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Cancer vaccines represent a promising therapeutic modality in immuno-
oncology, yet their efficacy is severely constrained within the
immunosuppressive microenvironment of lung tumors. Metabolic
reprogramming and epigenetic dysregulation are now understood as critical,
interconnected determinants that orchestrate tumor microenvironment (TME)
immunosuppression and fundamentally shape anti-tumor immune responses.
This review comprehensively examines the mechanistic interplay between
metabolic reprogramming and epigenetic regulation, and how nanoplatform
technologies can be engineered to modulate these axes to augment cancer
vaccine efficacy. We analyze advanced nano-delivery system design strategies,
the synergistic effects of combining metabolic intervention with epigenetic
modification, and their application in overcoming the formidable barriers of
the lung TME. By integrating recent advances in nanotechnology, epigenetics,
and tumor immunometabolism, we provide critical insights into the development
of next-generation cancer vaccines. Furthermore, we propose a novel
conceptual framework—The Epi-Met-Immune Synergistic Network—to dissect
these interactions and identify key nodes for rational therapeutic intervention,
aiming to enhance and sustain durable anti-tumor immunity.
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Introduction

The landscape of cancer immunotherapy has been revolutionized by the advent of
cancer vaccines, which harness the host immune system’s capacity to mount specific anti-
tumor responses (Sharma et al., 2017). Despite remarkable clinical successes in certain
malignancies, lung tumors present formidable challenges due to their profoundly
immunosuppressive microenvironment (Looi et al., 2019). The intricate interplay
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between metabolic dysregulation and epigenetic alterations within
the tumor microenvironment (TME) orchestrates a complex
network of immunosuppressive mechanisms that severely
compromise vaccine efficacy (Bader et al., 2020).

At its core, cancer is a disease of dysregulated gene expression,
driven not only by genetic mutations but also by profound
epigenetic alterations. Epigenetic reprogramming—encompassing
DNA methylation, histone modifications, and chromatin
remodeling—serves as a fundamental mechanism by which
tumor cells evade immune surveillance and sustain proliferation
across a wide spectrum of malignancies. During the escape phase of
cancer immunoediting, genetic and epigenetic alterations in tumor
cells—reversible through nanomaterial interventions—result in
tumor antigen deficiency and impaired antigen-presenting
machinery. These changes also foster the development of an
immunosuppressive tumor microenvironment, characterized by
expanded populations of immunosuppressive cells and
accumulated immunosuppressive molecules, which collectively
inactivate cytotoxic immune cells such as cytotoxic T
lymphocytes (CTLs) (Liu et al., 2024). The strategic reversal of
these epigenetic aberrations has thus emerged as a promising
therapeutic avenue in oncology, aiming to restore antitumor
immunity and sensitize tumors to various immunotherapies.

This promise, however, remains largely unrealized specifically in
lung cancer, where the therapeutic vaccines have consistently
faltered against a profoundly immunosuppressive
microenvironment (Lahiri et al., 2023). Here, the intricate
interplay between metabolic dysregulation and the
aforementioned epigenetic alterations within the TME
orchestrates a complex network of immunosuppressive
mechanisms that severely compromise vaccine efficacy (Giaccone
et al., 2015). Landmark trials underscore this difficulty: the MAGE-
A3 protein vaccine, despite successfully inducing antigen-specific
T-cell responses, failed to improve overall or disease-free survival
and the L-BLP25 vaccine similarly did not show significant
difference in overall survival in Phase III studies (Batchu et al.,
2014; Butts et al., 2014). These data highlight a critical challenge: the
TME orchestrates a complex network of immunosuppressive
mechanisms, driven by factors such as the accumulation of
regulatory T cells, that actively subverts vaccine-induced
immunity and severely compromises therapeutic efficacy.

Metabolic reprogramming in lung tumors encompasses a
spectrum of alterations, including enhanced glycolysis, aberrant
amino acid metabolism, and lipid metabolic rewiring, collectively
creating a hostile metabolic milieu that impairs immune cell
function (Arner and Rathmell, 2023). Concurrently, epigenetic
modifications—including DNA methylation patterns, histone
post-translational modifications, and chromatin
remodeling—fundamentally alter gene expression programs that
govern immune recognition and response (Dai et al., 2021).
These epigenetic changes not only affect tumor cells but also
reprogram infiltrating immune cells, establishing durable
immunosuppressive phenotypes (Cao and Yan, 2020).

The emergence of nanotechnology has opened unprecedented
opportunities for precision medicine approaches that
simultaneously target metabolic and epigenetic abnormalities
(Zhang et al., 2023). Nanoplatforms offer unique advantages
including enhanced drug stability, targeted delivery, controlled

release kinetics, and the capacity for multi-drug co-delivery
(Zhang et al., 2021). By integrating metabolic modulators with
epigenetic therapeutics within sophisticated nanocarriers, it
becomes possible to synergistically reprogram the TME and
potentiate cancer vaccine responses (Ren et al., 2023).

This review provides a comprehensive analysis of how
epigenetic-regulated nanoplatforms influence metabolic
reprogramming to enhance cancer vaccine efficacy. We examine
the molecular mechanisms underlying TME immunosuppression,
evaluate current nanoplatform design strategies, and discuss
emerging therapeutic approaches. Critically, we introduce the
Epi-Met-Immune Synergistic Network as a conceptual model to
deconstruct the complex feedback loops that drive therapeutic
resistance, thereby providing a rational basis for designing multi-
targeted nanoplatforms to overcome these barriers.

Characteristics of the
immunosuppressive lung TME and
challenges for cancer vaccines

Immunosuppressivemechanisms in the lung
tumor microenvironment

The lung tumor microenvironment represents a paradigm of
immune dysfunction, characterized by multiple interconnected
immunosuppressive mechanisms (Altorki et al., 2019). Regulatory
T cells (Tregs) accumulate within lung tumors through chemokine-
mediated recruitment and local expansion, establishing dominant
immunosuppressive networks (Togashi et al., 2019). These Tregs
express high levels of checkpoint molecules including CTLA-4 and
PD-1, while secreting immunosuppressive cytokines such as IL-10
and TGF-β (Zhang et al., 2024). The functional stability of
intratumoral Tregs is maintained through specific metabolic
adaptations, including enhanced fatty acid oxidation and
resistance to lactate-induced suppression (Zhou L. et al., 2024).

Myeloid-derived suppressor cells (MDSCs) represent another
critical component of lung tumor immunosuppression (He et al.,
2025). These heterogeneous populations of immature myeloid cells
accumulate in response to tumor-derived factors including GM-
CSF, VEGF, and prostaglandins (Li K. et al., 2021). MDSCs employ
multiple mechanisms to suppress anti-tumor immunity, including
arginine depletion through arginase-1 expression (Bronte et al.,
2003), production of reactive oxygen species, and induction of
Treg differentiation (Groth et al., 2019; Serafini et al., 2006). The
metabolic profile of MDSCs is characterized by enhanced glycolysis
and altered lipid metabolism, which not only supports their
immunosuppressive functions but also renders them resistant to
metabolic stress within the TME (Jin et al., 2023; Yan et al., 2019).

The expression of immune checkpoint molecules extends
beyond infiltrating immune cells to encompass tumor cells and
stromal components. Lung tumors frequently upregulate PD-L1
expression through various mechanisms including oncogenic
signaling, inflammatory cytokines, and hypoxia-inducible factors
(Yamaguchi et al., 2022). Additionally, alternative checkpoint
pathways such as TIM-3, LAG-3, and TIGIT create redundant
immunosuppressive networks that limit vaccine-induced immune
responses (Cai et al., 2023) (Figure 1).
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Metabolic abnormalities and their impact on
immune cell function

The metabolic landscape of lung tumors profoundly shapes
immune cell function and fate. Aerobic glycolysis in tumor cells
leads to excessive lactate production, creating an acidic
microenvironment that impairs T cell proliferation and cytotoxic
function (Wu et al., 2023). Lactate acts as both a metabolic substrate
and signaling molecule, promoting regulatory T cell differentiation
while suppressing effector T cell responses (Llibre et al., 2025). The
acidic pH also interferes with antibody-dependent cellular
cytotoxicity and reduces the efficacy of therapeutic antibodies
(Liu Y. et al., 2022).

Hypoxia represents another hallmark of the lung tumor
metabolic environment. Regions of severe hypoxia stabilize
hypoxia-inducible factors (HIFs), which orchestrate
transcriptional programs that promote immunosuppression (Lee
et al., 2020). HIF-1α drives the expression of checkpoint ligands,

enhances MDSC recruitment, and promotes the differentiation of
tumor-associated macrophages toward immunosuppressive
phenotypes (Luo et al., 2022). Moreover, hypoxia impairs
dendritic cell maturation and antigen presentation, critical
processes for effective cancer vaccine responses (Kheshtchin
et al., 2016).

Amino acid metabolism within lung tumors creates additional
immunosuppressive barriers (Chen et al., 2024). Tumor cells and
immunosuppressive myeloid cells deplete essential amino acids
including tryptophan, arginine, and glutamine from the
microenvironment (Kheshtchin et al., 2016). Tryptophan
catabolism through indoleamine 2,3-dioxygenase (IDO) produces
kynurenine metabolites that directly suppress T cell proliferation
and promote Treg differentiation (Munn et al., 1998; Fallarino et al.,
2006). Arginine depletion by arginase-expressing MDSCs impairs
T cell receptor signaling and memory formation, while glutamine
restriction compromises T cell activation and effector function
(Crump et al., 2021).

FIGURE 1
Comprehensive Schematic Illustration of the Immunosuppressive Lung Tumor Microenvironment. The lung tumor microenvironment exhibits
pronounced immunosuppressive characteristics, including the accumulation and functional activation of immunosuppressive cells such as Tregs and
MDSCs, alongside aberrant expression of immune checkpoint molecules including PD-L1. Concurrently, metabolic abnormalities (lactate accumulation,
hypoxia, amino acid depletion) and epigenetic dysregulation (T cell exhaustion, immune cell epigenetic reprogramming) further reinforce these
immunosuppressive networks. These multifaceted mechanisms collectively present significant challenges for the application of cancer vaccines,
necessitating integrated therapeutic approaches that simultaneously address these interconnected immunosuppressive pathways.
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Epigenetic determinants of T cell exhaustion
in the lung tumor microenvironment

T cell exhaustion in lung tumors represents a paradigmatic
example of epigenetically-encoded immune dysfunction that
profoundly limits cancer vaccine efficacy (Pan and Zheng, 2020).
This functionally impaired state is not merely transient but is
stabilized through comprehensive epigenetic reprogramming,
establishing a self-reinforcing gene expression program resistant
to conventional immunotherapeutic interventions (Belk et al.,
2022a). Genome-wide epigenetic profiling has revealed distinctive
chromatin accessibility landscapes in exhausted tumor-infiltrating
T cells, characterized by inaccessible chromatin at effector gene loci
juxtaposed with enhanced accessibility at inhibitory receptor genes
(Belk et al., 2022b). These alterations are accompanied by region-
specific DNA methylation patterns, including hypermethylation at
cytokine promoters (IFN-γ, TNF-α) and hypomethylation at
immune checkpoint loci (PD-1, CTLA-4), collectively restricting
T cell functional plasticity (Smith et al., 2020).

The epigenetic architecture of exhausted T cells is further
sculpted by a characteristic histone modification signature.
Enhancer regions of effector genes display reduced H3K27ac and
H3K4me1, while inhibitory receptor loci exhibit enrichment of these
activation-associated marks. Concurrently, the repressive
H3K27me3 mark, catalyzed by the PRC2 complex via EZH2,
accumulates at critical effector gene promoters, silencing
cytotoxic programs while sparing checkpoint receptor expression.
This role of EZH2 as a key enforcer of immunosuppression is not
limited to exhausted T cells; forryptophan catabolism through
indoleamine 2,3-dioxygenase (IDO) produces kynurenine
metabolites that directly suppress T cell proliferation and
promote Treg differentiation instance, recent work demonstrates
that its hyperactivation in regulatory T cells also enhances their
suppressive capacity and stability (Peeters et al., 2024). This
epigenetic imbalance is perpetuated by increased HDAC activity,
which depletes activating acetylation marks at key effector loci,
diminishing both their transcriptional potential and functional
capacity (Ibrahim et al., 2024). Recent analyses have further
revealed that these modifications are progressively established
during tumor progression, creating increasingly fixed states of
dysfunction that correspond with resistance to checkpoint
blockade therapy (Perrier et al., 2020).

The architecture of immunosuppression in the lung TME is
fortified by the epigenetic reprogramming of multiple immune
lineages, creating formidable barriers to cancer vaccine efficacy.
Beyond the tumor cells themselves, key innate immune cells are
functionally subverted; TAMs are skewed towards an M2-like
phenotype through alterations in their enhancer landscapes,
while MDSCs are locked into an immature, suppressive state by
stable epigenetic modifications (Niu et al., 2022). This intricate
cellular network, however, exposes critical gaps in our
fundamental understanding. For instance, the precise molecular
pathways through which tumor-derived metabolites like
adenosine and reactive oxygen species (ROS) drive epigenetic
silencing in effector CD8+ T cells remain to be fully elucidated
(Yerinde et al., 2019). Furthermore, it is unclear how distinct
inhibitory axes—such as immune checkpoint over-activation,
HLA-I downregulation, and metabolic hostility—synergize to

create a composite barrier that is impenetrable to single-antigen
vaccines (Yi et al., 2019). Finally, the dynamic interplay between
evolving tumor antigen heterogeneity and the progressive
exhaustion of immune cells represents a core clinical bottleneck,
and whether personalized antigen design can reverse this tolerance
to establish long-term memory remains a pivotal unanswered
question (Jia et al., 2022). Herein lies the central challenge and
opportunity: because these immunosuppressive states are
epigenetically encoded, targeting the epigenetic machinery itself
offers a foundational strategy to dismantle the entire network
and overcome the core barriers limiting cancer vaccine efficacy.

The role of epigenetic regulation in
reversing lung cancer
immunosuppression

DNAmethyltransferase inhibitors promoting
lung cancer antigen expression

DNA methyltransferase inhibitors (DNMTi) have emerged as
powerful tools for reversing epigenetic silencing in lung tumors
(Goyal et al., 2023; Vendetti and Rudin, 2013). Aberrant DNA
hypermethylation silences numerous tumor antigens, including
cancer-testis antigens (CTAs), neoantigens, and MHC class I
molecules, thereby limiting tumor immunogenicity (Geissler
et al., 2024). DNMTi treatment induces global DNA
hypomethylation, reactivating silenced tumor antigens and
enhancing immune recognition.

The mechanisms of DNMTi-mediated immune activation
extend beyond simple antigen re-expression (Huang et al., 2021).
DNMTi treatment activates endogenous retroviral elements and
repetitive sequences, triggering viral mimicry responses. This
phenomenon induces type I interferon signaling through
activation of cytosolic nucleic acid sensors, creating an
inflammatory milieu that enhances dendritic cell activation and
T cell priming (Chiappinelli et al., 2015). Furthermore, DNMTi
treatment upregulates antigen processing and presentation
machinery, including TAP transporters, immunoproteasome
subunits, and MHC molecules (Ignatz-Hoover et al., 2022).

Recent studies have demonstrated that DNMTi can reprogram
the metabolic landscape of lung tumors. By altering the methylation
status of metabolic gene promoters, DNMTi treatment reduces
glycolytic flux and lactate production, partially alleviating
metabolic immunosuppression (Xu et al., 2023). Additionally,
DNMTi-induced changes in tumor cell metabolism can enhance
their susceptibility to immune-mediated killing through metabolic
checkpoint mechanisms (Wang et al., 2025).

Histone deacetylase inhibitors enhancing
T cell memory responses

HDAC inhibitors represent another class of epigenetic
modulators with significant immunomodulatory potential (Hicks
et al., 2020). In the context of lung cancer immunotherapy, HDAC
inhibitors exert pleiotropic effects that enhance vaccine-induced
immune responses (Li X. et al., 2021). By increasing histone
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acetylation at memory-associated gene loci, HDAC inhibitors
promote the differentiation and maintenance of memory T cells,
crucial for durable anti-tumor immunity (Ellmeier and Seiser, 2018).

HDAC inhibition in T cells enhances the expression of
transcription factors associated with memory formation (Ibrahim
et al., 2024; Montacchiesi and Pace, 2022). These transcriptional
changes are accompanied by metabolic reprogramming toward
oxidative phosphorylation, a metabolic profile that supports
memory T cell survival and function. Moreover, HDAC
inhibitors reduce the expression of inhibitory receptors on
T cells, potentially reversing exhaustion phenotypes and restoring
effector function.

The effects of HDAC inhibitors extend to antigen-presenting
cells, where they enhance costimulatory molecule expression and
cytokine production. Dendritic cells treated with HDAC inhibitors
show improved antigen presentation capacity and increased
production of T cell-polarizing cytokines (De Sa Fernandes et al.,
2024). In tumor-associated macrophages, HDAC inhibition can
shift polarization away from immunosuppressive M2-like
phenotypes toward inflammatory M1-like states (Yang et al., 2025).

Non-coding RNAs in immune regulation

The landscape of non-coding RNAs, including microRNAs
(miRNAs) and long non-coding RNAs (lncRNAs), represents an
emerging frontier in epigenetic immunomodulation. In lung
tumors, specific miRNA signatures regulate key aspects of
immune function (Zhu et al., 2021; Iqbal et al., 2019). Tumor-
derived exosomes carrying immunosuppressive miRNAs, such as
miR-21 and miR-155, can reprogram immune cells toward
tolerogenic phenotypes (Shokati and Safari, 2023; Yang et al.,
2013). Conversely, certain miRNAs function as tumor
suppressors and immune activators, suggesting therapeutic
potential for miRNA-based interventions (Kim and Croce, 2023).

LncRNAs orchestrate complex regulatory networks that
influence immune responses at multiple levels. The lncRNA
NEAT1 promotes MDSC expansion and function, while
MALAT1 regulates dendritic cell differentiation and antigen
presentation (Wu et al., 2018). Targeting these lncRNAs through
antisense oligonucleotides or CRISPR-based approaches offers novel
strategies for modulating tumor immunity (Arun et al., 2018).

Recent advances in understanding circular RNAs (circRNAs)
have revealed their roles in immune regulation. CircRNAs can
function as miRNA sponges, modulating the availability of
miRNAs that regulate immune checkpoints and inflammatory
responses (Meng et al., 2024). The stability and tissue-specific
expression of circRNAs make them attractive targets for
immunomodulatory interventions (Misir et al., 2022).

While these epigenetic modulators—DNMT inhibitors, HDAC
inhibitors, and non-coding RNA-based therapeutics—offer
powerful, mechanistically distinct avenues to reverse
immunosuppression, their translation into effective clinical
strategies for lung cancer is hampered by a series of profound
and interconnected challenges. The suppressive TME, densely
populated by Tregs and MDSCs, remains a formidable barrier
that can neutralize the benefits of vaccine-induced T cells (Munn
and Bronte, 2016). Furthermore, the technical hurdles in developing

truly personalized neoantigen vaccines, from prediction accuracy to
overcoming tumor heterogeneity, limit broad applicability (Wu
et al., 2024). Finally, the systemic delivery of these potent agents
raises significant concerns regarding off-target effects and toxicity,
highlighting a critical need for delivery systems that can precisely
target tumor tissue while protecting the payload (Manzari et al.,
2021). Therefore, simply possessing these epigenetic tools is not
enough; the central challenge lies in deploying them effectively
within the complex biological landscape of the tumor. This
necessitates the development of advanced delivery platforms
capable of integrating multiple therapeutic strategies to dismantle
the immunosuppressive network at its core (Figure 2).

The Epi-Met-Immune synergistic
network: a framework for
therapeutic design

Beyond linear pathways: the need for an
integrated network model

Designing therapies for the lung TME demands a departure
from linear thinking. The intertwined challenges of epigenetic
silencing and metabolic hostility are not independent pathways
but are locked in a profound bidirectional interplay, creating
pathological feedback loops that establish and maintain a
remarkably stable immunosuppressive state. A metabolic
alteration, for example, can drive an epigenetic change that, in
turn, transcriptionally reinforces the aberrant metabolic phenotype
and its downstream immunological consequences (Lu and
Thompson, 2012). To deconstruct this complexity and move
beyond empirical drug combinations, we propose the Epi-Met-
Immune Synergistic Network, a multi-layered framework
designed to map the key molecular and cellular players, their
dynamic interactions, and the critical nodes for rational
therapeutic intervention.

Layers and nodes of the network

The network is conceptualized as three interconnected,
interdependent layers. The foundational Epigenetic Layer
comprises the architects of the chromatin landscape—the
enzymatic machinery that writes, erases, and reads epigenetic
marks. Key nodes here include DNMTs, HDACs, and histone
methyltransferases like EZH2. This epigenetic control directly
governs the Metabolic Layer, which comprises core metabolic
pathways whose effector metabolites function dually as cellular
fuel and potent signaling molecules (Keating and El-Osta, 2015).
Critical nodes include glycolysis and oxidative phosphorylation
(OXPHOS), while metabolites such as lactate, succinate, and α-
ketoglutarate directly influence epigenetic enzyme activity, and the
availability of universal donors like S-adenosylmethionine (SAM)
and Acetyl-CoA links metabolic status directly back to epigenetic
potential (Yu and Li, 2024; Yellen, 2018). Ultimately, the functional
output of this intricate epi-metabolic crosstalk manifests in the
Immune Layer, which encompasses the primary cellular actors of
the anti-tumor response, including cytotoxic effector cells (CD8+
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T cells, NK cells), immunosuppressive populations (Tregs, MDSCs,
M2-polarized TAMs), and professional antigen-presenting
cells (DCs).

Dynamic interactions and paradigmatic
feedback loops

The true power of this framework lies in mapping the self-
perpetuating circuits that drive therapeutic resistance. A
paradigmatic example is the Warburg effect, which results in a
lactate-rich TME (Lane et al., 2020). Lactate, now understood to be a
potent oncometabolite, acts as a competitive inhibitor of α-
ketoglutarate-dependent dioxygenases, including TET enzymes
and certain histone demethylases (Faubert et al., 2017). This
epigenetic reprogramming cripples the expression of key effector
cytokines like IFN-γ and granzyme B in infiltrating CD8+ T cells,
thus directly linking a metabolic byproduct to profound immune
dysfunction via an epigenetic mechanism (Zebley et al., 2020). This

crosstalk is profoundly bidirectional. Conversely, epigenetic
programs can dictate metabolic fate, as seen in a T cell destined
for exhaustion. Here, key epigenetic writers like EZH2 actively
enforce a repressive transcriptional program, silencing entire gene
networks required for T-cell proliferation, survival, and metabolic
fitness (Zhao et al., 2016). This entire pathological loop is stabilized
by the hypoxic, nutrient-poor conditions of the TME, creating a
state of immune paralysis that is remarkably resistant to
reversal (Figure 3).

Network plasticity and therapeutic
sequencing

Crucially, the Epi-Met-Immune Network is not a static entity
but a dynamic system that evolves under selective pressure. In
nascent tumors, the network’s connections may be highly plastic
and malleable, representing a state of reversible
immunosuppression. However, under the relentless pressure of

FIGURE 2
The Interplay of Metabolic Reprogramming and Epigenetic Regulation in the Tumor ImmuneMicroenvironment. Key stromal cells, such as CAFs and
TAMs, adopt altered metabolic programs like the Reverse Warburg Effect, producing an abundance of metabolites including lactate, SAM, and Acetyl-
CoA. These molecules are not merely metabolic byproducts but act as critical signaling molecules (for example lactate via its GPR81 receptor to
upregulate HDAC) and essential substrates for epigenetic enzymes that control DNAmethylation and histone modifications. This direct metabolic-
epigenetic link ultimately dictates the functional phenotype of immune cells, crucially promoting the polarization of TAMs towards an
immunosuppressive M2 state. The diagram highlights how this self-reinforcing cycle can be therapeutically targeted with inhibitors for key nodes like
HDAC, DNMT, and LDH, offering a strategy to break the cycle and reprogram the TME towards an anti-tumor state.
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tumor progression and therapy, these connections can become
progressively hardwired or canalized. This is exemplified by
T-cell exhaustion, where initial, reversible dysfunction (plasticity)
transitions into a deeply entrenched epigenetic state (fixation) that is
profoundly resistant to reversal by conventional immunotherapies
(Blank et al., 2019).

This temporal evolution is not merely a challenge; it presents a
critical, yet largely unexplored, therapeutic opportunity: the strategic
sequencing of interventions. The concept of a fixed
immunosuppressive state raises pivotal questions for clinical trial
design. Can epigenetic modulators be deployed as priming agents to
reverse epigenetic fixation and reopen a window of vulnerability to
subsequent cancer vaccines or ICIs? What is the optimal duration
and timing of this window before the network re-establishes its
resilient, immunosuppressive state? Therefore, understanding the
network’s temporal dynamics is paramount for designing therapies
that are not only potent but also precisely timed to exploit moments
of maximum vulnerability, a concept we term chronotherapy in
this context.

A rational map for nanotherapeutic
intervention

Crucially, the Epi-Met-Immune Network serves as a rational
map for a paradigm shift in therapeutic design—from single-agent
targeting to multi-pronged, systems-level disruption. By visualizing
the interconnected nodes, we can identify strategic points for
intervention. A nanoplatform delivering an EZH2 inhibitor
targets a key node in the Epigenetic Layer, while another
carrying a lactate dehydrogenase inhibitor (LDHi) severs a
critical link in the Metabolic Layer.

The ultimate goal, uniquely enabled by advanced
nanoplatforms, is to co-deliver multiple agents that
simultaneously attack different pathological connections within
this network. This represents a move towards the controlled
demolition of the entire immunosuppressive architecture.
Nanocarriers are the essential enabling technology for this
strategy, as they can ensure that distinct therapeutic agents arrive
at the same tumor site at the same time, a prerequisite for disrupting

FIGURE 3
The Epi-Met-Immune Synergistic Network. Key metabolites generated from pathways like glycolysis and themethionine cycle (for example lactate,
Acetyl-CoA, SAM) act as critical cofactors or inhibitors for epigenetic enzymes (DNMT, TET, HATs), directly linking the cell’s metabolic state to the
regulation of DNA and histone modifications. This interplay is bidirectional, as epigenetic regulators like EZH2 can in turn control metabolic programs
such as OXPHOS. This self-reinforcing feedback loop ultimately shapes the immune landscape, promoting a shift from cytotoxic effector cells to a
dominant population of immunosuppressive cells (Tregs, MDSCs, M2 TAMs). The network serves as a rational blueprint for therapeutic intervention,
where nanoplatforms are designed to deliver inhibitors against key nodes (for example EZH2i, LDHi) to simultaneously disrupt these pathological circuits
and dismantle the foundations of tumor immunosuppression.
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a tightly regulated biological network. This systems-level approach
offers a far more robust strategy to dismantle the foundations of
immunosuppression and unlock the full potential of
cancer vaccines.

Epigenetic influence on metabolic
reprogramming in enhancing lung cancer
vaccine response

The functional manifestation of the Epi-Met-Immune Network
is profoundly governed by its spatial organization within the tumor
architecture. The TME is not a homogenous mixture of cells and
metabolites; rather, it is a structured landscape with distinct
ecological niches that dictate the network’s local topology. In the
tumor’s hypoxic core, for instance, the network is dominated by
metabolic suppression, where HIF-1α activation drives intense
glycolysis, lactate accumulation, and subsequent epigenetic
silencing of T-cell effector programs. In stark contrast, at the
invasive front or proliferative margin, where immune infiltration
is more active, the network may be rewired to favor adaptive
resistance mechanisms, such as IFN-γ-driven PD-L1 expression
and T-cell exhaustion mediated by direct cell-cell contact.

Unveiling this spatial heterogeneity is no longer a theoretical
exercise but a tangible goal, enabled by the advent of Spatial Omics.
Technologies like spatial transcriptomics and metabolomics are
beginning to provide high-resolution maps of the network’s
activity, moving our understanding from bulk analysis to a
spatially resolved atlas. This granular view is critical, as it
provides the ultimate rationale for developing “smart”
nanoplatforms capable of navigating to and responding within
specific microenvironmental niches (for example hypoxia,
acidity). Therefore, the following analysis of individual cell
populations must be interpreted through this spatial lens,
recognizing that their epigenetic and metabolic states are
fundamentally shaped by their precise location within the
tumor ecosystem.

Epigenetic regulation of lung cancer-
associated macrophages

TAMs in lung cancer undergo extensive epigenetic
reprogramming that shapes their metabolic and functional
phenotypes (Morrissey et al., 2021). The transcription factor
landscape of TAMs is fundamentally altered through changes in
enhancer accessibility and promoter methylation (Larionova et al.,
2020). Key metabolic genes involved in oxidative phosphorylation
are epigenetically silenced in M2-like TAMs, while glycolytic genes
show increased accessibility and expression (Jiang et al., 2024). This
metabolic shift reflects a distinct epigenetic program orchestrated by
specific histone modifications, including H3K4me1 marks at
glycolytic gene enhancers and H3K27me3 marks at oxidative
metabolism gene promoters (Saeed et al., 2014).

The metabolic reprogramming of TAMs creates a self-
reinforcing loop that maintains their immunosuppressive
phenotype. Enhanced glycolysis in TAMs leads to lactate
production, which acts through GPR81 receptors to induce

further epigenetic changes, including increased expression of
HDAC enzymes (Zhang et al., 2022). These HDACs deacetylate
histones at pro-inflammatory gene loci, suppressing the production
of anti-tumor cytokines and chemokines. Additionally, metabolite-
sensitive epigenetic enzymes, such as α-ketoglutarate-dependent
dioxygenases, are influenced by the altered metabolic state of
TAMs, affecting DNA and histone demethylation processes (Yu
and Li, 2024; Lin et al., 2015).

Targeting the epigenetic-metabolic axis in TAMs offers promising
strategies for enhancing vaccine responses. Combination approaches
using HDAC inhibitors with metabolic modulators can reprogram
TAMs toward anti-tumor phenotypes. For instance, inhibiting
glycolysis while simultaneously modulating epigenetic enzymes can
break the immunosuppressive feedback loop, restoring TAM
inflammatory functions and enhancing their capacity to support
vaccine-induced T cell responses (Jeong et al., 2019).

Epigenetic regulation of T lymphocytes

The epigenetic landscape of tumor-infiltrating T lymphocytes
profoundly influences their metabolic programming and functional
capacity (Liu X. et al., 2022). Effector T cells require robust glycolytic
metabolism to support their proliferation and cytotoxic functions, yet
the lung tumormicroenvironment imposesmetabolic restrictions that
are reinforced by epigenetic modifications (Beckermann et al., 2017).
Exhausted T cells exhibit specific methylation patterns at metabolic
gene loci, with hypermethylation of glycolytic enzyme promoters and
altered chromatin accessibility at mitochondrial biogenesis genes
(Franco et al., 2020).

The metabolic-epigenetic interplay in T cells is mediated by
metabolite availability and enzymatic activity.
S-adenosylmethionine (SAM), the universal methyl donor, links
one-carbon metabolism to DNA and histone methylation (Lee et al.,
2023). In the nutrient-depleted tumor microenvironment, altered
SAM availability affects methylation patterns, influencing T cell
differentiation and function. Similarly, acetyl-CoA levels,
determined by the balance between glycolysis and fatty acid
oxidation, regulate histone acetylation and gene expression
programs in T cells (Soriano-Baguet and Brenner, 2023).

Recent studies have revealed that metabolic interventions can
reverse epigenetic T cell dysfunction (Liu et al., 2025a; Han et al.,
2023). Supplementation with specific metabolites or use of metabolic
pathway inhibitors can restore epigenetic marks associated with
effector function. For example, inhibiting lactate dehydrogenase not
only reduces lactate production but also alters the NAD+/NADH
ratio, affecting the activity of sirtuins and other NAD+-dependent
epigenetic enzymes (Anderson et al., 2017; Xie et al., 2020). This
metabolic-epigenetic reprogramming can enhance T cell responses
to cancer vaccines by restoring effector functions and preventing
exhaustion.

Epigenetic regulation of cancer-associated
fibroblasts

Cancer-associated fibroblasts (CAFs) represent a critical stromal
component that undergoes significant epigenetic reprogramming in
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lung tumors (Raaijmakers et al., 2024). The transformation of
normal fibroblasts to CAFs involves widespread changes in DNA
methylation and histone modifications that lock in their activated,
pro-tumorigenic phenotype (Yang et al., 2023). These epigenetic
changes directly influence CAF metabolism, shifting them toward
glycolytic metabolism and enhanced production of metabolites that
support tumor growth and immunosuppression.

CAFs exhibit unique metabolic features, including reverse
Warburg metabolism, where they provide lactate and other
metabolites to fuel tumor cells (Liang et al., 2022). This
metabolic phenotype is maintained by epigenetic modifications at
key metabolic gene loci. Hypomethylation of glycolytic enzyme
promoters and altered histone acetylation patterns at oxidative
metabolism genes create a stable metabolic program (Kim et al.,
2022). Additionally, CAFs produce metabolites that function as
epigenetic modifiers, including α-ketoglutarate, succinate, and
fumarate, which influence the activity of demethylases in
neighboring cells (Mishra et al., 2019).

The secretome of epigenetically reprogrammed CAFs
profoundly impacts vaccine responses. CAF-derived factors,
including TGF-β, IL-6, and various chemokines, create physical
and chemical barriers to T cell infiltration and function (Wu et al.,
2021). Epigenetic targeting of CAFs, particularly through DNMT or
HDAC inhibition, can normalize their phenotype and reduce their
immunosuppressive effects (Ramaiah et al., 2021). Combined with
metabolic interventions, epigenetic CAF reprogramming represents
a promising strategy for improving vaccine efficacy in lung tumors.

Nanoplatforms: overcoming the
pharmacological barriers of
epigenetic therapy

Epigenetic regulation in lung cancer therapy

Despite the significant potential of epigenetic therapies such as
DNMTi and HDACi in lung cancer immunotherapy—including
mechanisms like inducing viral mimicry and enhancing antigen
presentation—their clinical translation faces considerable
pharmacological challenges. These challenges primarily involve
severe off-target effects and dose-limiting toxicities (for example
myelosuppression) due to their broad mechanisms of action, as well
as suboptimal pharmacokinetic properties such as rapid systemic
clearance and poor penetration into deep tumor tissues.
Furthermore, significant inter- and intratumoral heterogeneity in
epigenetic states and immune microenvironments in lung cancer
leads to unpredictable and inconsistent treatment responses. These
fundamental pharmacological and biological barriers collectively
prevent free drugs from achieving and sustaining therapeutically
effective concentrations within tumors, thereby hindering durable
remodeling of the epigenetic landscape and ultimately limiting the
clinical efficacy of both monotherapy and combination strategies
with immune checkpoint inhibitors.

Epigenetic therapies have emerged as promising approaches for
reversing the profound immune dysregulation in lung tumors. DNA
methyltransferase inhibitors (DNMTi) and histone deacetylase
inhibitors (HDACi) demonstrate multifaceted mechanisms of
action that extend beyond direct cytotoxicity to include robust

immunomodulatory effects (Luszczek et al., 2010; Blagitko-Dorfs
et al., 2019; Huang et al., 2024). Notably, azacitidine and decitabine
induce viral mimicry responses through endogenous retroviral
element reactivation, enhancing type I interferon signaling and
antigen presentation machinery (Table 1).

Yet, the clinical translation of these agents has been tempered by
significant clinical hurdles, starkly illustrating the discrepancy
between preclinical potential and clinical reality. The trials of
epigenetic monotherapies are paradigmatic. For instance, the
phase II study of systemically administered Vorinostat with
radiotherapy (NCT00821951) failed to yield breakthroughs in
NSCLC. This outcome is largely attributed to its narrow
therapeutic window; the doses required to avoid systemic
toxicities like fatigue and thrombocytopenia are likely insufficient
to achieve the sustained, biologically effective concentrations needed
within the TME to durably remodel the epigenetic landscape and
reverse T-cell exhaustion. This limitation persists even when
attempting to bypass systemic routes. An innovative trial
exploring inhaled Azacitidine (NCT02009436) also met with
limited success, suggesting that overcoming systemic toxicity is
only half the battle. The trial’s failure underscores that free drugs,
even when delivered locally, face formidable intratumoral barriers,
including rapid clearance and poor penetration through dense
stromal architecture.

The strategy of combining epigenetic agents with immune
checkpoint inhibitors (ICIs) has yielded encouraging signals
(Table 2), yet the clinical trials themselves have uncovered
profound, unresolved complexities that temper enthusiasm and
guide future research. For example, the phase II study of
Azacitidine plus Nivolumab (NCT02546986), while
demonstrating some clinical activity, produced a modest objective
response rate (ORR). A crucial lesson from this trial is the decisive
role of patient heterogeneity. The study did not employ biomarker-
based patient stratification, such as pre-treatment DNAmethylation
profiles or baseline immune infiltration status, leaving a critical
question unanswered: which patient subgroups are most likely to
benefit from this dual strategy of ‘epigenetic reprogramming’ and
‘immune checkpoint liberation’? This highlights the paramount
urgency for developing robust predictive biomarkers.

Complementing the challenge of patient selection is the equally
critical issue of therapeutic scheduling and dynamics. While the
combination of Entinostat and Nivolumab (NCT01928576)
produced encouraging results, the dosing and timing regimens
were largely empirical. We lack a fundamental understanding of
the optimal ‘time window’ for epigenetic-drug-induced antigen
expression and immune cell reprogramming. Should treatment
involve a prolonged, low-dose ‘epigenetic priming’ to ‘warm up’
the TME before ICI administration, or is a concurrent, high-dose
pulse more effective? This challenge of dynamic therapeutic
optimization represents a significant, yet largely overlooked,
scientific frontier that current clinical trial designs have not
systematically addressed.

Collectively, these trials underscore that the next-generation of
combination therapies must evolve beyond simply mixing active
agents and towards a sophisticated, biomarker-guided approach that
personalizes treatment to both the patient and the dynamic temporal
evolution of the tumor-immune dialogue. The clinical setbacks are
rooted in a confluence of fundamental pharmacological and
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biological barriers (Zhou et al., 2023). The non-specific mechanism
of action of current epigenetic drugs results in substantial off-target
effects and dose-limiting toxicities like myelosuppression, while
their suboptimal pharmacokinetic properties are characterized by
rapid clearance and poor tissue penetration (Xu et al., 2023).
Compounding these issues is the profound epigenetic and
immunological heterogeneity across lung tumors, which dictates
differential therapeutic responses. It is precisely this multifaceted
challenge—requiring therapies that can navigate systemic toxicities,
breach physical tumor barriers, and be deployed with precise
temporal control—that nanoplatform-based delivery systems are
poised to address. Advanced nanocarriers offer the potential to
resolve these limitations by simultaneously widening the therapeutic
window, overcoming delivery barriers, and enabling the
spatiotemporal control required to orchestrate a productive anti-
tumor immune response.

Cancer vaccination in lung tumors depends on a functional
cancer-immunity cycle (CI cycle), which requires robust antigenicity
and adjuvanticity to sustain antitumor immunity. The cycle involves
seven steps: antigen release and capture, processing and
presentation, T-cell priming, trafficking, infiltration, tumor
recognition, and killing. However, epigenetic and metabolic
dysregulation disrupts multiple stages beyond adjuvanticity. For
example, DNMT-mediated hypermethylation silences tumor
antigens (for example MAGE-A3), while lactate accumulation in
the TME inhibits TET demethylases in dendritic cells, impairing
antigen presentation. IDO-driven tryptophan catabolism enhances
EZH2 activity in T cells, repressing effector genes via

H3K27me3 and promoting T-cell anergy. CAFs further disrupt
T-cell trafficking through epigenetic silencing of chemokines like
CXCL10. Nanomaterials can simultaneously target these barriers:
pH-responsive nanoparticles co-delivering DNMT and LDHi
restore antigen expression, improve DC function, and enhance
T-cell activation, as shown by increased CD8+ T-cell infiltration
and tumor control in preclinical models. A broader CI cycle-focused
approach is essential to improve response rates in lung cancer
vaccines (Liu et al., 2024).

Targeted nano-delivery systems

The integration of epigenetic modulators into nanoplatform
designs could potentially revolutionize approaches to lung cancer
therapy. Nanocarriers offer unique advantages for delivering
epigenetic drugs, including protection from degradation,
enhanced tumor accumulation, and controlled release kinetics.
Lipid-based nanoparticles have shown particular promise for
delivering DNMTi and HDAC inhibitors, with modifications
such as PEGylation extending circulation time and reducing
immunogenicity (Sukocheva et al., 2022) (Figure 4).

Advanced nanoplatform designs incorporate stimuli-responsive
elements that enable precise spatiotemporal control of epigenetic
drug release. pH-responsive nanocarriers exploit the acidic tumor
microenvironment to trigger drug release specifically within tumors
(Chen et al., 2023). Redox-responsive systems utilize the elevated
glutathione levels in cancer cells to achieve intracellular drug release

TABLE 1 Monotherapy in clinical studies.

Drug name Clinical trial number Trial phase Treatment regimen Lung cancer type

Azacitidine NCT02009436 Phase II Monotherapy (inhalation) Stage IV/Recurrent NSCLC

Decitabine NCT05960773 Phase II Monotherapy BAP1-related early-stage mesothelioma

Vorinostat NCT00821951 Phase II Monotherapy combined with palliative radiotherapy NSCLC

Vorinostat NCT00667082 Phase I Combination with NPI-0052 (Marizomib) NSCLC and others

Panobinostat NCT01222936 Phase II Monotherapy SCLC

Belinostat NCT00926640 Phase I Combination with cisplatin + etoposide SCLC

TABLE 2 Clinical combinations with immunotherapies.

Drug name Clinical trial number Trial phase Treatment regimen Lung cancer type

Azacitidine NCT02959437 Phase I Pembrolizumab Advanced solid tumors including NSCLC

Azacitidine NCT02546986 Phase II Nivolumab NSCLC

Decitabine NCT02664181 Phase I Nivolumab NSCLC

Vorinostat NCT02638090 Phase I Pembrolizumab NSCLC

Entinostat NCT01928576 Phase II Nivolumab NSCLC

Mocetinostat NCT02805660 Phase I Durvalumab Advanced solid tumors including NSCLC

Tazemetostat NCT05353439 Phase I Pembrolizumab Recurrent SCLC

Tazemetostat NCT05467748 Not Specified Pembrolizumab NSCLC

XNW5004 NCT06022757 Phase I Pembrolizumab Advanced solid tumors including lung cancer
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(Raza et al., 2018). These smart delivery systems minimize off-target
effects while maximizing therapeutic efficacy.

Cell-specific delivery to immune populations within the tumor
microenvironment requires sophisticated targeting approaches (Lei
et al., 2020). Nanoparticles decorated with antibodies against
immune cell markers can selectively deliver cargo to specific
immune subsets (Kimmel et al., 2025; Jain et al., 2024). For
instance, CD3e f (ab)2 fragment nanoparticles can deliver
metabolic modulators specifically to cytotoxic T cells (Kim et al.,
2021), while anti-F4/80 targeting enables macrophage-specific
delivery (Terry et al., 2015). This precision targeting minimizes
systemic effects while maximizing local immunomodulation.

The tumormicroenvironment presents unique opportunities for
environmental targeting. Enzyme-cleavable linkers responsive to
matrix metalloproteinases enable selective drug release in the
tumor stroma (Li et al., 2020; Iaccarino et al., 2019). Hypoxia-
responsive nanocarriers utilize the low oxygen tension in tumors to

trigger drug release through reduction of azobenzene or
nitroimidazole groups (Thambi et al., 2014). These
environmental targeting strategies complement receptor-based
approaches to achieve optimal drug delivery.

Preclinical studies investigating epigenetic modulator-loaded
nanoplatforms have established compelling proof-of-concept, as
summarized in Table 3. Lipid-based nanoformulations, for
example, have shown considerable promise by enabling the co-
delivery of synergistic epigenetic agents, such as decitabine and
panobinostat, to enhance anti-tumor efficacy in preclinical models
(Rehman et al., 2024). These advances, marked by favorable
biodistribution and enhanced anti-tumor immune responses, are
certainly encouraging. However, these promising findings must be
interpreted with caution, as a critical appraisal reveals significant
translational challenges embedded within the study designs.

To begin with, the choice of animal model often inflates
therapeutic expectations. The success of nanoparticles in an

FIGURE 4
Schematic Diagram of Epigenetics-Centered Multifunctional Nanoplatform Design. Multifunctional nanoplatforms integrating epigenetic
therapeutics (DNMTi, HDACi, CRISPR components) with metabolic modulators (2-deoxyglucose, LDHi) to synergistically reprogram the
immunosuppressive lung tumor microenvironment as described in sections 5.2–5.3. These sophisticated delivery systems incorporate tumor-targeting
ligands (EGFR, HER2) and stimuli-responsive elements (pH, GSH-sensitive) that enable precise spatiotemporal control of drug release within the
complex immunosuppressive cellular architecture comprising effector T cells, MDSCs, and TAMs. By simultaneously disrupting the self-reinforcing
epigenetic-metabolic feedback loops that maintain immunosuppressive phenotypes while enhancing antigen presentation machinery, these
nanoplatforms represent a promising strategy to overcome the formidable barriers to cancer vaccine efficacy in lung tumors through comprehensive
reprogramming of the tumor immune landscape.
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immunologically favorable model, which is inherently sensitive
to immunotherapy, cannot be directly extrapolated to the
profoundly immunosuppressive microenvironment of
primary lung cancer (Wang et al., 2024). To generate more
predictive data, future preclinical validation must pivot towards
more clinically relevant systems, such as Kras/p53 genetically
engineered mouse models or patient-derived xenografts (PDX)
(Nakahata et al., 2022). Furthermore, the concept of ‘targeted
delivery’ itself warrants critical scrutiny. Despite reports of
sophisticated targeting strategies, the unavoidable reality is
that a majority of nanoparticles are sequestered by the
reticuloendothelial system (RES) (Tang et al., 2019). This
‘off-target’ accumulation is not merely a loss of payload but a

potentially potent immunomodulatory event—for instance, by
altering Kupffer cell function or systemic T-cell priming—a
“double-edged sword” effect that remains a largely unexplored
dimension of nanomedicine. Finally, the very elegance of these
nanoplatforms often conceals their greatest translational
barrier: manufacturing complexity (Feng et al., 2024). The
chemistry, manufacturing, and controls (CMC) for multi-
component systems are exceptionally demanding (O’Brien
Laramy et al., 2025). A forward-looking perspective must
therefore recognize that the next breakthrough in this field
may lie not in increasing design complexity, but in mastering
the manufacturability and scalability required for clinical
translation.

TABLE 3 Applications of epigenetic modification combined with nanotechnology.

Drug name Nano carrier type Lung cancer animal model Main results

Vorinostat (Sankar and
Ravikumar, 2014)

PLGA polymeric nanoparticles In vitro and in vivo A549 lung cancer cell models PLGA nanoparticles loaded with Vorinostat
showed good biocompatibility and

biodistribution, and were actively taken up by
A549 lung cancer cells

Vorinostat (Shanmugam et al.,
2022)

PLGA nanoparticles Lung cancer cell models The nanoparticles exhibited enhanced
permeability and retention (EPR) effect, showing
active uptake and favorable biodistribution

patterns in lung cancer cells and tumor models

GSK126 (Guo et al., 2025) Albumin nanoparticles
(GSK126 NPs)

B16F10 melanoma xenograft mouse model Significantly reduced tumor weight and volume
with no obvious systemic toxicity; partially
improved the induction effect of GSK126 on

MDSCs

EZH2 siRNA (Wang et al., 2019) DMC nanocomplex BALB/c female nude mouse orthotopic
U87 glioma model

The EZH2si-DMC complex more effectively
inhibited tumor growth than other groups, and
the mice in the treatment group had the longest

survival

EZH2 siRNA (Lu et al., 2023) Magnetic nanodrug carrier Triple-negative breast cancer mouse model Combination of chemotherapy and gene therapy
significantly increased tumor inhibition effect,

showing good safety characteristics

Vorinostat (Kwak et al., 2015) Polymeric nanoparticles HuCC-T1 cholangiocarcinoma xenograft nude
mouse model

The nanoformulation showed stronger
antitumor activity than the free drug; drug

retention time at the tumor site was extended to
8 days

Entinostat (Abed et al., 2024) Polymeric nanoparticles Colorectal cancer cell models Maintained drug activity, and combined with
MDM2 inhibitor RG7388 showed a synergistic

effect in inducing cell death

Quisinostat (Wang et al., 2015) Nanoparticle formulation Mouse xenograft models As a radiotherapy sensitizer, it showed better
efficacy than small-molecule drugs

HDACi 4b (Jia et al., 2015) Unspecified carrier Huntington’s disease R6/2 mouse model Improved body weight and motor function,
reduced brain atrophy, and at least partial

recovery of expression in 90% of affected genes

Azacitidine (Jahanfar et al., 2016) Solid lipid nanoparticles (SLNs) MCF-7 breast cancer cell line The encapsulated drug showed significantly
higher cytotoxicity than the free drug; induced
morphological changes of apoptosis; promoted

RARβ2 gene expression

Azacitidine (Elzayat et al., 2023) Lipid nanoparticles (GEF-
AZT-NLC)

Metastatic drug-resistant lung cancer model Significantly improved cell uptake efficiency and
cell killing effect

Decitabine (Wu et al., 2017) Bone-targeted nanoparticles
(BTNPs)

NUP98/HOXD13 transgenic mouse MDS model Significantly improved hematological
parameters and reduced toxicities such as

thrombocytopenia and leukopenia

Azacitidine (Mitsuhashi et al.,
2025)

PLGA core-lipid shell hybrid
carrier

HCT116 colorectal cancer cells Dual targeting of DNMT and TET enzymes,
effectively repairing abnormal DNAmethylation

and inducing G2/M phase cell cycle arrest
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Synergistic effects of co-loading metabolic
regulators and epigenetic nanomedicine

The co-encapsulation of metabolic regulators and epigenetic
drugs within nanoplatforms may generates synergistic effects that
extend far beyond simple additive responses (Liu S. et al., 2025; Zhou
Y. et al., 2024). This synergy arises from the fundamental
interconnection between cellular metabolism and epigenetic
regulation, where metabolites serve as essential cofactors for
epigenetic enzymes while epigenetic modifications control the
expression of metabolic genes (Thakur and Chen, 2019). The
simultaneous modulation of both systems creates a powerful
positive feedback loop that amplifies therapeutic efficacy.

The powerful synergy generated by co-encapsulating metabolic
regulators and epigenetic drugs can be understood rationally through
the lens of the Epi-Met-Immune Network. Rather than being a simple
additive effect, this strategy represents a concerted attack on the
feedback loops that maintain immunosuppression. For example, by
simultaneously delivering a glycolytic inhibitor and an HDACi, a
nanoplatform can disrupt both a key node in the Metabolic Layer
(lactate production) and another in the Epigenetic Layer (histone
acetylation), effectively dismantling the self-reinforcing circuit that
connects metabolic hostility to T-cell epigenetic silencing.

At the molecular level, metabolic inhibitors such as 2-
deoxyglucose or lactate dehydrogenase inhibitors reduce the
production of oncometabolites that normally inhibit epigenetic
enzymes (Wong et al., 2017). For instance, decreased lactate
production enhances the activity of histone deacetylases by
altering the NAD+/NADH ratio, while reduced 2-
hydroxyglutarate levels restore the function of TET enzymes and
histone demethylases (An et al., 2023). When combined with direct
epigenetic modulators like HDAC inhibitors or DNA
methyltransferase inhibitors, this metabolic reprogramming
synergistically enhances chromatin remodeling and gene
expression changes (Ramaiah et al., 2021). Studies have
demonstrated that this combination achieves greater changes in
immune-related gene expression compared to either treatment
alone (Liang et al., 2023; Fang et al., 2021).

This combination effect may have a significant impact on
immune cell function within the tumor microenvironment. Co-
delivery of glycolytic inhibitors with epigenetic drugs not only
reduces metabolic competition between tumor cells and T cells
but also prevents the epigenetic imprinting of exhaustion programs
(Geng et al., 2023). This action results in a enhancement in T cell
cytotoxicity compared to monotherapy approaches.

The temporal dynamics of synergistic effects reveal another layer
of complexity. Metabolic reprogramming can sensitize cells to
subsequent epigenetic interventions by altering the availability of
metabolic cofactors (Sun et al., 2022). S-adenosylmethionine levels,
modulated by methionine metabolism inhibitors, directly influence
DNA and histone methylation patterns (Pascale et al., 2022). When
combined with DNMT inhibitors, this metabolic priming enhances
demethylation efficiency (Blagitko-Dorfs et al., 2019). Conversely,
epigenetic drugs can reprogram metabolic gene expression, creating
sustained metabolic changes that persist beyond drug clearance
(Peng and Zhong, 2015). This bidirectional enhancement creates
durable therapeutic effects that extend the duration of immune
activation.

The synergy extends to overcoming drug resistance
mechanisms. Tumor cells often develop resistance to metabolic
inhibitors through compensatory metabolic pathways, but co-
delivered epigenetic drugs can silence these escape routes by
modulating the expression of alternative metabolic enzymes
(Park et al., 2020; Scumaci and Zheng, 2023). Similarly,
epigenetic drug resistance mediated by drug efflux pumps or
metabolic inactivation can be circumvented by metabolic
modulators that alter cellular energy states and transporter
function (Ingelman-Sundberg et al., 2013). This reciprocal
resistance prevention has been demonstrated to maintain drug
sensitivity longer than single-agent treatments in preclinical
models (Singh and Yeh, 2017).

Immune adjuvant functions of epigenetic
nano-vaccines

Beyond drug delivery, nanoplatforms themselves can function as
immune adjuvants, enhancing vaccine responses through multiple
mechanisms (Zhao T. et al., 2023). The physicochemical properties
of nanoparticles, including size, shape, and surface chemistry, influence
their immunogenicity (David et al., 2016; Lin et al., 2020).
Nanoparticles in the 20–200 nm range are efficiently taken up by
dendritic cells and transported to lymph nodes, optimal for initiating
immune responses (Manolova et al., 2008; Zhao H. et al., 2023). Surface
modifications with pathogen-associated molecular patterns (PAMPs)
further enhance their adjuvant activity (Ben-Akiva et al., 2025).

Inorganic nanoparticles, particularly those based on gold, silica,
or iron oxide, can activate innate immune responses through
multiple pathways (Palomino-Cano et al., 2024). These materials
can trigger inflammasome activation, leading to IL-1β production
and enhanced antigen presentation (van de Veerdonk et al., 2011).
The controlled release of ions from degradable inorganic
nanoparticles provides sustained immune stimulation (Liu et al.,
2025c). Additionally, the photothermal properties of certain
nanoparticles enable combination with thermal ablation
therapies, releasing tumor antigens while providing adjuvant
signals (Ashikbayeva et al., 2019).

Biomimetic nanoplatforms represent an emerging frontier in vaccine
design (Liu J. et al., 2022). Cell membrane-coated nanoparticles combine
the drug delivery capabilities of synthetic carriers with the biological
functions of cell membranes (Xu et al., 2020). Tumor cell membrane-
coated particles present a full array of tumor antigens while protecting
encapsulated drugs (Jiang et al., 2020). Dendritic cell membrane coatings
provide natural targeting to lymph nodes and enhanced T cell activation
(Cao et al., 2023). These biomimetic approaches blur the lines between
drug delivery vehicles and vaccines themselves.

Future directions and clinical
translation challenges

From single-node targeting to rational
network disruption

The future of epigenetic nanomedicine lies not in simply
improving the delivery of single agents, but in rationally
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designing platforms that can overcome the TME’s most formidable
property: its capacity for adaptive resistance. This requires elevating
our view of the Epi-Met-Immune Synergistic Network from a static
map of immunosuppression to a dynamic engine of therapeutic
failure. When a single node is targeted with a monotherapy, such as
an EZH2 inhibitor, the network often responds not by collapsing,
but by adaptively rewiring itself. The system compensates by
upregulating alternative metabolic pathways or engaging different
epigenetic silencing mechanisms, effectively circumventing the
therapeutic blockade and driving resistance.

This inherent resilience renders single-agent strategies
fundamentally inadequate and reframes the mission of
nanomedicine: the goal is not merely to achieve synergy, but to
preemptively dismantle the network’s capacity for adaptive

resistance. This is the ultimate rationale for multi-pronged,
systems-level disruption. The next paradigm shift will involve
leveraging patient-specific data to guide these attacks. For instance,
emerging liquid biopsy technologies that map circulating tumor DNA
methylation patterns will not only serve as diagnostic biomarkers but
will also reveal the network’s active pathways and predict its likely
escape routes (Luo et al., 2021). This information, when processed by
AI-driven algorithms, can guide the selection or even de novo design
of a nanoplatform co-delivering a specific combination of
agents—such as an EZH2 inhibitor and a lactate dehydrogenase
inhibitor—to sever not only the primary driver pathways but also
the anticipated resistance circuits (Wei et al., 2021; Zhang et al., 2017).
This represents the ultimate goal of precision medicine: moving from
pathway-level intervention to patient-specific network demolition.

FIGURE 5
A Closed-Loop Clinical Paradigm for Precision Intervention Based on the Epi-Met-Immune Network. This figure illustrates a proposed closed-loop,
four-stage clinical paradigm for operationalizing the Epi-Met-ImmuneNetwork concept to guide personalized cancer therapy. (Stage 1: High-Resolution
Diagnosis) The process begins with a high-resolution diagnosis, utilizing technologies such as liquid biopsy tomap the patient-specific network topology
and identify the dominant immunosuppressive circuits. (Stage 2: Ex Vivo Validation) Based on this functional map, a rationally selected multi-
component nanoplatform is subjected to rigorous ex vivo validation in patient-derivedmodels, such as tumor organoids, to confirm its ability to dismantle
the identified target pathways. (Stage 3: Personalized Administration) Only after this personalized confirmation of efficacy is the synergistic therapy
administered to the patient, initiating a continuous feedback loop. (Stage 4: Dynamic Monitoring and Steering) Finally, serial monitoring is employed to
track the network’s adaptive rewiring in real-time, enabling dynamic therapeutic steering to preemptively counter resistance and ensure durable
clinical benefit.
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A clinical roadmap: from network theory to
precision intervention

Operationalizing the Epi-Met-Immune Network concept
requires a closed-loop, four-stage clinical paradigm. The process
initiates with a high-resolution diagnosis, using liquid biopsies to
map the patient-specific network topology and identify its
dominant immunosuppressive circuits. This functional map
then guides the rigorous ex vivo validation of a rationally
selected multi-component nanoplatform in patient-derived
models, such as tumor organoids, to confirm its ability to
dismantle the target pathways. Only upon this personalized
confirmation of efficacy is the synergistic therapy administered,
initiating a continuous feedback loop where serial monitoring
tracks the network’s adaptive rewiring in real-time. This final
stage enables dynamic therapeutic steering, allowing for the
adjustment of treatment to preemptively counter resistance and
ensure durable clinical benefit (Figure 5).

Overcoming the physical and
manufacturing barriers

Despite promising preclinical results, the translation of
these sophisticated network-disrupting therapies faces two
intertwined engineering challenges: manufacturing scalability
and penetrating the tumor microenvironment (Metselaar and
Lammers, 2020). The clinical translation of multi-component
nanotherapeutics is critically bottlenecked by challenges in
CMC, where establishing standardized, scalable processes
that ensure batch-to-batch consistency and long-term
stability is paramount (Gawne et al., 2023). This complexity
is mirrored by regulatory hurdles, as agencies like the FDA and
EMA require stringent characterization and safety assessments,
making early and continuous engagement essential. Once
successfully manufactured, these nanoparticles confront the
second challenge: the profound heterogeneity of the TME,
which severely limits the universal applicability of passive
targeting via the EPR effect (Du et al., 2015). Successfully
delivering a network-disrupting payload requires overcoming
formidable physical barriers—including anomalous vasculature
and a rigid extracellular matrix—and hostile chemical gradients
like hypoxia and acidity (Ross et al., 2015). Therefore, future
strategies must evolve beyond passive accumulation to
include active targeting ligands, biomimetic coatings that use
immune cells as Trojan horses, and intelligent, stimuli-
responsive systems designed to trigger drug release only upon
reaching the specific metabolic or pH conditions of the
deep tumor core.

Ensuring clinical viability and economic
accessibility

Ultimately, the success of these transformative therapies will be
determined by their real-world clinical viability and economic
sustainability. While the initial investment for advanced
nanomedicines is substantial, their potential to offer durable

responses or even cures provides considerable long-term
economic value by reducing downstream healthcare costs and
enhancing patient productivity (Bosetti and Jones, 2019).
However, realizing this potential requires a paradigm shift in
implementation. This includes adopting value-based pricing
models that link payment to clinical outcomes, exploring
innovative financing mechanisms, and integrating cost-
effectiveness analyses early in the development process. Ensuring
equitable access to these technologies will require a comprehensive
framework that balances immediate budgetary constraints with
long-term societal benefit, making these powerful network-
disrupting therapies a reality for patients (Toro et al., 2025).

Conclusion

The convergence of nanotechnology with epigenetic and
metabolic modulation represents a transformative frontier in
cancer immunotherapy. This review has advanced the concept
that durable anti-tumor immunity is hindered not by isolated
pathways but by a resilient, interconnected network of epi-
metabolic feedback loops. By proposing the Epi-Met-Immune
Synergistic Network as a conceptual framework, we provide a
rational basis for designing sophisticated nanoplatforms capable
of systems-level intervention—co-delivering synergistic agents to
dismantle the very foundations of immunosuppression. While
overcoming translational hurdles in manufacturing and delivery
remains critical, this network-guided approach promises to
fundamentally reshape cancer vaccine development, transforming
immunologically “cold” tumors into responsive malignancies
amenable to precision therapy.
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