
Panoramic analysis of the
biological function and clinical
value of SLC38A2 in human
cancers: a study based on
pan-cancer and single-cell
analysis

Mao Liao1†, Yuqing Rao2†, Molan Li3†, Jiayang Guo4, Kun Guo1,
Kaiyue Li4, Rui Zheng4, Yifan Liu4, Qianyi Wang4, Manni Wang4,
Duo Chen5, Meng Zhang4, YongfengWang6, Yanzong Zhao  4*
and Sheng Li  6*
1The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China, 2College of
International Education, Henan University of Technology, Zhengzhou, China, 3The First Hospital &
Clinical Medical School, Lanzhou University, Lanzhou, China, 4School of Stomatology, Lanzhou
University, Lanzhou, China, 5School of Life Science, Lanzhou University, Lanzhou, China, 6The First
People’s Hospital of Lanzhou City, Lanzhou, China

Background: Glutamine metabolic reprogramming is a hallmark of tumor
progression and is highly correlated with poor clinical outcomes. The
excessive uptake of glutamine by tumor cells is a key factor contributing to
widespread invasion, metastasis, and immune suppression. SLC38A2, an amino
acid transporter widely expressed on the surface of tumor cells, has not been
thoroughly studied regarding its function and prognostic significance in tumor
progression. Our objective is to employ bioinformatics methods to conduct a
comprehensive and in-depth analysis of SLC38A2 across various cancers, aiming
to elucidate its role and prognostic value in tumor biology.
Methods: By comprehensively incorporating gene expression and clinical data
from the TCGA tumor database, GTEx database, Human Protein Atlas, and GEO
database, we analyzed the expression profile, mutations, and established
prognostic models for SLC38A2 across various cancers. Additionally, we
investigated the enrichment of SLC38A2 at the single-cell level in 12 types of
cancer and analyzed its temporal expression patterns in different cell subgroups
in breast and pancreatic cancer. We also studied the correlation between
SLC38A2 and glutathione metabolism.
Results: Compared to normal tissues, SLC38A2 exhibits significant differential
expression in 15 types of cancer and serves as a prognostic risk factor in BRCA
(HR = 1.597, p < 0.05), LUAD (HR = 1.650, p < 0.01), MESO (HR = 2.007, p < 0.05),
and PAAD (HR = 1.761, p < 0.05), while acting as a protective factor in KIRC (HR =
0.625, p < 0.05). Furthermore, SLC38A2 is positively correlated with tumor and
stromal cells, negatively correlated with immune cell infiltration, and associated
with immune exhaustion. In BRCA, SLC38A2 is highly expressed during early
differentiation of malignant and stromal cells, and enriched in late differentiation
of immune cells. Moreover, the expression of SLC38A2 shows a general positive
correlation with glutathionemetabolism genes in BRCA, LUAD, MESO, and PAAD,
demonstrating diagnostic value.
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Conclusion: SLC38A2 shows widespread changes in expression patterns within
tumor tissues, making it an effective diagnostic and prognostic biomarker. It is
enriched in malignant cells and tumor-infiltrating stromal cells, while negatively
correlated with the infiltration of many cells involved in anti-tumor immunity.
Targeting SLC38A2 presents a viable therapeutic strategy by inhibiting glutamine
competition and relieving immune suppression in the tumor microenvironment.
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1 Introduction

Malignant tumors, also known as cancer, remain the leading
non-communicable disease threatening human health. Although
molecular targeted therapy and immunotherapy have brought
paradigm shifts in cancer management, the heterogeneity factors
within the tumor microenvironment (TME) challenge standardized
treatment strategies and may render these methods ineffective (Kaur
et al., 2023; Liu et al., 2023; Bejarano et al., 2021). Recently, the role
of nutrient metabolism in TME in tumorigenesis and progression
has received widespread attention (Zhu et al., 2022; Vitale et al.,
2019; Li et al., 2021a). As a crucial component of tumor metabolic
reprogramming, abnormal amino acid metabolism is a hallmark of
many malignant tumors and is associated with tumor cell
proliferation, invasion, and metastasis (Li and Zhang, 2016; Li
and Zhang, 2024; Lieu et al., 2020). Due to the upregulation of
metabolic activity in tumor cells, when the tricarboxylic acid cycle
and anaerobic glycolysis (also known as the Warburg effect) cannot
meet the energy demands of tumor cells, amino acid metabolism is

activated as an alternative fuel source (Keenan and Chi, 2015).
Additionally, some tumor cells excessively uptake amino acids in
TME, creating nutritional competition with other cells in the
stroma, which can lead to the deterioration of the
microenvironment (Lieu et al., 2020). In the reprogramming of
amino acid metabolism in tumor cells, glutamine plays a crucial role.
Compared to normal cells, molecules involved in the regulation of
glutamine metabolism in tumor cells exhibit widespread abnormal
expression, such as Myc (Gao et al., 2009), p53 (Tran et al., 2017),
Ras (Dilshara et al., 2017), and hypoxia-inducible factor (HIF)
(Faubert et al., 2014). Glutamine not only provides energy and
raw materials for macromolecule synthesis in tumor cells, but its
metabolic pathways also generate glutathione (GSH) and
nicotinamide adenine dinucleotide phosphate (NADPH). These
metabolites help eliminate excess reactive oxygen species (ROS)
within the tumor cells, thereby supporting their survival (Niu et al.,
2021; Kennedy et al., 2020).

Recent studies indicate that tumor cells competitively sequester
glutamine from the TME, affecting the activity of other cells in the
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tumor stroma and thereby influencing anti-tumor immune
responses (Koppula et al., 2021; Wang et al., 2024; Leone et al.,
2019). For instance, in competitive glutamine uptake in kidney renal
clear cell carcinoma (KIRC), the deprivation of extracellular
glutamine activates HIF-1α, leading to the induction of tumor-
infiltrating macrophages to secrete IL-23. This further promotes the
proliferation and activation of regulatory T cells (Tregs), ultimately
weakening the anti-tumor immune response (Fu et al., 2019).
Summarizing the aforementioned points, the enrichment of
glutamine transporters may serve as a marker of tumor
progression and holds potential as a target for cancer therapy.
Solute carrier family 38 member A2 (SLC38A2) is a glutamine

transporter closely linked to the high accumulation of glutamine
within tumor cells (Figure 1C) (Menchini and Chaudhry, 2019;
Broer et al., 2016). Our research hypothesizes that
SLC38A2 functions as a broadly significant immune and
prognostic biomarker in cancer, potentially serving as a target for
therapeutic intervention. This hypothesis is supported by evidence
from several studies. For example, Chuansheng et al. has
demonstrated that the expression of SLC38A2 and the
subsequent glutamine-mediated metabolic crosstalk between
tumor cells and conventional dendritic cells type 1 (cDC1) form
the basis of tumor immune evasion (Guo et al., 2023). Addintionally,
several studies underscore the pivotal role of SLC38A2 in the clinical

FIGURE 1
(A) Expression differences of the SLC38A2 gene in cancer tissues and normal tissues (unpaired samples). (B) Expression differences of the SLC38A2
gene in cancer tissues and normal tissues (paired samples). (C) Predicted protein structure of SLC38A2, with blue indicating high confidence. (D) Gene
mutations of SLC38A2 in various types of cancer. (E) Expression of SLC38A2 in normal lung alveoli and lung adenocarcinoma tissues. (F) Expression of
SLC38A2 in normal liver and hepatocellular carcinoma tissues. (G) Expression of SLC38A2 in normal breast and breast cancer tissues. (H) Expression
of SLC38A2 in normal oral epithelial tissue and head and neck cancer (oral squamous cell carcinoma) tissue. (I) Expression of SLC38A2 in normal
pancreatic tissue and pancreatic cancer tissue. (J) Expression of SLC38A2 in normal colon tissue and colon cancer tissue.
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outcomes of various cancers. Mengsen et al. conducted a
comprehensive 5-year pan-cancer cohort analysis, revealing that
the overexpression of SLC38A2 is emblematic of cancer’s metabolic
characteristics and correlates with diminished survival rates (Huang
et al., 2020). Similarly, Liang et al. identified SLC38A2 as a
prognostic risk factor in gastric cancer, associating it with
immune infiltration and the activation of M2 macrophages (Zhu
et al., 2023). Although these findings suggest an association between
SLC38A2 and cancer prognosis, TME, and immunity, there are
limitations. The primary gaps lie in the analysis of specific cancer
types and biological effects, necessitating further research for
validation.

Therefore, we integrated tumor gene and protein expression
data from the TCGA, GTEx, Human Protein Atlas (HPA), and GEO
databases. And by the using of bioinformatics methods, we
comprehensively analyzed these data to elucidate the biological
functions of SLC38A2 across various cancer types and its
associations with tumor immunity and clinical prognosis.

2 Materials and methods

2.1 Cancer names and abbreviations

The cancer names and abbreviations involved in this study
include Adrenocortical Carcinoma (ACC), Bladder Urothelial
Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Cervical
Squamous Cell Carcinoma and Endocervical Adenocarcinoma
(CESC), Cholangiocarcinoma (CHOL), Colon Adenocarcinoma
(COAD), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
(DLBC), Esophageal Carcinoma (ESCA), Glioblastoma
Multiforme (GBM), Head and Neck Squamous Cell Carcinoma
(HNSC), Kidney Chromophobe (KICH), Kidney Renal Clear Cell
Carcinoma (KIRC), Kidney Renal Papillary Cell Carcinoma (KIRP),
Acute Myeloid Leukemia (LAML), Brain Lower Grade Glioma
(LGG), Liver Hepatocellular Carcinoma (LIHC), Lung
Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma
(LUSC), Mesothelioma (MESO), Non-Small Cell Lung Cancer
(NSCLC), Ovarian Serous Cystadenocarcinoma (OV), Pancreatic
Adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma
(PCPG), Prostate Adenocarcinoma (PRAD), Rectum
Adenocarcinoma (READ), Sarcoma (SARC), Skin Cutaneous
Melanoma (SKCM), Stomach Adenocarcinoma (STAD),
Testicular Germ Cell Tumors (TGCT), Thyroid Carcinoma
(THCA), Thymoma (THYM), Uterine Corpus Endometrial
Carcinoma (UCEC), Uterine Carcinosarcoma (UCS), and Uveal
Melanoma (UVM).

2.2 Data and sample information

The foundational data for this study were sourced from the
TCGA and GTEx databases, comprising 15,901 normal or adjacent
tissue samples and 10,201 tumor tissue samples. These include gene
expression data for SLC38A2 and clinical data from patients.
Additionally, single-cell sequencing data from the National
Institutes of Health (NIH) were utilized, covering datasets
GSE176078, GSE168652, GSE138709, GSE166555, GSE162631,

GSE171306, GSE166635, GSE162025, GSE162708, and
GSE141445. Moreover, data from the omicsdi database
(EMTAB6149) and the NGDC database (CRA001160) were
included. The study also employed immunohistochemistry slides
and protein 3D structure data from the Human Protein
Atlas (HPA).

For TCGA data, we downloaded and organized RNAseq data
from 33 cancer projects processed by the STAR pipeline and
extracted the data in TPM format. We discarded data without
corresponding clinical information and converted it to log2(value
+ 1). For expression matrices downloaded from the GEO database,
we used the ComBat_Seq function from the “sva” package to remove
batch effects, preserving grouping information using the
mod option.

2.3 Expression profile of SLC38A2 in
33 common types of cancer

From the TCGA expression database, we used the R packages
“ggplot2”, “stats”, and “car” for data visualization, and apply the
Wilcoxon rank sum test for statistical analysis.

2.4 Analysis of single-cell expression profile
of SLC38A2

The scRNA-seq data for single-cell analysis was derived from
12 datasets, and the expression matrix transformation and batch
effect correction were completed as described earlier. Subsequently,
the “Seurat” package was used for quality control. Specifically, genes
expressed in at least three cells and cells with at least 200 genes
expressed were extracted for data initialization. During the filtering
stage, cells with gene counts between 200 and 7,500 were retained,
and cells with mitochondrial gene proportions exceeding 20% were
removed (Zhang et al., 2024). The “FindVariableFeatures” function
was used to select 3,000 highly variable genes for analysis, the
“FindNeighbors” function was used to construct a KNN graph
based on the top 30 PCs, and UMAP was employed for
visualization. For cell annotation, the “FindAllMarkers” function
was used to identify differentially expressed genes for each cluster
and perform automatic annotation. Additionally, the “FeaturePlot”
function was used to label and visualize the expression of SLC38A2.

2.5 Analysis of correlation between
SLC38A2 and clinical outcomes

For the forest plot of SLC38A2 across various cancers, select OS
(Overall Survival), DSS (Disease-Specific Survival), and PFI
(Progression-Free Interval) as outcome variables. Use the
“survival” package to test the proportional hazards assumption
and perform univariate Cox regression analysis.

For multivariate Cox regression analysis, we use Overall Survival
(OS) as the outcome variable. The default clinical indicators
included are pathologic M stage, pathologic T stage, pathologic N
stage, gender, and age. For cancer types without TNM staging, we
use the WHO classification standards. The proportional hazards
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assumption is tested using the survival package, followed by
multivariate Cox regression analysis. Variables meeting the set
p-value threshold in the univariate analysis are included in the
multivariate Cox model construction. Visualize the forest plot using
the “ggplot2” package. For survival curves, use the “survminer” and
“ggplot2” packages for visualization.

2.6 Correlation between SLC38A2 and TME

To analyze the correlation between SLC38A2 expression and
immune infiltration matrix data across 33 types of cancer in the
TCGA database, the ssGSEA algorithm provided by the R package
“GSVA” was utilized. This involved calculating immune infiltration
using markers of 24 immune cell types. Additionally, the “estimate”
package was used to compute stromal and immune scores.
Visualization was performed using the “ggplot2” package.

2.7 Pseudotemporal analysis of
SLC38A2 expression

Based on previous cell annotation results, divide the single-cell
data in BRCA and PAAD into three major cell groups: malignant
cells, immune cells, and stromal cells for independent trajectory
analysis. Use the R package “Monocle3” for pseudotemporal
analysis, apply “learn graph” to learn cell development
trajectories, and use “order cells” to set the root node based on
biological markers. Use “graph test” to identify differentially
expressed genes along the trajectory.

2.8 Weighted gene co-expression network
analysis (WGCNA)

We obtained 580 samples from the LUAD cohort (58 normal
tissues and 522 tumor tissues) and 503 samples from the COAD
cohort (41 normal tissues and 462 tumor tissues) for differential
analysis based on the expression profiles of 947 metabolism-related
genes. Significant differentially expressed genes were identified using
the DESeq2 algorithm. In COAD, 518 out of 947 metabolism-related
genes (54.7%) were differentially expressed between normal
(41 samples) and colorectal cancer (462 samples) tissues, with
253 genes upregulated and 265 genes downregulated in tumors.
In LUAD, 244 out of 947 metabolism-related genes (25.7%) were
differentially expressed between normal (58 samples) and lung
adenocarcinoma (522 samples) tissues, with 160 genes
upregulated and 84 genes downregulated in tumors.

Subsequently, WGCNA was performed on the 244 and
518 differentially expressed genes in the two cancers, respectively.
A scale-free topology network was constructed based on the soft
threshold power, and co-expression modules were identified using
the dynamic tree cut algorithm. After calculating module
eigengenes, their Pearson correlation with clinicopathological
features (T stage, N stage, pathological stage, and overall
survival) was assessed. The clusterProfiler was used for KEGG
pathway enrichment analysis of key modules, analyzing the blue
module in LUAD and the yellow module in COAD.

Based on the tumor samples from both, we first performed
molecular subtyping using consensus clustering
(ConsensusClusterPlus R package), determining the optimal
number of clusters k = 3 through cumulative distribution
function (CDF) analysis. Differential expression analysis
(DESeq2 R package) was then conducted for the three subtypes
(C1/C2/C3), and Kaplan-Meier survival analysis (survival R
package) was used to evaluate prognostic differences
among subtypes.

2.9 Drug sensitivity analysis

We collected the half-maximal inhibitory concentration
(IC50) values of 265 small molecules and their corresponding
mRNA gene expression data from 860 cell lines in the Genomics
of Drug Sensitivity in Cancer (GDSC). Similarly, we gathered
IC50 values of 481 small molecules and their corresponding
mRNA gene expression data from 1,001 cell lines in the
Cancer Therapeutics Response Portal (CTRP). We then
integrated the mRNA expression and drug sensitivity data.
Subsequently, we performed a Pearson correlation analysis to
determine the correlation between SLC38A2 expression and IC50

values. Finally, a volcano plot was created using the “ggplot2”
package, with the horizontal axis representing the correlation
coefficients and the vertical axis representing the
adjusted p-values.

2.10 Statistical analysis

The Wilcoxon test was used to calculate expression differences
between groups. Log-rank and COX regression were employed to
examine the significance of survival curve differences between high
and low SLC38A2 expression groups. Spearman correlation analysis
was used to assess the correlation between SLC38A2 expression and
the TME (including immune score, stromal score, and immune cell
infiltration). All data were log-transformed. All p-values were
adjusted for false discovery using the Benjamini–Hochberg
procedure. Significant associations in analyses required an FDR-
adjusted p-value (q-value) < 0.05, and a p-value of less than 0.05 was
considered statistically significant.

3 Results

3.1 Panoramic expression profile of
SLC38A2 in cancer

The results of the unpaired sample differential analysis
indicate that SLC38A2 exhibits differential expressions in
14 types of cancer tissues compared to adjacent non-cancerous
tissues. Specifically, SLC38A2 is overexpressed in eight types of
cancer which include BLCA (p < 0.05), COAD (p < 0.001), ESCA
(p < 0.05), HNSC (p < 0.001), KIRC (p < 0.001), KIRP (p < 0.05),
LUSC (p < 0.001), and STAD (p < 0.001). Conversely, it is
underexpressed in six types of cancer that include BRCA (p <
0.001), LIHC (p < 0.001), LUAD (p < 0.01), PRAD (p < 0.001),
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THCA (p < 0.001) and UCEC (p < 0.001) (Figure 1A). In paired
sample analysis, SLC38A2 shows differential expressions in
10 types of cancer, including BLCA (p < 0.01), COAD (p <
0.01), HNSC (p < 0.001), KIRC (p < 0.001), KIRP (p < 0.05),
LUSC (p < 0.001), BRCA (p < 0.05), LIHC (p < 0.001), THCA (p <
0.001), and UCEC (p < 0.001). The first six cancers correspond to
overexpression as observed in the unpaired sample analysis,
while the last four correspond to underexpression (Figure 1B).

Immunohistochemistry results indicate that
SLC38A2 expression is significantly lower in LIHC and PAAD
compared to normal liver and pancreatic tissues. In contrast, its
expression is higher in COAD compared to normal colonic
epithelium. Additionally, the expression of SLC38A2 in lung,
breast, and oral epithelial tissues, as well as their corresponding
cancers (LUAD, BRCA and HNSC) were also examined
(Figures 1E–J).

The mutation analysis results indicate that the main types of
mutations for SLC38A2 in cancer are amplification, mutation, and
deep deletion. The top three cancers with the highest probability of
these mutations are BLCA, DLBC, and UCEC (Figure 1D).

3.2 SLC38A2 is an independent risk factor
of cancer

Using overall survival (OS) as the evaluation metric,
SLC38A2 serves as a risk factor for BRCA (HR = 1.597, p <
0.05), LUAD (HR = 1.650, p < 0.01), MESO (HR = 2.007, p <
0.05), and PAAD (HR = 1.761, p < 0.05), while acting as a protective
factor for KIRC (HR = 0.625, p < 0.05) (Figure 2A). For disease-
specific survival (DSS), SLC38A2 is a risk factor for LUAD (HR =
1.762, p < 0.05) and PAAD (HR = 1.999, p < 0.05), and a protective
factor for KIRC (HR = 0.524, p < 0.01) (Figure 2B). In terms of
progression-free interval (PFI), SLC38A2 is a risk factor for LUAD
(HR = 1.666, p < 0.01) and PAAD (HR = 1.766, p < 0.05)
(Figure 2C). Survival curve results indicate that high expression
of SLC38A2 is associated with shorter overall survival in BRCA,
LUAD, MESO, and PAAD, suggesting a correlation with poor
prognosis (Figure 2D). Additionally, the results of the
multivariate Cox regression further confirmed that SLC38A2 acts
as an independent risk factor in these cancers
(Supplementary Material 1).

FIGURE 2
(A) Forest plot of SLC38A2 across various cancers using Overall Survival as the evaluation metric. (B) Forest plot of SLC38A2 across various cancers
using Disease-Specific Survival as the evaluation metric. (C) Forest plot of SLC38A2 across various cancers using Progression-Free Interval as the
evaluation metric. (D) Survival curves for patients with BRCA, LUAD, MESO, and PAAD, categorized by high and low expression of SLC38A2.
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3.3 The correlation between SLC38A2 and
immune microenvironment

The analysis results from the Estimate algorithm indicate that
the expression of SLC38A2 is positively correlated with stromal
scores in most cancer types, including BRCA, COAD, ESCA, KIRC,
LIHC, LUAD, OV, PAAD, PCPG, PRAD, READ, STAD, TGCT,
THCA, and UCS. In contrast, for immune scores, SLC38A2 exhibits
a negative correlation pattern in cancers such as BLCA, BRCA,
CESC, HNSC, KIRC, KIRP, LGG, LUAD, LUSC, SARC, SKCM,
TGCT, THYM, and UCEC (Figure 3A).

The analysis results from the ssGSEA algorithm indicate that
the expression of SLC38A2 is generally negatively correlated with
immune cells in most cancers. This includes aDCs, B cells, CD8+

T cells, cytotoxic cells, DCs, NK CD56bright cells, NK CD56dim
cells, NK cells, pDC, T cells, TFH, Th17 cells, and Tregs.
Additionally, SLC38A2 shows a generally positive correlation
with certain immune cells, such as T helper cells, Tcm, Tem, Tgd
and Th2 cells (Figure 3B). Further analysis was conducted on the
correlation between SLC38A2 and infiltrating immune cells in
four types of cancer which include BRCA, LUAD, MESO, and

PAAD. The results indicate that SLC38A2 shows a moderate
positive correlation with infiltrating Tcm (R = 0.435, p < 0.001)
and T helper cells (R = 0.361, p < 0.001) in BRCA, while it exhibits
a moderate negative correlation with pDCs (R = −0.325, p <
0.001) in BRCA. Additionally, SLC38A2 is moderately negatively
correlated with infiltrating Th17 cells (R = −0.349, p < 0.001) in
LUAD. In MESO, SLC38A2 demonstrates a moderate positive
correlation with infiltrating T helper cells (R = 0.384, p < 0.001).
In PAAD, SLC38A2 shows a strong positive correlation with
infiltrating T helper cells (R = 0.588, p < 0.001) and a moderate
positive correlation with infiltrating Tcm (R = 0.405, p < 0.001),
Neutrophils (R = 0.402, p < 0.001), Th2 cells (R = 0.380, p <
0.001), Th1 cells (R = 0.374, p < 0.001), and Macrophages (R =
0.314, p < 0.001) (Figure 3D).

Additionally, we investigated the relationship between high
and low expression of SLC38A2 and immune cell infiltration. In
BRCA, the subgroup with high SLC38A2 expression corresponds
to higher infiltration of T helper cells (p < 0.001) and Tcm (p <
0.001), and lower infiltration of pDCs (p < 0.001). In LUAD, the
high SLC38A2 expression subgroup corresponds to higher
infiltration of Th2 cells (p < 0.001) and lower infiltration of

FIGURE 3
(A) Correlation between SLC38A2 expression and immune scores and stromal scores across various cancers using the Estimate algorithm. (B)
Correlation between SLC38A2 expression and immune cell infiltration across various cancers using the ssGSEA algorithm. (C) Correlation between
SLC38A2 expression and immune cell infiltration in BRCA, LUAD, MESO, and PAAD, grouped by high and low expression of SLC38A2. (D) Correlation
between SLC38A2 expression and immune cell infiltration in BRCA, LUAD, MESO, and PAAD, with statistical significance considered at p < 0.05.
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Th17 cells (p < 0.001) and pDCs (p < 0.001). In MESO, the high
SLC38A2 expression subgroup is associated with increased
infiltration of T helper cells (p < 0.01), and Th2 cells (p <
0.05). Finally, in PAAD, the subgroup with high
SLC38A2 expression corresponds to greater infiltration of T
helper cells (p < 0.001), Tcm (p < 0.001), and Neutrophils
(p < 0.001) (Figure 3C).

3.4 Expression of SLC38A2 in single-cell
subpopulation

By performing dimensionality reduction and clustering on
high-throughput sequencing datasets from 12 types of cancer, we
categorized the cells within the samples into the following
subpopulations: Alveolar, B cells, Cholangiocytes, CD4+

Tconv, CD8+ T cells, CD8+ Tex, Dendritic Cells (DCs),
Endothelial, Epithelial, Endometrial stromal cells, Fibroblasts,
Hepatocytes, Monocytes/Macrophages (Mono/macro), Mast

cells, Myofibroblasts, Microglia, Mural cells, Natural Killer
(NK) cells, Neutrophils, Plasma cells, Pericytes, Smooth
Muscle Cells (SMC), Trpolif and so on (Figures 4A,C).

We found that SLC38A2 is expressed across various cell
lineages. Notably, there is a certain level of enrichment of
SLC38A2 in tumor-associated stromal cells, such as epithelial
cells, endothelial cells, and fibroblasts. In contrast, the expression
of SLC38A2 is relatively low in immune-related cells (Figures
4D,E). Additionally, we discovered that SLC38A2 expression is
associated with tumor immune subtypes. In BRCA, SLC38A2 is
expressed at higher levels in tumors with C1 and C4 immune
subtypes, while lower levels are observed in C2, C3, and
C6 subtypes. In LUAD, SLC38A2 shows higher expression in
C1 and C6 immune subtypes, with lower expression in C2, C3,
and C4 subtypes. In MESO, higher expression is seen in C1, C3,
and C6 immune subtypes, and lower expression in C2 and
C4 subtypes. In PAAD, SLC38A2 is more highly expressed in
C1, C3, and C6 subtypes, with reduced expression in the
C2 subtype (Figure 4B).

FIGURE 4
(A) Immune cell subtypes in BRCA, LUAD, MESO, and PAAD, grouped by high and low expression of SLC38A2. (B) Expression of SLC38A2 in different
tumor immune subtypes. (C) t-SNE clustering of single-cell sequencing datasets from 12 types of cancer. (D) Expression of SLC38A2 in different cell
subtypes, with expression levels converted to Log(TPM/10+1) format. (E) Expression of SLC38A2 in different cell subtypes, with higher green fluorescence
intensity indicating higher expression levels.
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3.5 Assocaition between SLC38A2 and
glutathione metabolism

In BRCA, the expression of SLC38A2 is positively correlated with
GSTT4, GGT1, GGLC, HPGDS, GSR, GSTT2, GSTK1, MGST2,
RRM2B, and GSTT2B, while it is negatively correlated with G6PD,
GPX1, IDH2, CHAC2, ODC1, PGD1, RRM2, SMS, CHAC1, GSTO1,
and PRDX6 (Figure 5A). In LUAD, SLC38A2 shows positive
correlations with GGLC, GPX8, CHAC2, RRM2B, LAP3,
TXNDC12, RRM2, and SMS, and negative correlations with GGT1,
OPLAH, HPGDS, GPX1, GSTK1, and MGST2 (Figure 5B). In MESO,
SLC38A2 is positively correlated with G6PD, GSTT4, GCLC, IDH1,
GPX8, ODC1, RRM2B, TXNDC12, RRM2, and SMS (Figure 5C). In
PAAD, SLC38A2 exhibits positive correlations with G6PD, GCLC,
HPGDS, GSR, IDH1, GPX8, CHAC2, ODC1, RRM2B, LAP3, PGD,
RRM2, GSTT2B, SMS, and PRDX6 (Figure 5D).

In BRCA and PAAD, we categorized cells into three main types
that include malignant cells, stromal cells, and immune cells. We
analyzed the expression patterns of SLC38A2 and genes involved in
glutathione metabolism within these cell types. The results indicate
that SLC38A2 is highly expressed in the later stages across most cell

subtypes, including malignant and stromal cells in BRCA, as well as
malignant, stromal, and immune cells in PAAD. It is worth
mentioning that SLC38A2 shows early enrichment in the
immune cell subtype of BRCA (Figure 6).

3.6 Glutamine metabolism in COAD
and LUAD

To further elucidate glutamine metabolism in pan-cancer and
analyze its association with SLC38A2, we conducted further
validation in COAD and LUAD. First, in COAD, we identified
518 differentially expressed genes out of 947 metabolic genes in the
TCGA patient cohort, with 253 genes upregulated and
265 downregulated in tumors (Figure 7A). WGCNA results
indicated that these genes could be well clustered into six distinct
gene modules (Figure 7B). The yellow gene module was significantly
associated with clinical indicators (pathologic_N = −0.15,
pathologic_stage = −0.17) (Figure 7D). Functional enrichment
analysis of the yellow module revealed enrichment in the
glutamine metabolism pathway (Figure 7C). Next, we performed

FIGURE 5
(A) Correlation between SLC38A2 and genes involved in glutathione metabolism in BRCA. (B) Correlation between SLC38A2 and genes involved in
glutathione metabolism in LUAD. (C) Correlation between SLC38A2 and genes involved in glutathione metabolism in MESO. (D) Correlation between
SLC38A2 and genes involved in glutathione metabolism in PAAD. (E) Correlation between SLC38A2 and immune checkpoint genes.
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clustering analysis based on the expression levels of the
518 differentially expressed genes in the TCGA COAD cohort,
grouping patients into three clusters (C1, C2, C3) (Figures 7E,F).
We analyzed the expression levels of SLC38A2 in these patient
subgroups and found higher expression in clusters C1 and
C3 compared to normal samples (Figure 7G).

Similarly, in LUAD, we identified 244 differentially expressed
metabolic genes and used WGCNA to cluster these genes into four
gene modules (Figures 8A,B). The blue module was significantly
associated with cancer prognosis (pathologic_N = 0.12, pathologic_
T = 0.16, OS.time = −0.11, pathologic_stage = 0.14) (Figure 8D).
Functional enrichment analysis of the blue module indicated that
these genes are related to the glutamine metabolism pathway
(Figure 8C). Further clustering results showed significant survival
differences among the C1, C2, and C3 patient cohorts, with patients
in the C3 group exhibiting normal survival rates (Figures 8E–G).
Additionally, the expression levels of SLC38A2 in all three patient
groups were lower than in normal samples (Figure 8H).

3.7 Assocaition between SLC38A2 and
immune checkpoint

In BRCA, SLC38A2 expression is positively correlated with
ADORA2A, CD160, CD274, CSF1R, HAVCR2, IL10, IL10RB,
KDR, PDCD1LG2, TGFBR1, and VTCN1, and negatively
correlated with IDO1, KIR2DL1, LAG3, LGALS9, and
PDCD1. In LUAD, SLC38A2 expression is positively
correlated with CD160, CD274, IL10, KDR, PDCD1LG2, and
TGFBR1, and negatively correlated with LGALS9 and PDCD1.
In MESO, the expression of SLC38A2 is positively correlated
with CD160, IL10, KDR, TGFB1, and TGFBR1, and negatively
correlated with LAG3 and LGALS9. And in PAAD, the
expression of SLC38A2 is positively correlated with
ADORA2A, BTLA, CD160, CD244, CD274, CD96, CSF1R,
CTLA4, HAVCR2, IDO1, IL10, KDR, KIR2DL3, LAG3,
PDCD1, PDCD1LG2, PVRL2, TGFB1, TGFBR1 and
TIGIT (Figure 5E).

FIGURE 6
(A) Clustering of malignant cells, stromal cells, and immune cells in BRCA. (B) Temporal expression of SLC38A2 and glutamine metabolism-related
genes in malignant, stromal, and immune cells in BRCA. (C) Clustering of malignant cells, stromal cells, and immune cells in PAAD. (D) Temporal
expression of SLC38A2 and glutamine metabolism-related genes in malignant, stromal, and immune cells in PAAD.
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3.8 Signal pathways involving
SLC38A2 in cancer

The GO enrichment analysis indicates that SLC38A2 is
primarily associated with the following pathways in cancer. These
include cell surface receptor protein serine/threonine kinase
signaling pathway, transforming growth factor beta receptor
superfamily signaling pathway, regulation of cell-matrix adhesion,
regulation of bone formation and development, regulation of
monocyte chemotaxis, and transmembrane transport of amino
acids (Figure 9A).

3.9 SLC38A2-related cancer clinical features

First, we evaluated the correlation between
SLC38A2 expression and patient age. We found that
SLC38A2 expression was higher in younger patients, especially
in six types of cancer: ESCA, KIRC, PAAD, READ, TGCT, and
THCA (Figure 9B). Time-dependent AUC results indicate that
SLC38A2 has a higher predictive value in three types of cancer

that include DLBC (1-year AUC = 0.792, 5-year AUC = 0.757),
KICH (1-year AUC = 0.898, 3-year AUC = 0.766, 5-year AUC =
0.790), and PAAD (5-year AUC = 0.739) (Figure 9C). Diagnostic
ROC results show that SLC38A2 has diagnostic value in COAD,
GBM, HNSC, LAML, LIHC, LUAD, LUSC, PAAD, PCPG,
PRAD, SKCM, THCA, THYM, UCEC, and UCS (Figure 9D).

3.10 Assocaition between SLC38A2 and drug
sensitivity

Results from the CTRP database indicate that the expression of
SLC38A2 is significantly correlated with the sensitivity of 62 small-
molecule compounds (Figure 10A), as well as the GDSC database
results show a significant correlation between SLC38A2 expression
and the sensitivity of 87 small-molecule compounds (p < 0.05)
(Figure 10B). Additionally, SLC38A2 expression exhibits a moderate
negative correlation with the sensitivity to Dabrafenib and
Vemurafenib, a weak positive correlation with the sensitivity to
Pyrazoloacridine, and a weak negative correlation with the
sensitivity to Selumetinib (Figure 10C). Besides, we analyzed the

FIGURE 7
(A)Heatmap of the expression of 518 metabolic differential genes in COAD. (B)WGCNA clustering results based onmetabolic differential genes. (C)
KEGG enrichment analysis of genes in the yellow module. (D) Heatmap of the correlation between different clusters and clinical features. (E) Molecular
subtype clustering of the yellow module (k=3). (F) Cumulative distribution function (CDF). (G) Expression of SLC38A2 in C1 and C3 clusters.
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relationship between the sensitivity of six chemotherapy drugs and
the grouping based on SLC38A2 expression (Figure 10D).

4 Discussion

SLC38A2 (SNAT2), also known as Sodium-Coupled Neutral
Amino Acid Transporter 2, is a transmembrane protein encoded by
the locus at chromosome 12q13.11. It is widely expressed and
regulated in mammalian cells, utilizing the sodium ion
concentration gradient across the cell membrane to co-transport
sodium ions and amino acid substrates into the cell (Franchi-
Gazzola et al., 2006; Broer, 2014). Recent research has focused on
the role of SLC38A2 in metabolic reprogramming and its
connection to cancer progression. Abnormal metabolic patterns,
often a hallmark of malignancies, are driven by uncontrolled
division leading to abnormal proliferation. Metabolic
reprogramming mechanisms such as aerobic glycolysis (the
Warburg effect), hypoxia, and lactate accumulation are
particularly notable. Glutamine, as an important alternative

energy source, is deeply involved in the unique metabolic
processes of tumor cells. Many tumors, such as glioblastoma,
exhibit a strong affinity for glutamine, which supports tumor cell
proliferation and survival (Huang et al., 2020). Additionally,
glutamine “addiction” can lead to metabolic competition (Wise
and Thompson, 2010), directly reducing uptake by immune cells,
thereby threatening their integrity and function (Wilmore and
Shabert, 1998). This has been confirmed in various cancers and
in vitro models (Singer et al., 2018; Chang et al., 2015; Chen
et al., 2023).

In the abnormal glutamine metabolism of tumors, the
upregulated expression of selective transporters plays a crucial
role, as it is essential for enhanced uptake by tumor cells (Bhutia
et al., 2015). Several glutamine transporters have been confirmed to
be widely upregulated in cancer and are associated with tumor
invasion and metastasis, such as SLC1A5 (ASCT2), SLC7A5
(LAT1), and SLC6A14 (van Geldermalsen et al., 2016; Wu et al.,
2018; Wang et al., 2013). The SLC38 family represents a new, not
fully explored family of glutamine transporters, including system A
[SLC38A1 (SNAT1) and SLC38A2] and system N [SLC38A3

FIGURE 8
(A)Heatmap of the expression of 244 metabolic differential genes in LUAD. (B)WGCNA clustering results based on metabolic differential genes. (C)
KEGG enrichment analysis of genes in the blue module. (D) Heatmap of the correlation between different clusters and clinical features. (E) Molecular
subtype clustering of the bluemodule (k=3). (F)Cumulative distribution function (CDF). (G) Survival curves of patients in the three clusters. (H) Expression
of SLC38A2 in C1, C2 and C3 clusters.

Frontiers in Genetics frontiersin.org12

Liao et al. 10.3389/fgene.2025.1658299

mailto:Image of FGENE_fgene-2025-1658299_wc_f8|tif
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1658299


(SNAT3) and SLC38A5 (SNAT5)]. Given its crucial role in the
competitive uptake of glutamine by tumor cells, SLC38A2 is likely an
effective molecular marker for reflecting tumor malignancy,
immune suppression status, and clinical outcomes (Huang et al.,
2020; Tambay et al., 2024). Several studies have demonstrated the
significant role of SLC38A2 in the progression of certain tumors. For
instance, research by Kai et al. indicates that overexpression of
SLC38A2 is associated with the stemness of gastric cancer cells and is
linked to tumor formation and upregulation of aldehyde
dehydrogenase (ALDH) activity (Nie and Cai, 2022). Matteo
et al.’s study suggests that the upregulation of SLC38A2 enhances
glutamine-dependent resistance to oxidative stress and is correlated
with worsened prognosis in triple-negative breast cancer (Morotti
et al., 2021). However, the biological functions and prognostic
implications of SLC38A2 in a broader range of tumors remain
underexplored, posing a bottleneck for its targeting strategies and
clinical applications.

To verify whether the expression of SLC38A2 is abnormal in
cancer, we first conducted differential expression analysis across
33 common cancer types in the TCGA database. The analysis of
non-paired samples revealed that the expression of SLC38A2 differs

in 15 cancer types compared to their corresponding normal tissues,
indicating altered expression in cancerous tissues. Furthermore, the
immunohistochemistry slides further corroborated the differential
expression results from the TCGA database.

After determining that SLC38A2 exhibits altered expression in
cancer, we analyzed whether this gene affects cancer prognosis.
Given the established biological functions of SLC38A2, we
hypothesized that it is a risk factor for cancer prognosis. In our
study, SLC38A2 was identified as a risk factor in BRCA, LUAD,
MESO, and PAAD, where its high expression is associated with poor
prognosis and shorter survival, aligning with other research findings
(Morotti et al., 2021; Liu et al., 2022; Li et al., 2023a; Morotti et al.,
2019). These results further support the link between the
upregulation of SLC38A2 and the progression and increased
malignancy of tumors, possibly achieved through its mediated
enhancement of glutamine metabolism. Upregulation of
SLC38A2 has been observed in triple-negative breast cancer and
hormone-resistant breast cancer, and it is associated with resistance
to oxidative stress and the development of drug resistance,
ultimately leading to poor clinical outcomes (Morotti et al., 2021;
Morotti et al., 2019). This corroborates our research findings.

FIGURE 9
(A) Correlation of SLC38A2 with signaling pathways in BRCA, LUAD, MESO, and PAAD. (B) Expression of SLC38A2 in patients of different ages. (C)
Time-dependent AUC curve using SLC38A2 as an evaluation metric, where an AUC value greater than 0.7 indicates predictive effectiveness. (D)
Diagnostic ROC curve using SLC38A2 as an evaluation metric, where an ROC value greater than 0.7 indicates diagnostic effectiveness.
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Interestingly, we found that SLC38A2 acts as a protective factor in
certain cancers, particularly KIRC, where it is linked to favorable
prognosis. A multi-platform data study showed widespread
expression changes in the SLC family proteins in KIRC, with
several SLC proteins (excluding SLC38A2) predicting improved
OS and RFS (Kang et al., 2020). This result is consistent with
another multi-omics-based bioinformatics study and supports our
conclusions (Peng et al., 2022). However, the unique role of
SLC38A2 in KIRC requires further investigation.

To further elucidate the role of SLC38A2 in tumor immunity, we
conducted a comprehensive analysis of its correlation with the pan-
cancer immune landscape. We found that SLC38A2 is positively
correlated with stromal scores and negatively correlated with
immune scores across various cancers, supporting the notion that
SLC38A2 is a key player in tumor stroma remodeling and immune
suppression. Research by Mengling et al. demonstrated that
SLC38A2 is involved in glutamine crosstalk between TAMs and
tumor cells in the Scissor_C1 cell subgroup of lung adenocarcinoma,
accompanied by CAFs enrichment and epithelial-mesenchymal
transition (EMT) phenotype (Li et al., 2023b).

It is worth northing that we found a significant positive
correlation between SLC38A2 expression and the infiltration of T
helper cells, Tcm cells, and Th2 cells. Th2 cells are a subset of
CD4+T cells that promote tumor progression by secreting cytokines
such as IL-10 and IL-13 to enhance angiogenesis and inhibit the

cytotoxic effects of CD8+ T cells. In contrast, Tcm cells are primarily
associated with immune memory. This evidence suggests that
SLC38A2 regulates glutamine uptake in tumor and immune cells
and plays a central role in adaptive T cell immunity. On one hand,
the microenvironment acidification and amino acid competition
driven by SLC38A2 may preferentially promote Th2 polarization.
On the other hand, it might support the long-term survival and
rapid response capabilities of Tcm cells, thereby enhancing immune
memory effects. Hongling et al.’s study indicates that SLC38A2-
mediated glutamine transport plays a crucial role in the generation
and maintenance of memory T cells (Huang et al., 2021), which
partially corroborates our findings. This dual effect reflects the
complex role of SLC38A2 in tumor immune modulation. The
overexpression of SLC38A2 enhances the nutritional tug-of-war
between tumor cells and immune cells, inhibiting the activity of
effector T cells (CD8+ T cells) while increasing the abundance of
tumor-promoting Th2 cells. This ultimately results in an
immunosuppressive state and poor clinical outcomes. In this
process, memory immune cells may serve as a potential
intervention target. Similarly, a single-cell RNA sequencing study
indicated that the XBP1-SLC38A2 axis plays a significant role in
T cell immune dysfunction in multiple myeloma, based on
glutamine uptake impairment (Wan et al., 2023). Additionally,
SLC38A2 shows a broad negative correlation with the infiltration
of antigen-presenting cells such as DCs and NK cells. This reflects

FIGURE 10
(A) Volcano plot showing the correlation between small molecule compound sensitivity and SLC38A2 expression in the CTRP database
(Supplementary Material 2). (B) Volcano plot showing the correlation between small molecule compound sensitivity and SLC38A2 expression in the
GDSC database (Supplementary Material 3). (C) Scatter plots showing the correlation between the sensitivity of four anticancer drugs and SLC38A2
expression. (D) Correlation between the sensitivity of six anticancer drugs and high/low SLC38A2 expression.
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the critical role of SLC38A2-mediated glutamine competitive
inhibition in blocking antigen presentation, leading to tumor
immune suppression. Research by Hongsheng et al. demonstrated
that exosomes derived from CAFs upregulate SLC38A2 expression
on the surface of colorectal cancer cells, leading to NK cell
exhaustion, thereby promoting CRC progression and metastasis
(Fang et al., 2024). This conclusion is consistent with our findings.

To further elucidate the association between SLC38A2, the
TME, and tumor-associated cells, we utilized single-cell
sequencing data analysis (Li et al., 2023c; Ding et al., 2024) to
evaluate the expression patterns of SLC38A2 across 12 types of
cancer. At the single-cell level, SLC38A2 is primarily expressed in
stromal cells. Abnormal extracellular matrix is a key factor in
promoting tumor progression and mediating drug resistance and
immune evasion. Collagen deposition and tumor stiffening caused
by over cancer-associated fibroblasts (CAFs) proliferation
exacerbate hypoxia, facilitating metabolic reprogramming of
tumor cells and increasing glutamine uptake through crosstalk
(Bertero et al., 2019). The overexpression of transporter proteins
by stromal cells further depletes glutamine in TME, potentially
leading to immunosuppression. Xiao et al.’s study indicates that
CAFs increase the expression of the glutamine transporter
SLC1A5 and significantly enhance the synthesis of nitrogen-
containing compounds to fuel tumor cells (Li et al., 2021b),
supporting our findings. Additionally, breast cancer cells co-
cultured with CAFs show increased metastatic and migratory
capabilities, linked to microRNA-mediated glutamine metabolic
reprogramming, which may lead to poor clinical outcomes (Yan
et al., 2018). And research by Tongyan et al. showed that in LUAD,
CAFs mediate the upregulation of SLC38A2 through the lncRNA
LINC01614, interacting with tumor cells to result in poor clinical
outcomes (Liu et al., 2022). Recent studies on the role of SLC38A2 in
tumors and targeted therapies have focused on BRCA (Morotti et al.,
2019; Gauthier-Coles et al., 2022; Broer et al., 2019). We observed
significant differences in the timing of SLC38A2 expression across
different cell subpopulations in BRCA. In malignant and stromal cell
subgroups, SLC38A2 is primarily expressed at the late stages of
differentiation. Conversely, in immune cells, it is mainly expressed at
the early stages of differentiation. This indicates that
SLC38A2 becomes irreversibly enriched in the “unfavorable” cell
subgroups during the late stages of tumor progression, ultimately
leading to immune cell exhaustion due to glutamine deprivation.
Additionally, the WGCNA results further demonstrate the role of
the glutamine metabolic pathway in certain malignant tumors and
emphasize its inseparable connection with SLC38A2.

Finally, we validated whether SLC38A2 could serve as an
effective prognostic and diagnostic biomarker. We found that
SLC38A2 is expressed at higher levels in younger patients with
certain cancers, potentially indicating increased risk. Additionally,
diagnostic ROC and time-dependent AUC results demonstrate that
SLC38A2 is indeed a reliable diagnostic marker in some cancers,
further supporting its clinical application potential.

Although many studies have confirmed that blocking glutamine
metabolism pathways significantly inhibits tumor progression, research
and targeted drugs specifically for SLC38A2 remain limited (Wang
et al., 2024; Li et al., 2023d; Jin et al., 2023). Our study further supports
the important prognostic and diagnostic value of SLC38A2 and
analyzes its biological role in various tumors. These results suggest

that strategies block the overexpression of SLC38A2 in tumor or
stromal cells to alleviate glutamine competition in TME, or to
enhance the glutamine uptake capacity of specific immune cells,
could be effective. This warrants further in-depth research.

5 Conclusion

This study further confirms the role of the key transporter
SLC38A2 in glutamine metabolism across various cancers,
encompassing clinical aspects, the tumor microenvironment,
immunity, and drug sensitivity. SLC38A2 is closely linked to
glutamine metabolic mechanisms and serves as an effective
prognostic and diagnostic marker associated with poor
clinical outcomes. Its unique association with inhibitory
immune cells and stromal cells makes it a potential target for
intervening in the tumor microenvironment, warranting further
in-depth research.
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