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Introduction: The long egg-laying interval of pigeons leads to low egg
production, and the hypothalamus-pituitary-ovary (HPO) axis plays a crucial
role in regulating the egg-laying process of poultry. European meat pigeons
have a shorter egg-laying interval than Shiqi pigeons, but the molecular
mechanism underlying this difference remains unclear.
Methods: Reproductive phenotypic data of 300 pairs of pigeons from each breed
were collected for 6 months. Five 2-2.5-year-old female pigeons from each
breed were selected, and their hypothalamus, pituitary, and ovary tissues were
collected for transcriptome sequencing. Differentially Expressed Genes (DEGs)
were identified, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed.
Results: The egg-laying interval of European meat pigeons (32.76 ± 3.25 days)
was significantly shorter than that of Shiqi pigeons (33.11 ± 3.86 days, P=0.024). A
total of 39, 101, and 199 DEGs were identified in the comparisons of SH vs EH, SP
vs EP, and SO vs EO, respectively. DEGs in the hypothalamus and pituitary were
enriched in pathways such as thyroid hormone transport and calcium-mediated
signaling; DEGs in the ovary were enriched in pathways such as embryonic
development and steroid biosynthesis. The thyroid hormone signaling pathway
(in the hypothalamus and pituitary) and the steroid hormone biosynthesis
pathway (in the ovary) were significantly enriched, and key genes such as
StAR, EYA1, HAND2, HOXB8, and NRN1 were identified.
Discussion: The hypothalamus-pituitary-ovary axis regulates the egg-laying
interval of pigeons through tissue-specific pathways. Among them, the thyroid
hormone signaling pathway controls upstream hormone secretion, and the
steroid biosynthesis pathway affects follicle maturation. The identified key
genes may serve as targets for shortening the egg-laying interval.
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1 Introduction

As a high-quality product with high nutrition and high protein,
pigeons are highly favored by consumers. The ancient Chinese
medical masterpiece “Compendium of Materia Medica” records
that “one pigeon is better than nine chickens”, which fully shows
that pigeons are ingredients with extremely high nutritional value
(Long and Ye, 2011), and its high-quality nutritional content is
significantly higher than that of other poultry. Pigeon meat is rich in
mineral elements and vitamins, and also possesses medicinal
properties. Moreover, the meat is tender and smooth, easy to
digest and absorb, and is an ideal tonic food for humans (Long
and Ye, 2011). Compared with other poultry, pigeons have unique
reproductive characteristics such as monogamy, induced ovulation,
and parent pigeons feeding squabs. Pigeons lay only two eggs per
egg-laying cycle, with a 48-hour interval between the two eggs
(Nepote, 1999). For natural incubation and feeding, the interval
between two egg-laying periods is 30–40 days. Breeding pigeons can
lay only about 20–28 eggs annually and produce 16 to 22 squabs
annually. After laying two eggs, pigeons enter the incubation state.

Egg-laying interval is one of the important indexes to measure the
egg-laying-related traits of pigeons, and there are significant differences
in egg-laying interval among different breeds of pigeons. Europeanmeat
pigeons have excellent reproductive performance and extremely high
productivity. The average egg-laying interval is about 31 days. They also
have excellent reproductive performance such as strong brooding ability
(Tang and Mu, 2018). Shiqi pigeons are produced in Shiqi area,
Zhongshan County, Guangdong Province, China. They are pigeons
used for bothmeat and ornamental purposes and have a history ofmore
than a hundred years. Shiqi pigeons have characteristics such as gentle
temperament, strong adaptability, tolerance to coarse feed and good
nesting behavior. The average egg-laying interval is around 32 days
(Chunyu et al., 2018). To guarantee the continuity of egg production,
the development of follicles in poultry is hierarchical. Nevertheless, in
contrast to chickens, pigeons merely lay two eggs during the laying
period and have a considerable interval between laying eggs. Follicle
development is a complex biological process, which is precisely
regulated by reproductive hormones and related genes.

The reproduction of poultry is genetically dependent on the
regulation of a series of reproductive hormones in the
hypothalamic-pituitary-gonadal axis (HPG). The hypothalamus-
pituitary-ovarian axis (HPO) controls the reproductive process of
hens and influences follicular selection, development, atresia, and
ovulation (Shin-ichi, 1986; Zhao et al., 2023). The egg-laying process
of chickens involves a series of hormonal changes coordinated by the
HPO axis (Xu et al., 2023). The preoptic and arcuate nucleus neurons of
the hypothalamus can secrete gonadotropin-inhibiting hormone
(GnIH) and gonadotropin-releasing hormone (GnRH). These are a
pair of extremely important regulatory neuropeptides in the
hypothalamus and play a key regulatory role in the hormonal
regulation of the HPG in poultry. The central nervous system
analyzes and integrates various information from external stimuli
and self-feedback. After the hypothalamus receives this information,
GnRH is released in a pulsatile manner to stimulate the anterior
pituitary to release follicle-stimulating hormone (FSH) and
luteinizing hormone (LH). FSH and LH mainly act on the ovary to
promote follicular maturation, and secrete estrogen (E2) and
progesterone (P), thereby maintaining the egg-laying state of hens

(Oduwole et al., 2021; Prastiya et al., 2022). In addition, the
hypothalamus and pituitary gland also secrete other hormones and
neuropeptides that are involved in the regulation of avian ovarian
steroid hormone synthesis, follicular development and ovulation
through HPG, such as growth hormone (GH), oxytocin and
prolactin (Shin-ichi, 1986; Hrabia et al., 2011; Hrabia, 2015; Hu and
Zadworny, 2017). Prolactin PRL promotes commitment to parental
pigeon care of offspring without simultaneously inhibiting reproductive
function or HPG axis activity (Farrar et al., 2021). The expression
changes of GnIH and GnRH genes in the hypothalamus of pigeons
during different stages of reproduction confirm that the expression of
GnIH and GnRH genes is related to the transition of the female pigeon
to different reproductive stages (Zhang Rui et al., 2018). Integrated
analysis of transcriptome sequencing analyses of multiple tissues from
high and low laying Goodyear chickens, as well as in vivo tissue-specific
overexpression assays, demonstrated that liver- and ventral lipid-
specific endocrine factors target the HPO axis to regulate chicken
egg production (Wang et al., 2024).

The present study aimed to conduct a comparative
transcriptomic analysis of the hypothalamus-pituitary-ovary axis
in European meat pigeons and Shiqi pigeons during the egg-laying
interval through RNA sequencing, with the goal of identifying
candidate genes and signaling pathways that might be involved
in the regulation of egg-laying interval, thereby laying a data
foundation for shortening the egg-laying interval of pigeons.

2 Material methods

2.1 Animals

This experiment took European meat pigeons and Shiqi pigeons
(meat pigeon data and samples provided by Henan Tiancheng
Pigeon Industry Co., Ltd.) as the research objects. For each
breed, 300 pairs of pigeons were selected for a 6-month statistical
analysis of reproductive phenotypic data, including the number of
eggs laid, the number of fertilized eggs, egg-laying intervals, and
hatching rates. Afterwards, five female European meat pigeons and
Shiqi pigeons aged 2–2.5 years were randomly selected for slaughter.
Hypothalamus, pituitary, and ovarian tissues were collected,
immediately frozen in liquid nitrogen (−196 °C), and then stored
in a refrigerator at −80 °C for future use. All experiments in this
study were conducted in accordance with a protocol approved by the
Institutional Animal Care and Use Committee (IACUC) in China,
under ethical approval code HNUAHEER 2425106.

2.2 RNA extraction, library construction, and
sequencing

In accordance with the manufacturer’s guidelines, total RNA
was extracted utilizing the Trizol Reagent Kit (Invitrogen, Carlsbad,
CA, United States). The quality of the extracted total RNA was
evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA, United States) and further verified through agarose
gel electrophoresis without RNase contamination. Subsequently,
rRNA was removed. For library preparation, the BGI Optimal
Series Dual Module mRNA Library Construction Kit was
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employed. Initially, mRNA was isolated via denaturation treatment
followed by enrichment using oligo (dT) magnetic beads.
Fragmentation of mRNA resulted in smaller fragments after
treatment with a fragmentation reagent. The first strand cDNA
synthesis was conducted through reverse transcription employing
random hexamer primers derived from these mRNA fragments.
Following this step, second strand cDNA synthesis occurred. Next,
the 3′ends of the cDNA were repaired and an A base added before
ligating adapters to them. PCR amplification ensued after
denaturing the PCR products into single strands. Linear DNA
that remained uncyclized underwent digestion to yield a single-
stranded circular library. Ultimately, phi29 amplification generated
DNA nanoballs (DNB), which were sequenced on BGI’s sequencing
platform utilizing high-density DNA nanopore technology
alongside cPAS and PE100/PE150 methodologies.

2.3 Bioinformatics analysis

Raw sequencing data from the hypothalamic-pituitary-ovarian
(HPO) axis tissues of European meat pigeons (EH, EP, EO) and
Shiqi pigeons (SH, SP, SO) were quality-filtered using SOAPnuke
(v1.5.6) to obtain clean reads. Subsequently, the Dr. Tom multi-
omics data mining system (https://biosys.bgi.com) were used for
data analysis, plotting and mining. For differential gene analysis. In
order to further explore the related gene functions in depth, we
perform Gene Ontology (GO) (http://www.geneontology.org/) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.
kegg.jp/) enrichment analysis on differential genes using Phyper
based on hypergeometric test. Taking P-value <0.05 as the threshold,
those meeting this condition are defined as significantly enriched in
candidate genes.

2.4 Data processing

Independent samples t-test was used to compare the egg-laying
intervals among different breeds. Statistical analysis was performed
using SPSS 27.0 software, and the data were presented as mean ±
standard deviation (Mean ± SD).

3 Result

3.1 Reproductive phenotypic statistics

A 6-month statistical analysis of 300 pairs of European meat
pigeons and 300 pairs of Shiqi pigeons showed differences in

reproductive phenotypic indicators (Table 1). Among the
detected indicators, only the egg-laying interval exhibited a
significant difference between the two breeds. No significant
differences were observed in the number of eggs laid, number of
fertilized eggs, or hatching rates (P-value >0.05).

3.2 Differential expression analysis

The hypothalamus, pituitary gland, and ovarian tissues of Shiqi
pigeons and European meat pigeons were analyzed using
transcriptome sequencing technology. A total of 191.4 Gb clean
reads were obtained from 30 samples after data filtering, which
involved removing low-quality reads (Q-value <20), reads
containing adaptor sequences, and reads with ambiguous bases
(N content >5%). The average clean data per sample was
6.38 Gb, with an average mapping rate of 77.33% to the
reference genome. The Q20/Q30 base ratio: For all samples, the
Q20 was 98.5%–98.77%, and the Q30 was 94.06%–95.14%
(Supplementary Tables 1, 2). In the comparisons of SH vs EH,
SP vs EP and SO vs EO; 39 (11 upregulated and 28 downregulated),
101 (56 upregulated and 45 downregulated), and 199
(143 upregulated and 56 downregulated) differentially expressed
genes (DEGs) were identified respectively, with FDR <0.05 and |log2
(fold change)| ≥ 2 (Figure 1A). Overall, there were significant
differences in gene expression in HPO axis tissues between the
two pigeon species, with the ovary tissue having the highest number
of DEGs (199), suggesting that the ovary is a key tissue in the
regulation of egg-laying interval.

3.3 Differently expressed gene
function analysis

Enrichment analysis provides the most detailed GO term
information, which can facilitate in-depth analysis of the
regulation mechanism of HPG axis on egg-laying intervals in
different breeds of pigeons. We focused on the biological process
(BP) and selected the top 30 pathways to focus on. In SH vs EH
group, the DEGs are mainly related to transition metal ion
homeostasis, ion transport, metal ion homeostasis. In addition,
we noticed that the pathways related to reproduction regulation,
such as regulation of receptor-mediated endocytosis, thyroid
hormone transport, regulation of receptor - mediated
endocytosis, regulation of centrosome duplication, regulation of
cyclase activity, retinol/retinoid metabolic process (Figure 2A). In
SP vs EP group, DEGs are mainly assigned to calcium-mediated
signaling, intracellular signal transduction, second-messenger-

TABLE 1 Comparison of reproductive performance among different pigeon breeds.

Breed Egg-laying
interval

Number of eggs laid
(6 months)

Number of fertile eggs
(6 months)

Fertility
rate (%)

Hatching
rate (%)

European meat
pigeons

32.76 ± 3.25a 12.00 ± 1.52 10.71 ± 1.28 90.23 ± 0.11 87 ± 0.13

Shiqi pigeons 33.11 ± 3.86b 12.01 ± 1.53 10.80 ± 1.34 90.87 ± 0.12 89 ± 0.13

The absence of the same capital letter after the data in the same column indicates a significant difference between groups (P-value <0.05).
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mediated signaling, cell - cycle regulation, cell Signaling and cell
Morphogenesis and Adhesion (Figure 2B). In SO vs EO group, most
DEGs are concerned with sensory organ development, nervous
system development, embryonic morphogenesis, embryonic organ
morphogenesis, steroid biosynthetic process, system
development (Figure 2C).

3.4 KEGG pathway enrichment analysis

KEGG pathway enrichment analysis of differential genes in
HPG axis-related tissues. The DEGs identified SH vs EH group
were mainly enriched in the ferroptosis, mineral absorption, Bile
secretion, HIF-1 signaling pathway, glycosphingolipid
biosynthesis-globo and isoglobo series, Neuroactive ligand-
receptor interaction. In the pituitary, the DEGs mainly enriched
in the Th1 and Th2 cell differentiation, osteoclast differentiation,
glutamatergic synapse, inositol phosphate metabolism,
glycosphingolipid biosynthesis-globo and isoglobo series,
ferroptosis pathways are significantly enriched. Notably, the
thyroid hormone signaling pathway was enriched in both

hypothalamic and pituitary tissues,a pathway previously
reported to be involved in reproductive regulation (Figure 3D).
In the ovary, neuroactive ligand-receptor interaction, aldosterone
synthesis and secretion, steroid hormone biosynthesis, tyrosine
metabolism, cAMP signaling pathway, dopaminergic synapse,
regulation of actin cytoskeleton, cortisol synthesis and secretion,
aldosterone-regulated sodium absorption.

3.5 Gene expression cluster analysis

Expression pattern analysis was used to classify the gene
expression change trends of genes expressed in the HPO axis of
different pigeon breeds, and to infer the possible relationships and
specific functions of expressed genes among different tissues. The
genes expressed in the HPO axis of Shiqi pigeons and European
meat pigeons were clustered into a total of 10 clusters. According to
their dynamic expression changes, we selected two groups with
opposite expression trends for analysis. In European meat pigeons,
cluster 4 and cluster 5 have opposite expression trends (Figure 4A).
GO function enrichment analysis shows that the genes in cluster

FIGURE 1
Differential gene expression profiles in (A) hypothalamic, (B) pituitary, and (C) ovarian tissues. Red/blue dots represent up-/downregulated genes
(|log2FC| ≥ 2, FDR <0.05).

FIGURE 2
Biological process terms accounted for the highest proportion in the top 30 GO terms. (A) Top GO terms for source genes of DEGs of SH vs EH; (B)
top GO terms for source genes of DEGs of SP vs EP; (C) top GO terms for source genes of DEGs of SO vs EO.
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4 are mainly related to functions such as gene expression, RNA
metabolic process, and cellular nitrogen compound metabolic
process; the genes in cluster 5 are mainly related to cell
communication, signaling, intracellular signal transduction, signal
transduction, axon development, cell morphogenesis (Figure 4B). In
Shiqi pigeons, cluster 1 and cluster 10 have opposite expression
trends (Figure 4C). The GO function enrichment analysis of cluster
1 genes shows that it is mainly related to functions such as regulation
of locomotion, nervous system development, and regulation of
multicellular organismal development. The GO function
enrichment analysis of cluster 10 genes shows that it is mainly
related to functions such as organonitrogen compound metabolic
process, nitrogen compound metabolic process, and macromolecule
modification. In summary, we found that there is some similarity
between the genes expressed in European meat pigeon cluster 5 and
Shiqi pigeon cluster 1, which are mostly related to the growth and
development of cells or tissues, nervous system development, heart
valve development, positive regulation of cell growth, positive
regulation of developmental growth, positive regulation of cell
population proliferation (Figures 4B,D).

3.6 Pathway-gene interaction
network analysis

Steroid hormones play a vitally important regulatory role during
the egg-laying interval of pigeons. During the egg interval period,
steroid hormones are maintained at a relatively high concentration
level, which provides a solid guarantee for the normal development
of follicles. Based on this, we have sorted out the information on
differentially expressed genes and related pathway information that
are involved in the processes of steroid hormone production or
embryonic development in ovarian tissues, and have drawn a gene-
pathway network diagram. The aim is to further uncover the
mysteries of pigeon reproductive physiology and lay a solid
foundation for improving the reproductive performance of
pigeons. As shown in Figure 5, in the ovarian tissue, we
identified such as sterol metabolic process, C21-sterol hormone
biosynthetic process, cholesterol metabolic process. The
steroidogenic acute regulatory protein (StAR) was identified. This
key gene plays a crucial regulatory role in the process of steroid
hormone synthesis. In addition, we also identified embryonic

FIGURE 3
The KEGG pathway enriched some important pathways closely related to reproduction. (A) KEGG pathways for source genes of DEGs of SH vs EH;
(B) KEGG pathways for source genes of DEGs of SP vs EP; (C) KEGG pathways for source genes of DEGs of SO vs EO; (D) Venn diagram showing shared
and unique KEGG pathways among comparative groups: Hypothalamus (SH vs EH), Pituitary (SP vs EP), and Ovary (SO vs EO) in Shiqi and
European pigeons.
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morphogenesis, system development, embryo development, and
organ development (P < 0.05), and also identified some genes,
such as EYA1 (eyes absent homolog 1, EYA1), HAND2 (heart
and neural crest derivatives-expressed protein 2, HAND2),
HOXB8 (homeobox b8, HOXB8), NRN1 (neuritin 1, NRN1), and
ELAVL4 (elav - like rna binding protein 4, ELAVL4). These genes
can appear in multiple pathways simultaneously, which indicates
that in the overall developmental regulatory network system of
pigeon ovaries, they are most likely to play extremely crucial and
intricate roles, profoundly influencing a series of complex processes
in pigeon ovaries from the initial stage of embryonic development to
the formation of mature follicles, and thus potentially having a
decisive impact on the important reproductive trait of egg-laying
interval at the root level.

4 Discussion

Pigeon breeding has important economic significance on a
global scale. With the continuous increase in people’s demand
for high-quality proteins, the pigeon industry continues to
develop and grow. However, due to the special reproductive

function of pigeons, their egg-laying interval is relatively long,
which limits efficient breeding. In fact, different breeds of meat
pigeons show significant differences in reproductive performance,
but the relevant mechanisms are not clear.

Egg-laying interval is a key indicator of pigeon reproductive
performance, and significant breed-specific differences have been
reported in previous studies. In the present study, we further
validated this trait in European meat pigeons and Shiqi pigeons
through a 6-month phenotypic survey. Our phenotypic statistics
showed that European meat pigeons had a shorter egg-laying
interval (32.76 ± 3.25 days) than Shiqi pigeons (33.11 ±
3.86 days) with significant difference (P = 0.024), which is
consistent with previous reports on the reproductive
characteristics of the two breeds (Chunyu et al., 2018; Tang and
Mu, 2018). Although there are slight differences in absolute values,
the consistent trend confirms that the egg-laying interval difference
is a stable breed-specific trait, providing a reliable basis for
subsequent transcriptome analysis of the hypothalamus-pituitary-
ovary (HPO) axis.

Laying performance is one of the economically important traits
in poultry production. The HPO axis plays a central role in
regulating reproductive physiology in animals (Zhao et al., 2023).

FIGURE 4
Gene cluster expression and function analysis. (A-C) Cluster analysis of all genes based on expression. All the genes clustered into ten clusters,
clusters with opposite expression trends were classified into one group. (B-D) Analysis of the functions of genes in the different groups. The bar plot
shows significant GO terms by gradient legend as P-value <0.05.
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In pigeons, the HPO axis coordinates a series of key reproductive
processes ranging from the initiation of sexual maturation, follicular
development, ovulation and hormone secretion (Chunyu et al.,
2018). However, current research on the HPO axis in meat
pigeons remains relatively limited. Existing studies have
confirmed that different pigeon breeds exhibit distinct
reproductive performance - some show high fecundity with short
inter-laying intervals, while others have lower fecundity, but the
molecular mechanisms driving these differences-especially how
gene expression patterns, hormone regulatory networks, and
signal transduction pathways in the HPO axis shape such
phenotypic variations-remain largely unclear. Against this
backdrop, our study collected hypothalamus, pituitary, and ovary
tissues from European meat pigeons and Shiqi pigeons during the
egg-laying interval for transcriptome sequencing, aiming to identify
key genes and regulatory networks associated with inter-laying
intervals. GO functional analysis revealed that reproduction-
related biological processes were differentially enriched across
HPO axis tissues: In the hypothalamus, DEGs were explicitly
enriched in processes directly involved in reproductive regulation,
such as thyroid hormone transport; in the ovary, DEGs were
enriched in reproduction-associated developmental processes,
such as embryonic morphogenesis, embryonic organ
morphogenesis and steroid biosynthetic process-a core pathway
for follicular maturation and ovulation. For the pituitary,
although no explicitly reproduction-labeled biological processes
were detected, the enriched pathways included calcium-mediated
signaling, intracellular signal transduction, serve as essential

upstream regulatory links for reproductive hormone secretion
(Xiao et al., 2002; Stojilkovic et al., 2005; Liu et al., 2006),
providing a functional basis for the pituitary’s role as a “signal
relay station” in the HPO axis.” Collectively, these tissue-specific
enrichment features and their coordinated functional effects
collectively reflect an comprehensive regulatory mechanism of
the HPO axis in shaping the egg-laying interval of pigeons.

KEGG pathway enrichment analysis found that among the
top 20 pathways, the thyroid hormone signaling pathway was
enriched in both the hypothalamus and pituitary, and this
pathway has been confirmed to be involved in the regulation
of the reproductive axis by regulating the synthesis and secretion
of hormones such as LH and FSH (Kang et al., 2020; Ren and Zhu,
2022). In the hypothalamus, the balanced expression of the
thyroid hormone-activating enzyme gene Dio2 and the
inactivating enzyme gene Dio3 is critical for photoperiod-
induced gonadal development (Watanabe et al., 2007).
Additionally, thyroid hormones (THs) influence reproductive
processes through multiple mechanisms: they regulate the
secretion and function of key reproductive hormones, interact
directly with estrogen, progesterone, FSH, LH, and prolactin to
affect ovarian and uterine function, and modulate GnRH release
in the HPG axis (Silva et al., 2018; Torre et al., 2020). This role is
evolutionarily conserved, as evidenced in mammals-
thyroidectomy disrupts seasonal reproductive transitions in
sheep, underscoring the thyroid hormone signaling pathway as
a phylogenetically conserved regulator of reproduction (Webster
et al., 1991).

FIGURE 5
Gene - pathway interaction network analysis. Pathways and genes are represented by circular shapes in different colors. Pathways are represented
by red dots, with larger nodes indicatingmore genes contained in the pathway and smaller nodes indicating fewer genes; meanwhile, pathway names are
marked in purple; blue dots represent different genes.

Frontiers in Genetics frontiersin.org07

Wang et al. 10.3389/fgene.2025.1676255

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1676255


In ovarian tissue, KEGG analysis of differentially expressed
genes revealed that the steroid hormone biosynthesis pathway
was significantly enriched, which is closely related to follicular
development and ovulation. Steroid hormones are central to
follicle development and ovulation, with their synthesis genes
exhibiting stage-specific expression patterns across follicular
maturation (Johnson, 2014). Progesterone, a key steroid hormone
in this pathway, not only drives follicle development but also serves
as a precursor for androgen and estrogen synthesis (Zhao et al.,
2023); in poultry, it is primarily synthesized by follicular granulosa
cells. The biosynthesis process begins with steroidogenic acute
regulatory protein (StAR) transporting cholesterol to the inner
mitochondrial membrane, where cholesterol side-chain cleavage
enzyme (CYP11A1) converts it to pregnenolone - the
foundational step in steroidogenesis (Lee et al., 1998; Sechman
et al., 2016). Studies have found that with the development and
maturation of graded follicles in turkeys, the synthesis of
progesterone continuously increases, while the synthesis amounts
of testosterone and estradiol continuously decrease (Kristen et al.,
2019). Six hours before ovulation, the progesterone level in chicken
serum increases. Progesterone can stimulate the formation of the
pre-ovulatory LH peak (Etches and Cheng, 1981). Together, these
findings suggest that the thyroid hormone signaling pathway
(hypothalamic-pituitary) and the steroid hormone biosynthesis
pathway (ovary) are the coordinators and regulators of egg-laying
intervals. The former controls the secretion of upstream
reproductive hormones, while the latter controls the maturation
of downstream follicles and the timing of ovulation. This tissue-
specific pathway enrichment aligns with the functional division of
the HPO axis, providing a molecular framework for understanding
breed-specific differences in pigeon egg-laying intervals.

Under the action of cytochrome oxidase, cholesterol is
converted into oxysterol within mitochondria. The theca cells
and granulosa cells in the ovary utilize it to synthesize
reproductive hormones (Douglas et al., 2017). The protein
encoded by the StAR gene plays a key role in the acute
regulatory stage of steroid hormone synthesis and can promote
the conversion of cholesterol into pregnenolone. Its mechanism of
action is to mediate the transport of cholesterol from the outer
mitochondrial membrane to the inner mitochondrial membrane,
and then to cleave cholesterol to generate pregnenolone (Sechman,
2013). Previous studies have shown that StAR exists not only in
steroid hormone-producing tissues such as the adrenal gland, testis
and ovary, but also is widely distributed in many other tissues, and
its expression level is relatively high in the ovary (Reyland et al.,
2000). StAR has an indispensable role in the process of ovarian
development and ovulation. Additionally, genes related to
embryonic and tissue organ development, such as EYA1,
HAND2, HOXB8 and NRN1, merit attention. EYA1 is not only
expressed during somitogenesis but also participates in the
morphogenesis of other organs (Raphaelle et al., 2007). HAND2
belongs to the basic helix-loop-helix (bHLH) family of transcription
factors and is expressed in the heart, limb buds and numerous neural
crest derivatives during embryogenesis. Mice with HAND2 gene
knockout (HAND2−/−) exhibit phenotypes of severe hypoplasia of
the right ventricle and growth retardation (Hiroyuki et al., 2001).
The Hoxb8 gene is a member of the homeobox gene family. This
family is highly conserved during the evolutionary process and

exerts regulatory functions upstream of or within multiple processes
such as dorsal spinal cord development and embryonic skeletal
system morphogenesis (Wu et al., 2024). Mechanisms of ovarian
development and embryonic and tissue organ development,
providing a solid theoretical basis and novel research ideas for
improving the reproductive performance of pigeons.

5 Conclusion

In this study, transcriptome sequencing of hypothalamus,
pituitary and ovary tissues from European meat pigeons and
Shiqi pigeons identified DEGs. Significant gene expression
differences were found in their HPO axis tissues, with the
ovary showing the most DEGs (199), indicating it as a key
tissue regulating the egg-laying interval. Pathway enrichment
analysis revealed that the thyroid hormone signaling pathway
(co-enriched in hypothalamus and pituitary) and steroid
hormone synthesis pathway (enriched in ovary) are likely core
regulatory pathways for the egg-laying interval: the former
regulates the laying cycle by controlling reproductive hormone
secretion, while the latter influences it by affecting follicle
maturation. Key genes including StAR (steroid synthesis-
related) and EYA1, HAND2, HOXB8, NRN1 (embryonic and
tissue development-related) were identified, which may affect the
egg-laying interval by regulating steroid hormone synthesis and
follicle development. This study improves understanding of the
HPO axis in regulating the egg-laying interval and may help
enhance pigeon reproductive efficiency.
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