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Gene regulatory network (GRN) inference is a central task in systems biology.
However, due to the noisy nature of gene expression data and the diversity of
regulatory structures, accurate GRN inference remains challenging. We
hypothesize that integrating multi-source features and leveraging an attention
mechanism that explicitly captures graph structure can enhance GRN inference
performance. Based on this, we propose GTAT-GRN, a deep graph neural
network model with a graph topological attention mechanism that fuses
multi-source features. GTAT-GRN includes a feature fusion module to jointly
model temporal expression patterns, baseline expression levels, and structural
topological attributes, improving node representation. In addition, we introduce
the Graph Topology-Aware Attention Network (GTAT), which combines graph
structure information with multi-head attention to capture potential gene
regulatory dependencies. We conducted comprehensive evaluations of GTAT-
GRN onmultiple benchmark datasets and compared it with several state-of-the-
art inference methods, including GENIE3 and GreyNet. The experimental results
show that GTAT-GRN consistently achieves higher inference accuracy and
improved robustness across datasets. These findings indicate that integrating
graph topological attention with multi-source feature fusion can effectively
enhance GRN reconstruction.
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1 Introduction

Genes are the fundamental carriers of genetic information in cells. By encoding
proteins, they drive and regulate a wide range of cellular processes. Gene function
extends beyond protein coding. Through complex gene regulatory network (GRN),
genes precisely modulate cellular behavior and functional states. A GRN is an intricate
system that controls gene expression inside the cell (Kaler et al., 2009). Reconstructing this
network is essential to modern biology. By mapping gene-gene interactions, a GRN exposes
the dynamic control of gene expression across environmental conditions and
developmental stages (Davidson, 2010). GRN reconstruction not only clarifies basic
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principles of life (Jie et al., 2020) but also underpins studies of disease
mechanisms and the discovery of drug targets (Morgan et al., 2020).
In cancer research, GRN analysis reveals transcription factors such
as p53 (Kurup et al., 2023) and MYC that drive tumorigenesis, along
with their downstream networks. These insights inform the design
of personalized therapies. In developmental biology, GRN dissection
uncovers core modules (Bedois et al., 2021), such as the HOX gene
cluster, that govern organ formation and advance regenerative
medicine research.

However, conventional GRN inference methods still confront
several challenges. Chief among these is their high computational
complexity. As genomic datasets grow, traditional algorithms, such
as those based on mutual information (Zhang et al., 2015) or
regression (Adabor and Acquaah-Mensah, 2019), scale poorly
and slow dramatically on large inputs. Data sparsity is another
barrier to accurate GRN reconstruction. Because techniques like
ChIP-seq validate only a subset of interactions, many gene-gene
links remain unconfirmed, yielding incomplete networks (McCalla
et al., 2023). Moreover, conventional methods (e.g., Pearson
correlation (Butte and Kohane, 1999) and linear regression
(Lèbre et al., 2010)) assume linear dependencies, so they miss
nonlinear regulatory relationships and further degrade
inference accuracy.

In recent years, GNN has demonstrated considerable potential
for inferring GRN owing to its strong capacity to learn from graph
structures (Paul et al., 2024). GRGNN (Wang et al., 2020) was the
first framework to cast GRN inference as a graph-classification
problem, thereby introducing GNN to GRN research. Because
GNN operates natively on graphs, it is well suited to model the
complex regulatory relationships among genes. Moreover, its strong
capacity to generalize enables GNN to extract latent regulatory
patterns from limited experimental data, conferring greater
robustness and scalability on GRN inference (Paul et al., 2024).
Nonetheless, current GNN-based approaches typically rely on
predefined graph structures or shallow attention mechanisms and
therefore fail to capture the full spectrum of latent topological
information among genes (Liu et al., 2023).

Inspired by the limitations of existing approaches, this study
proposes a novel GRN inference model, termed GTAT-GRN, which
is based on the Graph Topology-Aware Attention Network (GTAT)
(Shen et al., 2025). Unlike conventional methods that rely on
predefined graph structures or shallow attention mechanisms,
GTAT-GRN integrates multi-source feature fusion with topology-
aware modeling to enhance the ability to capture complex regulatory
relationships. Specifically, the model incorporates a multi-feature
fusion module that jointly encodes temporal expression patterns,
baseline expression levels, and potential topological attributes of
genes, thereby achieving heterogeneous feature integration (Yu et al.,
2024b) and enriching node representations with multidimensional
expressiveness. Meanwhile, the introduced GTAT dynamically
captures high-order dependencies and asymmetric topological
relationships among genes during graph learning, thereby
uncovering latent regulatory patterns more effectively.

Accordingly, the central hypothesis of this work is that by
systematically integrating multi-source biological features and
employing a topology-aware attention mechanism to explicitly
model topological dependencies among genes, it is possible to

substantially improve the characterization of true GRN structures
and the accuracy of network inference.

The main contributions of this paper are as follows.

1. We propose GTAT-GRN, a graph-topology-attention model
that accurately infers gene regulatory networks by learning
inter-gene topological relationships.

2. By fusing topological cues with complementary temporal and
static features, GTAT-GRN integrates multidimensional
information to decode gene regulation.

3. The model was systematically evaluated on the DREAM4 and
DREAM5 standard datasets. Experimental results indicate that
GTAT-GRN outperforms existing methods across overall
metrics, including AUC and AUPR. Moreover, it
demonstrates high-confidence predictive performance on
Top-k metrics (Precision@k, Recall@k, F1@k), confirming
its validity, robustness, and capacity to capture key
regulatory relationships across different datasets.

2 Materials and methods

The proposed GTAT-GRN method is a novel GRN inference
approach based on GTAT (Shen et al., 2025). The architecture of
GTAT-GRN is shown in Figure 1, consisting of four modules: (A)
multi-source feature fusion framework, (B) Graph Topology
Attention Network (GTAT), (C) feedforward network and
residual connections, and (D) GRN prediction output layer.

2.1 Multi-source feature fusion framework

To improve GRN inference, we design a multi-source feature-
fusion module (Wu et al., 2023) that jointly models three
information streams: temporal dynamics of gene expression
(Rubiolo et al., 2015), baseline expression patterns (Yuan and
Bar-Joseph, 2021), and network topology (Liu et al., 2023). The
types, sources, treatment methods and biological functions of the
features are detailed in Table 1.

2.1.1 Feature description
2.1.1.1 Temporal features

Temporal features characterize gene-expression levels at
discrete time points and the trajectories of their changes over
time (Huynh-Thu and Geurts, 2018). These descriptors capture
dynamic expression patterns and furnish critical cues for inferring
gene-regulatory relationships. Key metrics extracted are as follows.

• Mean: Summarizes the overall expression level.
• Standard deviation: Quantifies expression variability.
• Maximum and minimum: Define the extreme range of
expression.

• Skewness: Measures distributional asymmetry.
• Kurtosis: Measures the peakedness of the expression
distribution.

• Time-series trend: Delineates the directional change in
expression over time.
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2.1.1.2 Expression-profile features
Expression-profile features summarize gene-expression levels

and their variation across basal and diverse experimental conditions
(Yuan and Bar-Joseph, 2021). They facilitate analyses of gene-
expression stability, context specificity, and potential functional
pathways, thereby supplying essential context for inferring regulatory
roles. Key metrics derived from baseline-expression features include.

• Baseline expression level: The gene’s expression in wild-type
(control) conditions.

• Expression stability: The degree of variation in expression
across conditions.

• Expression specificity: The extent to which a gene is
preferentially expressed in particular conditions.

• Expression pattern: The qualitative profile of expression
changes across multiple conditions.

• Expression correlation: The pairwise correlation of expression
levels between genes.

2.1.1.3 Topological features
Topological features are derived from the structural properties

of nodes in a GRN (Gene Regulatory Network) graph; they
characterize each gene’s position, importance, and interactions
with other genes (Pham et al., 2024). In a GRN, genes are

FIGURE 1
Overview of the GTAT-GRN framework.

TABLE 1 Feature types and their related information.

Feature type Data source Treatment method Biological significance

Temporal features Gene expression time series data Extract statistical indicators (such as mean,
standard deviation, maximum value, etc.)

Reflect the dynamic changes in gene expression and reveal the
expression levels and changing trends of genes at different time
points

Expression-profile
features

Gene expression data under
wild-type or multiple conditions

Calculate the statistical characteristics such as
expression level, stability and specificity

Describe the expression characteristics of genes under different
conditions and provide background information for inferring
their regulatory roles

Topological
features

The structure of the gene
regulatory network diagram

Calculate indicators such as degree centrality, in-
degree, out-degree, and clustering coefficient

Reveal the structural role of genes in the network and capture
the regulatory relationships and interactions among genes
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represented as nodes and regulatory relationships as edges.
Computing these topological descriptors allows us to elucidate
gene functions within the network, trace how regulatory signals
propagate, and pinpoint key hub genes. Key metrics include.

• Degree centrality: Counts the total number of direct regulatory
links a gene has.

• In-degree: The number of regulators targeting the gene.
• Out-degree: The number of targets regulated by the gene.
• Clustering coefficient: Measures the cohesiveness of the gene’s
local neighborhood.

• Betweenness centrality: Quantifies the gene’s hub role by
capturing its control over information flow.

• Local efficiency: Evaluates the efficiency of information
transfer within the gene’s immediate neighborhood.

• PageRank score: Assigns an importance value based on the
gene’s influence in the network.

• k-core index: Indicates the gene’s membership within
progressively denser network cores.

Together, these topological measures expose the structural roles
of genes in a GRN and facilitate the discovery of regulatory
interactions.

2.1.2 Feature extraction and preprocessing
2.1.2.1 Temporal features extraction

Temporal features are extracted from gene expression time-
series dataXt ∈ RN×T, whereN represents the number of genes and
T represents the number of time points. For each gene’s time-series
expression data, Z-score normalization (Mare et al., 2017) is applied
to ensure that each gene has zeromean and unit variance across time
points. The normalization is performed as follows:

X̂t i, :( ) � Xt i, :( ) − μi
σ i

(1)

where μi and σ i denote the mean and standard deviation of gene i’s
expression values across all time points, respectively. Equation 1
ensures that each gene’s expression profile is standardized,
facilitating fair comparison across genes during model training.

2.1.2.2 Baseline expression feature extraction
Baseline expression features are extracted from wild-type

expression data, typically including mean, standard deviation,
and other statistical measures. These features are computed to
form an expression feature vector for each gene Xb ∈ RN×db ,
where db represents the feature dimension.

2.1.2.3 Topological features extraction
Topological features are extracted from the GRN, reflecting

each gene’s structural position and importance within the network.
These features include degree centrality, in-degree, out-degree, and
other metrics that reveal each gene’s role and influence in the
regulatory network. Topological features are Xg ∈ RN×dg

computed from the GRN graph G � (V, E), where V represents
gene nodes and E represents regulatory edges between genes. For
each gene, we compute networkmetrics such as degree centrality, in-
degree, and out-degree. These features are normalized using Z-score
standardization to ensure consistency in scale with other features.

2.1.2.4 Feature alignment and normalization
To ensure that the three feature types are within the

same numerical range, we apply Z-score standardization to
eliminate scale differences across features (Zhu et al., 2021).
Additionally, we handle missing values and standardize the
sample dimensions to ensure that features can be fused across
the same sample set.

2.1.3 Feature fusion
After feature extraction and preprocessing, the feature fusion

phase begins.

1. Primary fusion (concatenation): The three types of features are
concatenated along the feature dimension to form a unified
feature representation (Ko et al., 2025):

Xconcat � X̂t‖X̂b‖X̂g[ ] ∈ RN× dt+db+dg( ) (2)

Here, X̂t, X̂b, X̂g represent the standardized temporal, baseline
expression, and topological features respectively. Equation 2 ensures
that all feature modalities are integrated into a single matrix for
subsequent processing.

2. Attention mechanism fusion: To learn the importance of each
feature modality, an attention mechanism is applied to
compute weights αt, αb, αg(Choi and Lee, 2023):

αi � softmax Wa ·Xi + ba( ), i ∈ t, b, g{ } (3)

Equation 3 adaptively learns attention weights for each feature
type, allowing the model to focus on the most informative aspects.

3. Weighted feature fusion: Based on the learned attention scores,
the final fused feature representation is computed via
weighted summation:

Xfused � αt ⊙ X̂t + αb ⊙ X̂b + αg ⊙ X̂g (4)

As shown in Equation 4, the fusion process combines all features
proportionally according to their attention scores.

4. Feature transformation: The fused features are then passed
through a ReLU-activated linear transformation to enhance
non-linear representation capability:

Z � ReLU Wf ·Xfused + bf( ) (5)

Equation 5 enables the network to capture complex
relationships between fused features.

5. Gating mechanism: To control information flow, a gating
mechanism is introduced to selectively filter the
transformed features:

Zgate � Z ⊙ σ Wg ·Xfused + bg( ) (6)

In Equation 6, the sigmoid function σ(·) determines the flow
strength of each feature dimension.

6. Dimensionality reduction and residual connection: Finally, the
output is computed by applying dimensionality reduction and
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adding a residual connection to preserve original information
(Akhtar et al., 2025):

Zfinal � Dropout Wo · Zgate + bo( ) +Xfused (7)
As shown in Equation 7, the residual connection ensures that the

original fused features are preserved alongside the transformed
output, improving model stability.

2.2 Graph Topology Attention
Network (GTAT)

The GTAT (Shen et al., 2025) is a variant of GNN that integrates
structural information of the graph with attention mechanisms. It is
designed to more effectively capture complex dependencies between
nodes and enhance both the expressiveness and robustness of graph
representation learning. The core idea of GTAT lies in leveraging not
only node feature representations but also explicitly incorporating
topological attributes of the graph, such as node degree, shortest path
length, and adjacency relationships, into a topology-aware attention
mechanism (Huang et al., 2022). This integration enhances the model’s
capacity to represent and generalize over complex graph structures.

Traditional graph neural networks primarily rely on neighborhood
aggregation strategies, performing well in modeling local structures, but
they tend to suffer from issues such as over-smoothing, overfitting to
noisy edges, and poor robustness to connection patterns when handling
higher-order topological relationships and complex regulatory
structures (Zhang et al., 2024). To address these issues, GTAT
introduces topological priors and combines multi-head attention
mechanisms, achieving a better balance between modeling graph
structure and integrating feature information (Wang et al., 2025).

1. Topological Feature Modeling: We explicitly extract
topological features such as node degree, common
neighbors, and shortest path length, which are input as
topological features directly involved in attention weight
calculation (Zhao et al., 2022). Unlike traditional attention
mechanisms that rely solely on node features, this mechanism
encodes structural information into the weight allocation
process, effectively enhancing the attention mechanism’s
sensitivity to structural differences (Xiong et al., 2025).
These topological features are consistent with those
extracted in the earlier feature fusion module, ensuring the
reuse and consistency of structural information across different
stages, thereby enhancing the model’s expressive efficiency.

2. Topology-Aware Attention Mechanism: The model incorporates
topological features during attention computation to assist in
determining the strength of node relationships (Matinyan
et al., 2024). Compared to standard Graph Attention Networks
(GAT), which may misclassify nodes with similar features but
unrelated structures, GTAT, through its topology-aware attention
mechanism, demonstrates superior discriminative power and
noise resilience in sparsely connected regions.

3. Directed Graph Modeling: EnhancedGCA uses the edge_

index parameter to explicitly represent the directed graph
structure, a tuple (src, dst) representing directed edges from
source to target nodes. During attention computation, the
model distinguishes between “regulatory source nodes” and

“target nodes”, aligning more closely with the real gene
regulatory mechanisms (Naldi et al., 2018). The
introduction of multi-head attention enables the model to
learn different regulatory patterns in parallel from multiple
subspaces, further enhancing its modeling capability
(Yu et al., 2024a).

4. Efficient Structure-Aware Aggregation: During attention
allocation, by jointly considering node features and their
structural context, the model focuses more on structurally
similar or biologically meaningful regulatory pathways,
effectively mitigating the influence of noisy or irrelevant
connections (Cheng et al., 2025).

It is worth noting that the core mechanism of GTAT relies on
the structural connections of the graph to assign attention weights,
while the inclusion of topological features as auxiliary input is
optional. In this study, we adopt a strategy that integrates both
graph structure and topological information in the full model to
maximize the representational capacity of the graph. The
architecture of the proposed model is illustrated in Figure 2.

FIGURE 2
Schematic diagram of the structure of the Graph Topological
Attention (GATA) module. Integrate node features and topological
structure information, and enhance the graph structure modeling and
feature expression capabilities through the topology-aware
attention mechanism.
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2.3 Feedforward network and residual
connections

Feedforward networks (FFN) and residual connections (RC) are
common structural components in deep neural networks. In this model,
FFN and residual connections together form a critical part of the neural
network, facilitating effective gradient flow, mitigating the vanishing
gradient problem, and accelerating convergence (Shefa et al., 2024), as
shown in Figure 3. Particularly inGNNs, the design of FFNs and residual
connections is crucial for handling complex graph-structured data.

2.3.1 Feedforward network
In graph neural networks, feedforward networks (FFNs) are

commonly employed to transform node features through non-linear
mappings. In this study, we adopt a straightforward FFN
architecture composed of two linear layers and a ReLU activation
function. This structure enables the network to model complex,
non-linear relationships among nodes, thereby enhancing
representational capacity (Zhu et al., 2019). Specifically, each
node’s input feature vector hi first undergoes a linear
transformation, followed by a ReLU activation and another linear
transformation to produce the updated feature representation. The
computation process of the FFN is defined as:

hi′ � W2 · ReLU W1 · hi + b1( ) + b2 (8)
Here, hi denotes the input features of node i, W1 and W2 are

weight matrices, and b1, b2 are bias terms. The ReLU activation

function introduces non-linearity. The output hi′ represents the
transformed node feature vector. Equation 8 captures the
essential transformation pipeline of node-level feature encoding,
allowing the network to better model higher-order dependencies in
graph-structured data.

This structure enables the model to learn richer semantic
representations from local node features, thereby enhancing its
expressive power. Particularly when processing graph data, it can
more flexibly adapt to varying node feature changes.

2.3.2 Residual connections
In deep neural networks, increasing model depth often leads

to issues such as vanishing or exploding gradients, which hinder
effective training. To address this, residual connections (RCs) are
widely adopted as a robust architectural enhancement (Guo and
Sun, 2025). By introducing skip connections between layers, RCs
allow input features to bypass nonlinear transformations and be
directly added to the output, thereby improving gradient flow and
facilitating model convergence. In our model, residual
connections are applied after each feedforward network (FFN).
Specifically, the input feature vector hi is added to its transformed
version hi′ to obtain the final output. The computation process is
defined as:

h′′
i � hi + hi′ (9)

Here, hi denotes the original node features, and hi′ is the final
output feature. The final output h′′i incorporates both the
transformed and original information.

As shown in Equation 9, residual connections help preserve the
original feature context while enabling deeper representations,
thereby enhancing model stability and training efficiency (Wang
et al., 2024).

2.3.3 Synergy between feedforward networks and
residual connections

The combination of feedforward networks and residual
connections significantly enhances the network’s expressive
power and training efficiency. Feedforward networks transform
node features through two fully connected layers, enhancing
feature representation ability. However, without residual
connections, deep networks may cause excessive information
transformation, leading to instability during training. Introducing
residual connections ensures the continuity of information at each
layer, helping stabilize gradient flow, prevent vanishing gradients,
and accelerate convergence during training. The specific advantages
are as follows.

1. Mitigating the Vanishing Gradient Problem: As the network
depth increases, gradients in deep neural networks may
gradually vanish, impacting training performance. Residual
connections, through skip connections, allow information to
propagate across multiple layers, maintaining gradient flow
and mitigating the vanishing gradient issue, thus enhancing
network stability (Zhou et al., 2024).

2. Accelerating Convergence: Residual connections enable direct
input-output relationships at each layer, speeding up gradient
updates and improving convergence speed (Nie et al., 2019),
especially in deep networks.

FIGURE 3
Feedforward Network and Residual Connections. This figure
illustrates the structure of a feedforward network with skip
connections, as used in our model.
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3. Enhancing Model Expressiveness: Feedforward networks
enhance node feature representation through non-linear
transformations, enabling the network to capture more
complex feature relationships. Residual connections ensure
effective information flow, preventing inter-layer
information loss, further enhancing the model’s learning
capacity (Belhaouari and Kraidia, 2025).

4. Improving Robustness: The combination of feedforward
networks and residual connections enhances the model’s
adaptability to noise and complex graph structures. Residual
connections ensure that information is not excessively
distorted after multiple layer stacks, enhancing the model’s
robustness and noise resistance (Pan et al., 2025).

2.4 Output layer

In this model, the output layer (Figure 4) maps node
representations processed by graph convolution, feature fusion,
and the feedforward network to regulatory probability scores
between genes. This layer first reduces the dimensionality of
fused node features via a linear transformation, then applies layer
normalization, ReLU activation and Dropout regularization in
sequence to enhance the model’s expressiveness and
generalization (Reddy et al., 2024). During training we use Focal
Loss as the objective function to mitigate class imbalance and
improve the model’s ability to detect rare regulatory interactions.
The raw output is a real-valued score, where values above zero
indicate a predicted regulatory interaction and values at or below
zero indicate no interaction. The magnitude of this score reflects the
model’s confidence. During inference the raw score is passed
through a Sigmoid function to map it into the [0, 1] interval and
yield a probability for regulatory interaction.

2.5 Dataset

To evaluate the effectiveness of the proposed GTAT-GRN
method for GRN inference, we employed both simulated
benchmark datasets and real biological expression data. The
simulated dataset is DREAM4 InSilico_Size100 (Marbach et al.,
2010), generated by the GeneNetWeaver (GNW) tool (Schaffter
et al., 2011), which accurately simulates transcriptional regulatory
mechanisms and provides a known gold standard network. This
dataset is widely recognized as a standard benchmark in GRN
inference research (Marbach et al., 2012). It contains five
independent sub-networks of 100 genes each, covering diverse

experimental conditions such as time-series perturbations and
homeostasis interventions (Marbach et al., 2009). The time-series
data include 21 equally spaced sampling points with intervals of
50 time units. For feature extraction, we used a sliding window with
size 3 and step size 1. The real dataset is DREAM5 Escherichia coli
(Escherichia coli) expression data (Lim et al., 2013), derived from
experiments that include time-series measurements and gene
knockouts. It also provides an official gold standard network,
enabling performance evaluation under real biological conditions.
This dataset contains 4,511 genes, of which 1,371 exhibit time-series
characteristics. We selected these genes for experiments and applied
a sliding windowwith size 5 and step size 1 during feature extraction.

Through systematic experiments on these datasets, we
comprehensively evaluate the ability of GTAT-GRN to uncover
potential regulatory relationships under limited-sample conditions,
and verify its adaptability and robustness in reconstructing complex
network structures. Detailed dataset information is provided
in Table 2.

3 Results

3.1 Performance metrics

To evaluate the performance of the proposed method in GRN
reconstruction, we adopt two widely used metrics as the primary
evaluation indicators (Aalto et al., 2020): the area under the receiver
operating characteristic curve (AUC) and the area under the
precision–recall curve (AUPR). AUC is computed as the area
under the ROC curve, which depicts the trade-off between the
true positive rate (TPR) and the false positive rate (FPR). AUPR
measures the area under the precision–recall (PR) curve, which
illustrates the balance between precision and recall.

The relevant metrics are defined as follows:

TPR � TP
TP + FN

(10)

FPR � FP
FP + TN

(11)

Precision � TP
TP + FP

(12)

Recall � TP
TP + FN

(13)

F1 � 2 ×
Precision × Recall
Precision + Recall

(14)

In Equations 10–14, TP (true positives) denotes the number of
correctly identified regulatory links, TN (true negatives) denotes

FIGURE 4
Output layer.
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correctly identified non-links, FP (false positives) represents
incorrectly predicted links, and FN (false negatives) corresponds
to missed regulatory interactions. These metrics collectively reflect
the model’s capability in both identifying true regulatory edges and
avoiding false predictions.

3.2 Experimental results

To evaluate the overall performance of the proposed GTAT-
GRN model in gene regulatory network (GRN) inference, we
conducted comprehensive training and testing procedures on five
independent subnetworks provided by the DREAM4 InSilico
Size100 dataset. The performance of the model was measured by
multiple indicators such as AUC, AUPR, Precision@k, Recall@k and
F1-score@k.

Figure 5 illustrates the original experimental results of GTAT-
GRN on the five subnetworks of DREAM4. As shown, GTAT-GRN
consistently achieved stable and outstanding performance on all
datasets, demonstrating its adaptability and robustness under
diverse regulatory scenarios. The model performed particularly
well on E. coli Network 1, achieving an AUC of 0.9697 and an
AUPR of 0.8132, indicating its strong capability in capturing
complex regulatory structures. In contrast, performance on S.
cerevisiae Network 5 was relatively weaker. This discrepancy can
be attributed to notable differences in the topological structures and
sample distributions of the two networks. Specifically, E. coli
Network 1 contains more edges and exhibits higher structural
density, which facilitates effective information propagation and
feature integration through graph neural networks. Moreover, its
relatively balanced label distribution enables the model to learn
distinctions between different classes more effectively during
training, thereby enhancing generalization. On the other hand, S.
cerevisiae Network 5 has fewer edges and more sparse structural
information, limiting the propagation of topological features. Its
severely imbalanced label distribution also increases the risk of
overfitting and weakens the model’s ability to infer regulatory
relationships, ultimately compromising AUC and AUPR
performance.

Figure 6 presents the experimental results of GTAT-GRN on the
DREAM5 E. coli dataset, demonstrating its strong performance in
gene regulatory network inference. The model achieved an AUC of
0.7596 and an AUPR of 0.6075, indicating robust overall
performance. Notably, for high-confidence predictions,
Precision@10 reached 0.9000 and F1@10 was 0.6923, suggesting

that the model can accurately identify the most reliable regulatory
relationships. Meanwhile, the Recall value demonstrates the model’s
excellent coverage ability. These results verified the validity and
practicability of GTAT-GRN on real biological data. These results
confirm the validity and practical applicability of GTAT-GRN on
real biological data.

In summary, the experimental results further confirm the critical
roles of graph structural density and label balance in GRN inference,
indicating the performance advantages and practical application
potential of GTAT-GRN in modeling structural dependencies and
adapting to diverse data distributions.

3.3 Model performance comparison

To comprehensively evaluate the performance of the proposed
model in gene regulatory network inference, we selected eight
representative baseline methods on DREAM4 InSilico_Size100:
traditional statistical approaches (e.g., PCA-CMI (Zhao et al.,
2016)), information-theoretic algorithms (GENIE3 and
dynGENIE3 (Huynh-Thu and Geurts, 2018)), dynamic modeling
techniques (NSRGRN (Liu et al., 2023)), and recent graph neural
network–based methods (NIMEFI (Ruyssinck et al., 2014),
MMFGRN (He et al., 2021), and GreyNet (Chen and Liu, 2022),
DGCGRN (Wei et al., 2024)). We conducted a systematic
comparative analysis on DREAM4’s five benchmark networks
(Net1–Net5), using AUC, AUPR, Precision@k, Recall@k and F1-
score@k as evaluation metrics to assess and contrast each method’s
ability to reconstruct regulatory interactions.

As shown in Table 3, the proposed GTAT-GRNmodel achieved
overall superior AUC and AUPR performance across the five
standard datasets, fully demonstrating its comprehensive
performance advantages in the task of gene regulatory
relationship identification. Experimental results indicate that the
introduction of the graph topology attention mechanism, combined
with the multi-source feature fusion strategy, enables the model to
more comprehensively characterize the complex regulatory
relationships between genes, thereby significantly improving the
accuracy and stability of network structure inference. Particularly,
compared with traditional methods and existing GNN models,
GTAT-GRN exhibits stronger representation capability in
modeling long-range regulatory paths and capturing dynamic
expression features. To provide a more detailed assessment of
high-confidence predictions, we evaluated Precision@k, Recall@k,
and F1-score@k for K = 10, 50, and 100. In the main text, we present

TABLE 2 Dataset.

Dataset Network Gene Expression data Known regulatory interaction

DREAM4 Net 1 100 210 176

Net 2 100 210 249

Net 3 100 210 195

Net 4 100 210 211

Net 5 100 210 211

DREAM5 E.coli 4,511 805 2066
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the results for K = 100 as a representative value, which balances
high-confidence prediction and overall coverage. Results for other K
values are provided in the Supplementary Figures S1–S6. The results

for K = 100 in Figure 7 indicate that GATA-GRN achieves superior
coverage and accuracy, further validating its robustness and
potential for real-world applications.

FIGURE 5
The performance of GTAT-GRNon five datasets of DREAM4. (A) AUC and AUPR performance of GTAT-GRNonDREAM4 (B) Recall@k of GTAT-GRN
on DREAM4 (C) F1@k of GTAT-GRN on DREAM4 (D) GTAT-GRN at Precision@k in DREAM4.

FIGURE 6
The performance of GTAT-GRN on E. coli datasets of DREAM5.
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However, on the Net5 dataset (i.e., S. cerevisiae Network 5), the
AUC value of DGCGRN exceeded that of the proposed method.
This result may be attributed to the significant class imbalance in the
dataset, where certain regulatory relationship samples are relatively
scarce, leading the model to be biased towards the majority class
during training. In such scenarios, the conditional variational
autoencoder (CVAE) enhancement mechanism introduced in
DGCGRN Wei et al. (2024) can effectively model the potential
distribution of adjacent nodes conditioned on the central node
features, thereby enhancing the representation capability for low-
degree nodes. Additionally, DGCGRN integrates sequential features
extracted via Bi-GRU and statistical features, strengthening its
modeling capacity for regulatory dependency structures, which
contributes to its superior performance on Net5.

Nevertheless, on the remaining four datasets, GTAT-GRN still
demonstrates stronger adaptability and robustness. Benefiting from
the synergistic effect of the graph topology attention mechanism and
multi-source information fusion strategy, the proposed method can
effectively capture complex regulatory structures and latent
expression patterns without relying on specific enhancement
mechanisms, showing broader applicability and higher stability.

To further assess the applicability of GATA-GRN in real
biological gene regulatory scenarios, we performed comparative
experiments on the DREAM5 E. coli gene expression dataset,
which originates from actual E. coli experiments. We selected
several representative baseline methods, including
dynGENIE3 Huynh-Thu and Geurts (2018) (a random forest-
based temporal regulation inference method), GreyNet Chen and
Liu (2022) (a graph neural network-based inference framework),
and MMFGRN Wei et al. (2024) (a multimodal feature fusion
method). These methods represent three typical strategies:
traditional machine learning, graph deep learning, and
multimodal fusion.

As shown in Figure 8, GATA-GRN outperformed existing
methods in AUC and AUPR on the E. coli dataset, particularly
excelling at capturing dynamic gene dependencies and long-range
regulatory interactions. Moreover, GATA-GRN exhibited notable
improvements in key metrics, including Precision@k, Recall@k, and

F1-score@k, further validating the robustness and practical potential
of the proposed method in real-world scenarios.

3.4 Ablation experiment

In our ablation experiments, we use the E. coli1 dataset and adopt a
simplifiedmodel consisting solely of the Graph Convolutional Network
(GCN) backbone as the baseline. To systematically assess the individual
and combined contributions of each component to inference
performance, we incrementally introduce the FFN and Residual,
GTAT, and Topo modules, recording the AUC, AUPR, Precision@
k, Recall@k and F1-score@k performance of the model at each step. As
shown in Table 4, each architectural component contributes positively
to model performance. Starting from the simplified GCN backbone, the
introduction of the FFN and residual connections significantly
enhances feature representation and training stability, yielding steady
improvements in bothAUC andAP. Adding the GTATmodule further
boosts performance by effectively modeling directional regulation and
long-range dependencies. Notably, GTAT—relying solely on the
graph’s structural connectivity edge_index for attention
weighting—remains highly effective even without explicit topological
features. Finally, incorporating explicit topological features as structural
priors achieves the highest performance, demonstrating that the
topology-aware attention mechanism and topological information
complement each other in capturing gene regulatory dependencies.

3.5 Cross-validation experiment

To further evaluate the validity and robustness of the GTAT-
GRN model under varying network structures and sample
distributions, we conducted five-fold cross-validation experiments
on three representative subsets from the DREAM4 InSilico dataset:
E. coli Network 1, E. coli Network 2, and S. cerevisiae Network 5.
Given the significant differences among these datasets in terms of
class imbalance, edge density, and graph complexity, we did not
adopt a unified data split ratio. Instead, we tailored the proportions

TABLE 3 Performance comparison (AUC and AUPR) of various methods on five networks (Net1–Net5).

Method Net1 Net2 Net3 Net4 Net5

AUC AUPR AUC AUPR AUC AUPR AUC AUPR AUC AUPR

dynGENIE3 0.7851 0.1888 0.6851 0.1019 0.7459 0.1685 0.7311 0.1685 0.7728 0.1774

PCA-CMI 0.7902 0.0700 0.6955 0.0994 0.7808 0.1287 0.7493 0.0916 0.7028 0.0623

MMFGRN 0.8014 0.3375 0.7329 0.2315 0.7611 0.3397 0.7643 0.3166 0.7623 0.2383

GENIE3 0.8216 0.0964 0.7651 0.1041 0.8240 0.1414 0.8299 0.1471 0.7901 0.1510

GreyNet 0.8222 0.2580 0.7251 0.1603 0.7712 0.2674 0.7316 0.2057 0.7830 0.2210

NIMEFI 0.8470 0.1071 0.7942 0.1254 0.8404 0.1731 0.8246 0.1463 0.7671 0.0977

NSRGRN 0.9043 0.5366 0.7787 0.3324 0.8150 0.3671 0.8324 0.3996 0.7504 0.1754

DGCGRN 0.8820 — 0.7965 — 0.8911 — 0.8667 — 0.8905 —

GATA-GRN 0.9697 0.8132 0.9228 0.7054 0.9259 0.6204 0.9200 0.6358 0.8233 0.4791

Bold indicates the best results, and underlined values represent the second-best results.
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of training, validation, and testing sets for each subset based on their
specific characteristics. For instance, in E. coli Network 1, which
contains relatively fewer positive samples, we increased the

proportion of training data to enhance the model’s ability to
learn from rare examples. In contrast, for E. coli Network 2 and
S. cerevisiae Network 5, which exhibit more pronounced class

FIGURE 7
Comparison of differentmethods on theDREAM4 dataset (A) comparison ofmodels on Precision@100 (B) comparison ofmodels on Recall@100 (C)
comparison of models on F1-score@100.
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imbalance, a more balanced partitioning strategy was employed to
ensure representative coverage of each class during model training
and to guarantee fair and valid evaluation.

In addition, to ensure consistency in sample distribution across
folds, we applied stratified sampling during the splitting process and
fixed the random seed (set to 42) to enhance reproducibility.

FIGURE 8
Comparison of different methods on the DREAM5 E.coli dataset. (A) Comparison of AUC and AUPR of the model in E.coli (B) comparison of
Precision@k of the model in E.coli (C) comparison of Recall@k of the model in E.coli (D) Comparison of the model in E.coli at F1-score@k.
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Specifically, positive and negative samples were split and shuffled
separately before being combined into fold-specific datasets, thereby
ensuring fairness and representativeness in the cross-
validation procedure.

The cross-validation results (Tables 5–7) show that GTAT-GRN
consistently achieves high performance across multiple folds,
demonstrating both stability and structural adaptability.
Specifically, E. coli1 achieved an average AUC of 0.9344 ±
0.0148 and an AUPR of 0.5976 ± 0.0811. For E. coli2, the
average AUC was 0.9637 ± 0.0024, with an AUPR of 0.7682 ±
0.0181.S. cerevisiae5 achieved an AUC of 0.8631 ± 0.0172 and an
AUPR of 0.3422 ± 0.0395. In addition, the model showed stable
performance in Top-100 Precision, Recall, and F1 scores. Compared
with the fixed-split results of the original experiment, the cross-
validation results for E. coli1 and E. coli2 showed only minor
differences, confirming the consistency and stability of model
performance. Results for S. cerevisiae5 fluctuated slightly but
remained at a relatively high level overall.

Overall, these cross-validation findings confirm GTAT-GRN’s
robustness and ability to generalize under varying sample
distributions, laying a solid foundation for its application to
diverse biological network modeling tasks.

4 Discussion and conclusion

This study presents GTAT-GRN, a deep graph neural network
that incorporates a graph topological attention mechanism and
integrates multi-source features. Experimental results indicate
that GTAT-GRN effectively captures complex regulatory
dependencies and exhibits robust and stable performance across
benchmark datasets, including DREAM4 and DREAM5. Compared
to traditional graph neural networks (e.g., GCN and GAT), GTAT-
GRN’s main advantage is its explicit modeling of topological
structures. Classical GAT primarily considers symmetrical
attention distribution among node features, whereas regulatory

relationships in GRNs are inherently directional and asymmetric
(Ali et al., 2020). The GTAT module, with its unique structural
design, better captures this biological property, which may explain
its improved performance.

Comparison with contemporary advanced methods (e.g.,
DGCGRN) highlights the interaction between model properties
and data structure. For example, on the Nte5 dataset of
DREAM4, DGCGRN slightly outperforms GTAT-GRN, likely
due to the CVAE mechanism’s advantage in processing low-
connectivity nodes (Wei et al., 2024). Nevertheless, across most
datasets, GTAT-GRN shows superior and more stable performance,
suggesting that its multi-source feature fusion strategy enhances
generalization and is less affected by dataset-specific
structural biases.

Compared with tree-based and information-theory methods
(e.g., GENIE3, dynGENIE3 (Huynh-Thu and Geurts, 2018),
PCA-CMI (Zhao et al., 2016)), GTAT-GRN excels in
representation learning. While GENIE3 and its variants can
capture nonlinear relationships effectively, they rely on feature
importance rankings and cannot explicitly model topological
gene dependencies. PCA-CMI may suffer from insufficient
statistical power when analyzing high-dimensional data. In
contrast, GTAT-GRN generates context-rich node representations
and directly infers regulatory relationships. GreyNet also infers
GRNs from time-series expression data, but its performance is
constrained by underlying assumptions.

Despite demonstrating effectiveness in reconstructing complex
gene regulatory structures on benchmark datasets, GTAT-GRN has
several areas for further improvement. First, the model does not yet
fully differentiate regulatory relationship types, such as activation
and inhibition. Future work could incorporate symbolic information
or positive/negative regulatory labels. Second, the model still
depends on predefined topological features. Future studies may
develop structurally adaptive GNN mechanisms to enable
automatic feature learning and reduce reliance on manual feature
engineering.

TABLE 4 Ablation study results on the E.coli1 dataset.

AUC AP F1@100 Recall@100 Precision@100

Exp 1. Base 0.6352 0.5759 0.3940 0.3171 0.5200

Exp 2. +ResFFN 0.7679 0.6535 0.4218 0.3314 0.5800

Exp 3. +ResFFN + GTAT 0.8335 0.6671 0.6737 0.5314 0.9200

Exp 4. +ResFFN + GTAT + Topo 0.9697 0.8132 0.6545 0.5143 0.9000

TABLE 5 E.coli1 cross-validation results.

Fold AUC AUPR Precision@100 Recall@100 F1@100

Fold 1 0.9232 0.5727 0.8500 0.4830 0.6163

Fold 2 0.9464 0.6537 0.9200 0.5227 0.6667

Fold 3 0.9479 0.6897 0.9300 0.5284 0.6738

Fold 4 0.9107 0.4553 0.8700 0.4943 0.6309

Fold 5 0.9437 0.6166 0.9100 0.5170 0.6596
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Moreover, applying the model to single-cell RNA-seq (scRNA-
seq) or spatial transcriptomics (ST) data requires addressing
inherent challenges: scRNA-seq data exhibit high sparsity,
dropout events, significant cellular heterogeneity, and batch
effects (Wang et al., 2023); ST data additionally show spatial
autocorrelation and resolution limitations (Zhao et al., 2024).
GTAT-GRN’s core advantage is its graph topological attention
mechanism with multi-source feature integration, offering a novel
approach for analyzing such data. For example, single cells or spatial
locations can be represented as graph nodes to capture complex
interactions. This framework inherently supports joint modeling of
gene expression, cell type annotation, spatial coordinates, and multi-
omics data, enabling comprehensive characterization of complex
regulatory patterns.

Compared with methods for inferring gene co-expression or co-
relationships (e.g., COTAN (Galfrè et al., 2021), scGeneClust (Deng
et al., 2023), CS-Core (Su et al., 2023), LEGEND (Deng et al., 2025)),
GTAT-GRN theoretically benefits from jointly leveraging
topological structures and multi-source contextual features. This
approach is more capable of uncovering complex regulatory
pathways across cell types or spatial domains. In particular, in ST
scenarios, studies such as STANDS (Xu et al., 2024) have
demonstrated spatial expression heterogeneity of tumor-
associated genes across anatomical regions. Future extensions of
GTAT-GRN could compare GRN structural differences between
normal and tumor regions within the same tissue section, offering
novel computational perspectives and biological insights into tumor
microenvironment regulatory disruptions.

In summary, GTAT-GRN offers a novel, structurally-informed
framework for inferring gene regulatory networks. Experimental
results confirm its strong performance and broad applicability in
inferring complex regulatory structures. Future studies could
explore multi-omics data integration, real-world validation, and

enhanced model interpretability to further advance GTAT-GRN’s
application in precision medicine and systems biology.
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