Yuanye, Shanghai, China) following the manufacturer’s
protocol. RNA quantification was conducted via spectrophotometric
analysis using a Nanodrop 2000 system (Invitrogen). For cDNA
synthesis, 1 μg of purified RNA underwent reverse transcription
with the ABScript Neo RT MasterMix for qPCR with the gDNA
Remover Kit (RK20433, ABclonal, Wuhan, China). RT-PCR assay
was performed using the ChamQ SYBR qPCR Master Mix (Q311-
02, Vazyme, Nanjing, China) on a CFX96 Real-Time PCR system (Bio-
Rad) with triplicate technical replicates per sample. Primer sequences
are shown in Supplementary Table S1.

Immune cell infiltration analysis

Immune infiltration analysis was performed using the ssGSEA
(single-sample Gene Set Enrichment Analysis) method to compute the

enrichment scores of each immune cell type for every cancer sample.
The IOBR R package was employed, specifically the calculate_sig_score
function, to calculate the enrichment scores based on predefined
immune cell marker gene sets. The ssGSEA method quantifies the
relative abundance of each immune cell type in individual samples,
reflecting immune cell infiltration levels. Subsequently, the correlation
between marker gene expression and immune cell infiltration was
analyzed. The linkET R package, particularly the correlate function,
was used to compute the Pearson correlation coefficients between the
expression levels of marker genes and the enrichment scores of various
immune cell types. This step enabled the identification of significant
associations between marker gene expression and immune cell
infiltration in the tumor microenvironment. Finally, the correlation
between target gene expression and immune cell infiltration was
examined. The expression levels of target genes across different
cancer samples were correlated with the ssGSEA enrichment scores
for each immune cell type, revealing the relationship between the target
gene and immune cell populations in the cancer microenvironment.

Identification of the candidate drugs

To identify candidate drugs targeting marker genes, a list of drugs
associated with target transcription factors (TF) and target genes (TG)
was obtained from the DGIdb v4.0 database. The database was queried
for drugs that interact with the TF-TG pairs corresponding to the
identified marker genes. Two drug-gene interaction networks were
constructed: one depicting the interaction between drugs and target
genes (drug-TG) and another between drugs and transcription factors
(drug-TF). The gene-gene-drug interaction network was visualized to
identify potential drugs that could target the marker genes.

Statistical analysis

EdgeR conducts differential expression analysis using
generalized linear models, Bayesian estimation, and correction of
multiple hypothesis testing. WGCNA analysis utilizes correlation
analysis, hierarchical clustering analysis algorithm for correlation,
and network partitioning algorithm. RF, SVM, and LASSO
regression are used in machine learning. Gene set enrichment
analysis and immune cell infiltration analysis are essentially
based on the calculation of enrichment scores (ES) and
permutation testing algorithms. Survival analysis is based on
Kaplan-Meier method and Cox proportional hazards model.

Results

Identification of the DEGs in liver cancer

In order to identify metabolism-related DEGs in liver cancer, we
first unveiled DEGs in liver cancer by analyzing the data from the
TCGA database. After processing the data by the “edgeR” package of R,
a total of 4296 DEGs were obtained. Among them, 3312 DEGs were
upregulated, and 984 DEGs were downregulated (Supplementary
Figure S1A; Supplementary Table S2), which were displayed as
volcano plot (Supplementary Figure S1B) and heat map
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(Supplementary Figure S1C). As shown in Supplementary Figure S1D,
the expression profiles between tumor samples and normal samples
were obviously grouped, indicating there was a significant difference in
gene expression between the two groups. Then we further investigated
the associated pathways of these DEGs. The results of GO enrichment
analysis indicated these genes were most related to collagen-containing
extracellular matrix, cell adhesion, and integral component of plasma
membrane, etc. (Supplementary Figure S1E). And signal transduction,
cell adhesion, and positive regulation of transcription by RNA
polymerase II, etc. were enriched in the biological process. The
plasma membrane, integral component of the plasma membrane,
and the extracellular space were the most relevant cellular
components. For the molecular function, protein binding, calcium
ion binding, and identical protein binding were active
(Supplementary Figure S1F). And the results of KEGG analysis
revealed these DEGs were associated with metabolic pathways,
pathways in cancer, and PI3K-Akt signaling pathway, ect.
(Supplementary Figure S1G).

Identification of the metabolism-related
DEGs in liver cancer

Subsequently, we attempted to find out the DEGs that were most
correlated with the progress of liver cancer by using WGCNA. As

shown in Figure 1A, the co-expression networks of DEGs were
closer to a scale-free network when the soft threshold power was set
as 8. Then all of the co-expression genes were divided into
19 modules (Figure 1B). And the similarity between different
modules was revealed according to the expression of feature
genes in the module (Figure 1C). Interestingly, the
“MEdarkgreen” module and the “Megrey” module were
significantly correlated with the trait (tumor or normal) of
samples (Figure 1D). And the correlations between module
membership in both modules and cancer significance were
investigated, indicating these two modules were positively related
to liver cancer (Figures 1E,F). The hub DEGs in the “MEdarkgreen”
module (80) and the “Megrey” module (6843) were shown in
Supplementary Table S3.

Then the intersection of DEGs in liver cancer, hub DEGs
identified by the WGCNA, and the metabolism-related genes
obtained from the KOBAS software were used for the venn
analysis. As shown in Figure 2A, a total of 234 DEGs were
obtained and considered as metabolism-related DEGs in liver
cancer (Supplementary Table S4). The expressions of
10 randomly selected DEGs were revealed in Figure 2B.
Additionally, GO and KEGG analyses were performed to unveil
the related pathways of the metabolism-related DEGs, indicating
that the oxidation-reduction process, mitochondrial matrix, and
mitochondrion were most enriched in GO analysis (Figure 2C). And

FIGURE 1
WGCNA analysis of gene in liver cancer. (A) The correlation of soft threshold value with scale independence and mean connectivity. (B) The cluster
dendrogram of modules. (C) The similarity between modules. (D) The correlations of modules with the trait of samples. (E,F) The correlations between
cancer significance and module membership in MEdarkgreen (E) or MEgray module (F).
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metabolic pathways, fatty acid degradation, and valine, leucine, and
isoleucine degradation, etc., were closely associated with the
metabolism-related DEGs (Figure 2D).

Metabolism-related marker DEGs in liver
cancer were revealed by machine learning

In order to identify themetabolism-related marker DEGs in liver
cancer, we then analyzed the 234 metabolism-related DEGs by three
machine learning algorithms, including LASSO, SVM, and RF. As

shown in Figure 3A, when setting the logλ value as −5 and L1 Nrom
as 15, a total of 28 feature genes were obtained by LASSO. Besides,
the SVM algorithm revealed that after 10-fold cross-validation, the
RMSE would be the smallest when the cost was set as 1.0. And
35 feature genes were obtained (Figure 3B) and their importance was
shown in Figure 3C. In addition, the result of RF algorithm showed
that when the number of feature genes was 75, the RMSE value
would be the smallest (Figure 3D). And the metrics such as accuracy,
sensitivity, specificity, precision, F1, and AUC of the three models
were shown in Supplementary Table S5. The importance of the top
30 feature genes obtained by RF algorithm was unveiled in

FIGURE 2
Identification of themetabolism-related DEGs in liver cancer. (A) Venn analysis of DEGs of liver cancer, hub genes identified by theWGCNA, and the
metabolism-related genes. (B) The expression of randomly selected 10 genes. (C)GO analysis of the metabolism-related DEGs. (D) KEGG analysis of the
metabolism-related DEGs.
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Figure 3E. The top 30 feature genes were intersected with the feature
genes derived from LASSO and SVM algorithms, a total of 7 feature
genes were finally obtained, including ACADS, ALDH8A1, COX4I2,
CYP2C8, DBH, NDST3, and PLA2G6 (Figure 3F). And these genes
were considered as the metabolism-related marker DEGs in
liver cancer.

Expression profiles and prognostic
implications of seven marker genes in
liver cancer

We analyzed the expression patterns of the seven above-
identified marker genes (ACADS, ALDH8A1, COX4I2, CYP2C8,
DBH, NDST3, and PLA2G6) in both cancerous and healthy
human tissues to investigate their potential involvement in
liver cancer. The distribution of expression levels is shown in
Figures 4A–G. The expression levels of the marker genes were
significantly altered in tumor samples (represented in red)
compared to the normal samples (represented in blue).
ACADS (Figure 4A), ALDH8A1 (Figure 4B), CYP2C8
(Figure 4D), DBH (Figure 4E), and NDST3 (Figure 4F)
showed significantly reduced expression in tumor tissues
compared with those in normal tissue, suggesting their

potential downregulation in liver cancer. However, COX4I2
(Figure 4C) and PLA2G6 (Figure 4G) exhibited a higher
expression in tumor tissues, with a marked increase compared
to normal tissues (P < 2.22 × 10−16). The correlation between the
expression levels of the marker genes was evaluated through a
pairwise correlation analysis, which is presented in Figure 4H.

The results showed significant correlations between several
genes, highlighting potential interactions within metabolic or
signaling pathways relevant to liver cancer. ALDH8A1 and
CYP2C8, ACADS and CYP2C8, as well as DBH and NDST3,
showed strong positive correlations, suggesting that these genes
may share common regulatory mechanisms or be co-regulated in
the context of liver cancer. COX4I2 exhibited a negative correlation
with several other marker genes, including DBH and ALDH8A1,
indicating distinct roles or opposing effects in the
tumorigenic processes.

To evaluate the prognostic significance of the seven marker
genes in liver cancer, survival analysis was performed based on
the expression levels of the seven marker genes. The survival
curves for each marker gene, divided into high and low
expression groups, are displayed in Figure 6. High expression
of ACADS (Figure 5A, HR = 0.44, 95% CI: 0.31-0.64, log-rank P =
9.3 × 10−6), ALDH8A1 (Figure 5B, HHR = 0.56, 95% CI: 0.37-
0.85, log-rank P = 0.0054), COX4I2 (Figure 5C, HR = 0.61, 95%

FIGURE 3
Metabolism-related marker DEGs in liver cancer were revealed by machine learning. (A) The correlation of log(λ) and GLM deviance and the
correlation of L1 Norm and coefficients in LASSO algorithm. (B) The correlation of cost and RMSE in SVM algorithm. (C) The importance of feature genes in
SVM algorithm. (D) The correlation of randomly selected predictors and RMSE in RF algorithm. (E) The importance of feature genes in RF algorithm. (F)
Venn analysis of feature genes obtained from LASSO, SVM, and RF algorithms.
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CI: 0.41-0.92, log-rank P = 0.016), CYP2C8 (Figure 5D, HR =
0.54, 95% CI: 0.38-0.77, log-rank P = 0.00048), DBH (Figure 5E,
HR = 0.57, 95% CI: 0.40-0.81, log-rank P = 0.0015) and NDST3
(Figure 5F, HR = 0.38, 95% CI: 0.27-0.54, log-rank P = 2 × 10−8)
were associated with significantly better survival outcomes
compared to low expression, suggesting their potential as a
protective factor in liver cancer. While high expression of
PLA2G6 tended to improve survival, the result is not
statistically significant (Figure 5G HR = 0.78, 95% CI: 0.53-
1.14, log-rank P = 0.2), suggesting that its role in liver cancer
prognosis may require further investigation.

Pathway enrichment and immune cell
correlation analysis of marker genes in
liver cancer

To explore the biological pathways potentially associated with
the expression of the seven marker genes in liver cancer, GSEA was
performed (Supplementary Figures S2A–E). The GSEA results for
ACADS (Supplementary Figure S2A) revealed significant
enrichment in the fatty acid degradation pathway, as well as in
fatty acid metabolism, indicating its potential involvement in lipid
metabolism processes within liver cancer. Beta-Alanine metabolism

FIGURE 4
Boxplot of marker gene expression in cancer and healthy individuals with correlation analysis. (A) ACADS, (B) ALDH8A1, (C)COX4I2, (D)CYP2C8, (E)
DHB, (F) NDST3, (G) PLA2G6, (H) Heatmap of Marker Gene Correlations.
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was also significantly enriched, further suggesting a broader role for
ACADS in metabolic reprogramming in liver cancer cells. For
ALDH8A1 (Supplementary Figure S2B), significant enrichment
was observed in the tryptophan metabolism pathway,
highlighting its possible involvement in amino acid metabolism.
For COX4I2 (Supplementary Figure S2C), significant enrichment
was observed in the cardiac muscle contraction. CYP2C8
(Supplementary Figure S2D) was strongly enriched in pathways
related to drug metabolism and chemical carcinogenesis. The
pathway enrichment analysis for DBH (Supplementary Figure
S2E) showed significant enrichment in tyrosine metabolism,
indicating a potential involvement of DBH in the regulation of

neurotransmitter synthesis and cellular signaling pathways, which
are crucial for tumor growth and progression in liver cancer.

To investigate the potential immune-related roles of the seven
identified marker genes in liver cancer, we performed a correlation
analysis between marker gene expression and immune cell
enrichment scores. The correlation matrix of all immune cell
types is shown in Figure 6A. In general, significant correlations
were observed between the expression levels of the marker genes
and immune cell types, indicating that these genes may influence
immune cell infiltration in the tumor microenvironment. ACADS
expression showed significant positive correlations with several
immune cell types (Figure 6B), particularly with Memory B cells,

FIGURE 5
Kaplan-Meier survival curve for liver cancer based onmarker gene expression levels. (A) ACADS, (B) ALDH8A1, (C) COX4I2, (D) CYP2C8; (E) DHB, (F)
NDST3, (G) PLA2G6.
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indicating a potential role in immune regulation.
ALDH8A1 expression was strongly correlated with type 17 T
helper cells and CD56dim natural killer cells (Figure 6C). The
expression of COX4I2 showed significant correlations with
Natural Killer T cells (Figure 6D), indicating that
COX4I2 might be involved in regulating the activation of
innate immune responses. CYP2C8 expression was positively
correlated with immature dendritic cells and gamma delta
T cells (Figure 6E). DBH expression exhibited a strong negative
correlation with CD56dim natural killer cells (Figure 6F),

suggesting that DBH may be involved in regulating the immune
suppression in liver cancer. Lower DBH expression might be
associated with reduced CD56dim natural killer cell activation,
possibly affecting the anti-tumor immune response. The
expression of NDST3 was positively correlated with natural
killer cells and negatively correlated with effector memory
CD4 T cells and type 2 T helper cells (Figure 6G).
PLA2G6 expression showed a significant positive correlation
with gamma delta T cells and a strong negative correlation with
CD56bright natural killer cells (Figure 6H).

FIGURE 6
Correlation betweenmarker gene and immune cells. (A) Boxplot of ssGSEA enrichment scores of immune cells in high and low expression groups of
marker genes, (B) Correlation between ACADS and immune cells, (C) Correlation between ALDH8A1 and immune cells, (D) Correlation between
COX4I2 and immune cells, (E)Correlation between CYP2C8 and immune cells, (F) Correlation between DHB and immune cells, (G) Correlation between
NDST3 and immune cells, (H) Correlation between PLA2G6 and immune cells.
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Gene-gene-drug interaction network

To investigate the potential therapeutic implications of the
identified marker genes in liver cancer, we constructed a gene-
gene-drug interaction network based on the PPI analysis (Protein-
Protein Interaction) and drug-gene interactions obtained from the
DGIdb v4.0 database. The resulting network (Figure 7) integrates the
interactions between the marker genes and several potential
therapeutic drugs. The PPI analysis identified several key gene-
gene interactions within the liver cancer context. These interactions
suggest that the marker genes may collaborate in regulating
metabolic pathways and immune responses relevant to tumor
progression. For example, CYP2C8, ALDH8A1, and ACADS
were shown to interact with proteins involved in drug
metabolism and oxidative stress, indicating their critical roles in
liver cancer metabolism and detoxification.

The drug-gene interaction network revealed several drugs that
target the identified marker genes or their associated proteins. Some
notable drug interactions include: Sorafenib, a frontline therapy for
liver cancer, interacts with CYP2C8, indicating that it may influence
metabolic reprogramming in liver cancer cells. Compound 27 was
found to interact with PLA2G6, CYP2C8, and ALDH8A1, pointing
to its potential in regulating immune responses and the metabolic

balance, and may be useful for liver cancer treatment. Other drugs
such as pazopanib, etoposide and mycophenolate mofetil also
showed interactions with the marker genes, indicating possible
therapeutic repurposing opportunities for liver cancer treatment.
The gene-gene-drug interaction network provides a visual
representation of the relationships between the identified marker
genes, their protein interactions, and the potential drugs that target
these genes or their interacting proteins. The network highlights
several drugs that may be useful for liver cancer treatment by
targeting key molecular pathways involved in metabolic
reprogramming, immune modulation, and tumor progression.
Drugs like sorafenib, simvastatin, and gemcitabine are already in
clinical use for liver cancer and show strong interactions with key
marker genes, reinforcing their therapeutic potential.

Validation of themarker genes’ expression in
liver cancer and an external dataset

To validate the transcriptional patterns of the metabolism-
related marker genes (ACADS, ALDH8A1, COX4I2, CYP2C8,
DBH, NDST3, and PLA2G6), we firstly examined the expression
levels of these seven genes in an external dataset GSE54236. Similar

FIGURE 7
Gene-gene-drug interaction network Diagram.

Frontiers in Genetics frontiersin.org11

Wang et al. 10.3389/fgene.2025.1654459

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1654459


FIGURE 8
Validation of the marker genes’ expression in liver cancer and an external dataset. A-G, Relative expression levels of COX4I2 (A), ACADS (B),
NDST3 (C), DHB (D), CYP2C8 (E), ALDH8A1 (F), and PLA2G6 (G) in the dataset of GSE54236. (H), ROC analysis of COX4I2, ACADS, NDST3, DHB, CYP2C8,
ALDH8A1, and PLA2G6 in the dataset of GSE54236. I-N, Relative mRNA expression of COX4I2 (I), ACADS (J), NDST3 (K), DHB (L), CYP2C8 (M), and
ALDH8A1 (N), n = 10 per group, triplicate technical replicates, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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to TCGA hepatic carcinoma cohort data, the results demonstrated
that ACADS, ALDH8A1, CYP2C8, DBH, and NDST3 were
significantly downregulated, and COX4I2 was upregulated, while
PLA2G6 showed no significant change in liver cancer tissues
compared with those in normal tissues (Figures 8A–G).
Furthermore, ROC analysis revealed ACADS, ALDH8A1,
COX4I2, CYP2C8, DBH, and NDST3 possessed good ability to
predict the occurrence of liver cancer, with AUC value of 0.6936 for
ACADS, 0.7856 for ALDH8A1, 0.6738 for COX4I2, 0.8165 for
CYP2C8, 0.8003 for DBH, and 0.7780 for NDST3 (Figure 8H).
Additionally, we collected 10 paired tumor tissues and adjacent non-
tumorous tissues from liver cancer patients. RT-PCR assays
confirmed significant downregulation of ACADS (95% CI:
4.469 to −3.076), ALDH8A1 (95% CI: 1.611 to −0.6145), COX4I2
(95% CI: 1.719 to −0.5509), CYP2C8 (95% CI: 4690 to −3399), DBH
(95% CI: 53.38 to −35.47), and NDST3 (95% CI: 64.31 to −39.26) in
liver cancer tissues compared with those in the matched peri-
tumoral controls (all P < 0.05) (Figures 8I–N). These results
confirmed that the expression levels of ACADS, ALDH8A1,
COX4I2, CYP2C8, DBH, and NDST3 were decreased in liver
cancer tissues.

Discussion

In this study, we collected transcriptional profiles of liver cancer,
a disease known for its associated metabolic reprogramming. By
integrating transcriptomic data from the TCGA database with
WGCNA, we identified 234 metabolism-related differentially
expressed genes (DEGs). Through machine learning algorithms,
we further refined the list and identified seven key metabolism-
related marker genes-ACADS, ALDH8A1, COX4I2, CYP2C8, DBH,
NDST3, and PLA2G6. These genes were significantly associated
with patient survival and immune cell infiltration, highlighting their
potential as prognostic biomarkers. Notably, the majority of these
genes demonstrated strong prognostic value, with ACADS,
ALDH8A1, CYP2C8, DBH, and NDST3 emerging as protective
factors, while PLA2G6’s expression level did not independently
correlate with overall survival. Actually, differential expression
analysis compared tumor vs. normal tissues, reflecting cancer-
associated dysregulation. Prognostic analysis assessed inter-tumor
heterogeneity among cancer patients. PLA2G6 expression might not
stratify overall survival if its variation is similar across patients with
liver cancer. Additionally, its survival impact might be compensated
by parallel pathways. And the expressions of ACADS, ALDH8A1,
COX4I2, CYP2C8, DBH, and NDST3 were confirmed in the tissues
of patients with liver cancer and an external dataset GSE54236. Our
study unveiled the metabolism-related marker genes in liver cancer
by using machine learning, which were not investigated before.
Additionally, we identified the candidate drugs which would target
these marker genes, providing therapeutic strategies for liver
cancer treatment.

This study depends on the integration of multiple bioinformatics
approaches, including WGCNA, machine learning, and gene-drug
interaction network analysis, to pinpoint metabolic genes that could
serve as new therapeutic targets. Unlike previous studies that often
focus on individual metabolic pathways or specific gene targets, our
approach offers a comprehensive multi-dimensional analysis of

metabolism in liver cancer, providing deeper insights into the
underlying molecular mechanisms. Furthermore, we established a
robust link between these genes and immune cell infiltration, an area
that remains underexplored in liver cancer research. The
identification of potential therapeutic drugs, such as Pazopanib,
Sumatriptan, and Etoposide, provides promising avenues for
repurposing existing drugs in the context of liver cancer
treatment. The integrative WGCNA and tri-modal machine
learning (RF/SVM/LASSO) framework represents a core
methodological advance (Shi et al., 2025). While WGCNA
identifies phenotype-associated gene modules, it may retain non-
specific genes. Sequential machine learning application refines hub
genes through tri-algorithm consensus, mitigating model-specific
biases. Only genes selected by all three algorithms are retained,
ensuring robust, anti-overfitting candidates.

In this study, we identified several marker genes (ACADS,
ALDH8A1, COX4I2, CYP2C8, DBH, and NDST3) as potential
prognostic biomarkers for liver cancer. The expression profiles of
these genes in both tumor and normal tissues revealed distinct
alterations that may offer insights into their roles in the metabolic
reprogramming of liver cancer and their potential as therapeutic
targets. ACADS, which showed significantly reduced expression in
liver cancer tissues, is an enzyme involved in the mitochondrial fatty
acid β-oxidation pathway (Ding et al., 2022). The downregulation of
ACADS in liver cancer may suggest a shift away from fatty acid
oxidation towards other metabolic pathways, such as glycolysis or
lipid biosynthesis, which are commonly upregulated in cancers to
support rapid cell proliferation (Gu et al., 2025; Wang et al., 2022).
Additionally, ACADS was associated with carbohydrate metabolism
in liver cancer (Huang et al., 2024). The loss of ACADS could thus be
a contributing factor to the altered metabolic state of liver cancer
cells. ALDH8A1, which is also downregulated in liver cancer tissues,
is involved in the oxidative metabolism of aldehydes, including fatty
aldehydes (Liu et al., 2024). Similar to ACADS, its reduced
expression might reflect a metabolic shift away from oxidative
pathways and suggest an accumulation of toxic metabolites in
liver cancer. The downregulation of both ALDH8A1 and ACADS
further supports the hypothesis that liver cancer cells adapt their
metabolism to evade cell death mechanisms and support their rapid
growth. COX4I2 is a hypoxia related gene that is associated with
poor prognosis and progression of various cancers by regulating the
respiratory chain. In liver cancer, overexpression of HIF-1α and
HIF-2α is consistently observed, and this phenomenon is linked to
unfavorable clinical prognoses (Wong et al., 2014). Specifically, HIF-
1 reduces reduced electron transfer efficiency across the electron
transport chain by upregulating NDUFA4L2 and COX4I2. This
adaptive metabolic reprogramming serves as a protective
mechanism to mitigate excessive reactive oxygen species (ROS)
accumulation, thereby promoting tumor cell survival under
hypoxic conditions (Fukuda et al., 2007). This hypothesis
requires experimental verification. CYP2C8, which showed lower
expression in liver cancer tissues, is involved in the metabolism of a
variety of endogenous and exogenous compounds, including drugs
and fatty acids (Manhas, 2023; Yue and Hirao, 2023). And it served
as a fatty acid metabolism-related biomarker in liver cancer (Zhao
et al., 2024). CYP2C8 has been linked to both carcinogenesis and
resistance to chemotherapy, making it a potential therapeutic target
for overcoming drug resistance in liver cancer treatment. DBH, an
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enzyme responsible for the conversion of dopamine to
norepinephrine, was also significantly downregulated in liver
cancer. This suggests that neurotransmitter regulation may play a
role in liver cancer progression. Recent studies have shown that
neurotransmitters such as dopamine and norepinephrine can
influence tumor microenvironments and promote cancer cell
survival. The reduced expression of DBH (Bao et al., 2018) in
liver cancer may lead to dysregulation of the adrenergic system,
which is involved in cellular responses to stress, inflammation, and
immune evasion. The decreased expression of NDST3 could impact
the tumor microenvironment and affect key signaling pathways,
such as those related to growth factors and the extracellular matrix,
which are critical for tumor progression and metastasis (Zhang Z.
et al., 2019). Its downregulation may contribute to changes in cell-
cell communication and promote an aggressive phenotype in liver
cancer cells. In the future, we can investigate the transcription
factors and regulatory pathways of these genes through the SE
database (Qian et al., 2023), so as to more effectively reveal
their functions.

The correlation analysis of these marker genes revealed strong
positive correlations between certain genes, such as ALDH8A1 and
CYP2C8, and between ACADS and CYP2C8, suggesting that these
genes may be co-regulated and functionally interconnected within
metabolic or signaling pathways relevant to liver cancer. These
correlations may provide new insights into the underlying
mechanisms that drive liver cancer metabolism and offer novel
therapeutic targets for future clinical interventions. On the other
hand, the negative correlations observed between COX4I2 and other
marker genes, such as DBH and ALDH8A1, highlight the
complexity of the metabolic reprogramming in liver cancer and
suggest that these genes might play distinct or even opposing roles in
the tumorigenic processes.

Our study revealed significant correlations between the
expression levels of the marker genes and immune cell types,
including T cells, B cells, macrophages, and NK cells. The
immune microenvironment was critical for the defense against
tumor cells. Previous research reported that M1 macrophages
and cytotoxic T lymphocytes played an anti-tumor role in the
progression of liver cancer (Cheng et al., 2022). The current
immunotherapeutic approaches mainly target against cytotoxic T
lymphocytes (Kudo, 2019). In addition, type I NK cells would inhibit
the development of liver cancer via pro-inflammatory response
(Oura et al., 2021). Interestingly, we found that ACADS,
ALDH8A1, CYP2C8, DBH, and NDST3 were significantly
correlated with the infiltration of T cells, NK cells, and
macrophages. However, the expressions of these marker genes
were downregulated in liver cancer, indicating that a decrease in
these marker genes may promote the progression of liver cancer by
attenuating the immune response.

Then the gene-gene-drug interaction network was explored to
identify drugs targeting the marker genes and their associated
proteins, revealing potential therapeutic opportunities for liver
cancer treatment. Previous study revealed that Gamabufotalin, a
compound derived from traditional Chinese medicine, inhibited
liver cancer progression by modulating metabolic pathways through
STAMBPL1 downregulation (Zheng et al., 2024). The activity of
CYP2C could be mediated by Oridonin (Yi-Wen et al., 2018).
Notably, we found that sorafenib, a frontline therapy for liver

cancer, interacts with CYP2C8, suggesting that it may influence
metabolic reprogramming in liver cancer cells. Sorafenib is widely
used in clinical practice for hepatocellular carcinoma, and its effects
extend beyond inhibiting tumor angiogenesis, potentially enhancing
its anticancer effects through modulation of metabolic pathways.
Additionally, a compound (compound 27) was found to interact
with PLA2G6, CYP2C8, and ALDH8A1, highlighting its potential in
regulating immune responses and maintaining metabolic balance,
which may be valuable for liver cancer treatment. These interactions
provide a theoretical foundation for developing new therapeutic
strategies targeting immune modulation and metabolic
reprogramming pathways that promote tumor progression. Other
drugs, such as pazopanib, etoposide, and mycophenolate mofetil,
also showed interactions with the marker genes, suggesting potential
repurposing for liver cancer therapy. These drugs may exert their
therapeutic effects by altering metabolic pathways, modulating
immune responses, or regulating the tumor microenvironment to
inhibit cancer cell growth or overcome drug resistance.

The gene-gene-drug interaction network provides a visual
representation of the relationships between the identified marker
genes, their interacting proteins, and the potential drugs targeting
these genes or their associated proteins. Drugs like sorafenib,
simvastatin, and gemcitabine, which are already in clinical use
for liver cancer, exhibit strong interactions with key marker
genes, further reinforcing their therapeutic potential. Our
findings not only deepen the understanding of metabolic
reprogramming, immune modulation, and tumor progression
pathways in liver cancer but also offer important insights into
the development of novel therapeutic strategies and drug
candidates for liver cancer treatment.

Limitation

Even though our study identified seven metabolism-related
marker DEGs in liver cancer, among them, six genes (ACADS,
ALDH8A1, COX4I2, CYP2C8, DBH, NDST3) could predict the
prognosis of liver cancer, the sample type was simple and only
obtained from the TCGA database. In addition, even though we
have confirmed the expression of these six genes in liver cancer
tissues, the effects of these marker genes on the progress of liver
cancer should further confirm by experiments. Furthermore, while
machine learning accelerates the discovery of biomarkers by
processing high-dimensional data, machine learning models are
often “black boxes”—their decision-making processes are opaque.
Moreover, most machine learning models treat features as static
entities, failing to account for temporal or conditional variations.
This limits the ability to identify context-specific biomarkers, which
are crucial for personalized medicine. Consequently, rigorous
biological validation remains imperative.

Conclusion

In summary, our study provides a comprehensive
bioinformatics analysis to identify ACADS, ALDH8A1, COX4I2,
CYP2C8, DBH, and NDST3 as key metabolism-related marker
genes in liver cancer. These genes demonstrate multidimensional
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involvement in metabolic reprogramming and immune
microenvironment modulation, suggesting their dual potential as
prognostic indicators and therapeutic targets. In addition, the
identification of candidate drugs, such as Pazopanib and
Sumatriptan, offers exciting possibilities for the repurposing of
existing drugs and the development of new therapies for liver
cancer. However, future studies must validate their biological
relevance through in vivo functional assays to confirm causal
roles in tumor progression, mechanistic studies elucidating how
these genes affect liver cancer development, and evaluation the
efficiency of candidate drugs in animal models. While our
findings illuminate novel therapeutic avenues targeting metabolic-
immunological synergies, translating this potential into clinical
applications necessitates rigorous functional validation.
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