
Integrated transcriptomic and
single-cell RNA sequencing
identifies lysosomal ion channel
genes as potential biomarkers for
Alzheimer’s disease

Xin Wang†, Zelin Wu†, Shaoli Wei, Xinran Zhao, Juan Lin,
Fang Zhao and Xiaolei Liu*

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical
Sciences, Tongji Shanxi Hospital, Taiyuan, China

Previous research has highlighted lysosomal ion channel-related genes (LICRGs)
as promising therapeutic targets for neurodegenerative diseases. This study
aimed to identify and analyze LICRG-associated biomarkers for Alzheimer’s
disease (AD), elucidating their underlying biological mechanisms. Three
datasets (GSE63061, GSE63060, GSE181279) were analyzed. In GSE63061,
intersecting genes were identified by integrating differentially expressed genes
(DEGs) from differential expression analysis with key module genes from
Weighted Gene Co-expression Network Analysis (WGCNA). Candidate
biomarkers were then selected using the MCODE plugin for PPI analysis (top
30 genes), two machine learning approaches, and cross-validation of gene
expression profiles in GSE63061 and GSE63060. Single-cell RNA sequencing
(scRNA-seq) analysis of GSE181279 identified key biomarkers and cell
populations, followed by pseudo-temporal analysis of these cells. Nomogram
construction, functional enrichment analysis, immune infiltration assessment,
and RT-qPCR analysis were subsequently performed. scRNA-seq analysis
revealed that SRP14, EIF3E, and COX7C were prominently expressed across
most cell types, particularly in CD4+ T cells, which were identified as key cells
in AD. Pseudo-temporal analysis indicated that CD4+ T cells fromcontrol subjects
primarily resided in early differentiation stages, whereas those from patients with
AD were predominantly found in later stages. The reduced expression of these
biomarkers in AD CD4+ T cells was consistent with transcriptomic data and
further validated by RT-qPCR. A nomogram incorporating these biomarkers
demonstrated strong predictive power for AD risk. Functional analysis linked
the biomarkers to pathways such as “ribosome” and “oxidative phosphorylation.”
Immune infiltration analysis revealed 23 differentially abundant immune cell
types, with significant correlations between all three biomarkers and memory
CD4+ T cells, mesangial cells, and other immune cell types. This study identified
SRP14, EIF3E, and COX7C as novel biomarkers, underscoring CD4+ T cells as
pivotal in AD pathogenesis. These findings offer new mechanistic insights and
potential therapeutic strategies for AD.
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1 Introduction

Alzheimer’s disease (AD), the most common
neurodegenerative disorder, is characterized by progressive
cognitive decline and neuropathological features, including
amyloid-beta (Aβ) plaques and neurofibrillary tangles. By 2050,
the global prevalence of AD is projected to surpass 138 million
cases, placing an enormous socioeconomic burden on society
(Scheltens et al., 2021). Current treatments, such as
acetylcholinesterase inhibitors and NMDA antagonists, only
alleviate symptoms rather than halt disease progression,
highlighting the urgent need to elucidate the molecular
mechanisms underlying AD and identify novel therapeutic
targets (Lane et al., 2018).

Lysosomal dysfunction has emerged as a central factor in AD
pathogenesis. Lysosomes, acidic organelles responsible for cellular
waste degradation, regulate Aβ clearance and neuronal homeostasis
(Wani et al., 2021). Recent studies have identified lysosomal ion
channels, including TRPML1 (Peng et al., 2020), TPCs (Wang et al.,
2012), and TMEM175 (Cang et al., 2015), as critical regulators of
lysosomal pH, ion balance, and autophagic flux, which are essential
for preventing toxic protein aggregation (Riederer et al., 2023). For
instance, TRPML1, an endosomal and lysosomal Ca2+-releasing
channel, accelerates the degradation and clearance of intracellular
Aβ by promoting autophagosome-lysosome fusion (via the p62/
dynein pathway) and enhancing axonal transport and brain-derived
neurotrophic factor (BDNF) signaling. TRPML1 activation
amplifies these processes (Zhang et al., 2022; Poon et al., 2011;
Kurosawa et al., 2016). In models of HIV infection-associated Aβ
accumulation, TRPML1 activation stimulates lysosomal exocytosis
and Aβ clearance. ML-SA1 reduced elevated sphingomyelin levels
(long-chain/very-long-chain) in the cortex of triple-transgenic
gp120/APP/PS1 mice, alleviating TRPML1 inhibition by
sphingomyelins and forming a positive feedback loop of “calcium
release - sphingomyelin clearance - TRPML1 recovery,” ultimately
promoting Aβ clearance (Somogyi et al., 2023; Bae et al., 2014).
However, the systematic characterization of lysosomal ion channel-
related genes (LICRGs) in AD—especially their cell-type-specific
roles and interactions with immune cells—remains
insufficiently explored.

Single-cell RNA sequencing (scRNA-seq) offers unprecedented
resolution for dissecting cellular heterogeneity in AD (Aldridge and
Teichmann, 2020). Recent scRNA-seq studies have uncovered
dysregulated microglial subtypes and T-cell infiltration in AD
brains, underscoring the role of neuroinflammation in disease
progression (Sun et al., 2024). However, the involvement of
LICRGs in immune cell dysfunction, such as CD4+ T cell
differentiation and cytokine signaling, remains poorly
understood. Furthermore, many existing studies on LICRGs rely
on bulk transcriptomic analyses, which obscure cell-specific
expression patterns.

In this study, LICRGs were taken as the focal point, and a
comprehensive research framework was adopted: “multi-dataset
integration - multi-method key gene screening - single-cell
localization of functional carriers - multi-dimensional mechanism
elucidation - clinical translation validation.” This approach
ultimately identified key genes and cell populations, elucidated
the potential mechanisms of AD progression, and provided

valuable diagnostic models and therapeutic targets, thereby
offering a novel direction for AD mechanism research and
clinical intervention.

2 Materials and methods

2.1 Data extraction

Transcriptomic datasets related to AD, specifically
GSE63061 and GSE63060 (Sood et al., 2015), were downloaded
from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/). GSE63061 (GPL10558 platform) included 139 AD
and 134 control blood samples, while GSE63060
(GPL6947 platform) comprised 145 AD and 104 control blood
samples. scRNA-seq data from GSE181279 (GPL24676 platform)
(Xu and Jia, 2021), also obtained from GEO, included immune cell
samples from three patients with AD and two healthy controls.
Additionally, six LICRGs—TPC1, TPC2, TMEM175, TRPML1,
CLN1, and CLC-7—were selected based on prior research
(Riederer et al., 2023).

2.2 Differential expression analysis

Differentially expressed genes (DEGs) between AD and control
samples in GSE63061 were identified using the “limma” package
(version 3.56.2) (Ritchie et al., 2015), with thresholds set at |log2
fold-change (FC)| ≥ 0.2 and P < 0.05. DEGs were visualized
through volcano plots (ggplot2, version 3.3.6) (Gustavsson
et al., 2022) and heatmaps (heatmap3, version 1.1.9) (Zhao
et al., 2014). Genes were ranked based on |log2FC| (in
descending order), with the volcano plot highlighting the top
five most significant up-/downregulated genes, and the heatmap
displaying the top ten.

2.3 WGCNA

In GSE63061, LICRG scores for samples were calculated using
the single-sample Gene Set Enrichment Analysis (ssGSEA)
algorithm (Barbie et al., 2009), with LICRGs as the background
gene set. Disparities in LICRG scores between the AD and control
cohorts were evaluated and found to be statistically significant (P <
0.05). Additionally, Weighted Gene Co-expression Network
Analysis (WGCNA, version 1.7.1) (Langfelder and Horvath,
2008) was used to identify key modules. Cluster analysis of all
GSE63061 samples excluded anomalies. The optimal soft threshold
and mean connectivity were determined to assess the tightness of
gene connections and ensure that the constructed co-expression
network approximated a scale-free distribution. Co-expression
matrices were then constructed with a minimum module size of
50 genes. Gene modules of different colors were generated, and
modules significantly correlated with LICRG scores (|Spearman
cor| > 0.3 and P < 0.05) were identified. The most strongly
correlated modules (with the highest positive/negative cor) were
selected as key modules, and genes within these pivotal modules
were considered hub genes.
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2.4 Biological characterization of
intersection genes and candidate genes
identification

Consensus genomic elements were derived from the intersection
of differentially expressed transcripts and key network components.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed to explore
the functions of the intersecting genes using the “clusterProfiler”
package (version 4.8.2) (Yu et al., 2012) (adjusted P < 0.05). To
further investigate protein interactions among the intersecting
genes, a protein-protein interaction (PPI) network was
constructed using the STRING database (https://string-db.org/)
with a confidence score threshold of >0.4. The network was
visualized using Cytoscape (version 3.9.1) (Shannon et al., 2003).
The MCODE plugin was employed for PPI analysis to identify
candidate genes for subsequent validation.

2.5 Machine learning and gene
expression analysis

The Least Absolute Shrinkage and Selection Operator (LASSO)
and Boruta algorithms were applied to screen feature genes from the
candidate set. LASSO analysis was performed using the “glmnet”
package (version 4.1.4) (En et al., 2019), with results confirmed at
the minimum lambda value. The Boruta algorithm, utilizing the
“Boruta” package (version 8.0.0) (Zhou et al., 2023), was employed
to identify key genes. Genes that intersected between LASSO and
Boruta were selected as feature genes. Gene expression analysis of
these feature genes was then conducted in the GSE63061 and
GSE63060 datasets. Genes showing significant differential
expression between AD and control groups, and consistent
expression trends across both datasets, were designated as
candidate biomarkers.

2.6 ScRNA-seq analysis

The scRNA-seq data from the GSE181279 dataset were
processed using the “Seurat” package (version 4.3.0) (Hao et al.,
2023). Low-quality cells were removed based on quality control
(QC) criteria, with thresholds set at 200 < nFeature-RNA <2,500,
nCount-RNA <8,000, and percent.mt < 15%. Data normalization
was performed using the “LogNormalize” function, and the top
2000 highly variable genes (HVGs) were selected using the vst
method from the “FindVariableFeatures” function. Principal
component analysis (PCA) was then performed on the
2000 HVGs using the “RunPCA” function, and sample
integration was conducted using the RPCAIntegration method
within the “IntegrateLayers” function. Principal components
(PCs) were selected based on an elbow plot. The cells were
subsequently clustered using t-distributed stochastic neighbor
embedding (t-SNE) with a resolution of 1. Cell annotation was
performed using “singleR” (version 2.0.0) (Huang et al., 2021) based
on marker genes identified through literature mining (Xu and Jia,
2021). Expression of the proposed biomarkers within annotated cells
was evaluated, and genes showing significant expression in these

cells were considered biomarkers. The Wilcoxon rank-sum test was
used for further analysis. Cells were designated as key cells when all
candidate biomarkers demonstrated significant expression
differences between AD and control groups (P < 0.05).

2.7 Intercellular signaling and pseudotime
Trajectory analysis

To investigate interactions between different cell types and
gain deeper insight into key cells, cell-to-cell communication
analysis was performed using “CellChat” (version 1.6.1) (Luo
et al., 2023) in the GSE181279 dataset. Additionally, to explore
the differentiation states and trajectories of key cells, pseudo-
temporal analysis was conducted using “monocle” (version
2.26.0) (Qiu et al., 2017). Pseudotime series represent abstract
biological processes, mapping cellular developmental states onto
pseudotime trajectories, calculating gene expression changes over
pseudotime, and inferring the developmental state of cells
(Yongchun Wang et al., 2024). An expression heatmap of the
top 100 genes contributing to cell differentiation was then
generated. These 100 genes underwent GO and KEGG pathway
enrichment analyses using the “clusterProfiler” package (adj. P <
0.05) to identify pathways significantly altered during cell
differentiation.

2.8 Development and calibration of a
predictive scoring system

A nomogram was constructed based on the identified
biomarkers to predict the risk of AD using the “rms” package
(version 6.3.0) (Liu et al., 2021). To assess the nomogram’s
predictive accuracy, calibration and decision curves were
generated. If the P-value of the Hosmer-Lemeshow (HL) test for
the calibration curve is greater than 0.05 (indicating good model
calibration), the concordance index (C-index) exceeds 0.7
(indicating favorable discriminative ability), and the net benefit
from decision curves is non-zero, the model is considered
capable of effectively distinguishing patients with AD from
healthy controls.

2.9 Function analysis of biomarkers

To further explore the biological functions and signaling
networks associated with the biomarkers, GSEA was performed.
Unlike traditional GO and KEGG enrichment analyses, GSEA
identifies changes in pathway activity related to key genes based
on “overall trends of gene sets” rather than individual gene function
annotations (Aravind Subramanian et al., 2005). This approach was
employed to validate and expand the functional enrichment results
obtained from GO/KEGG analyses. First, the strength of association
(via Spearman correlation) between each biomarker and all other
genes in the GSE63061 dataset was determined, with associations
ranked from strongest to weakest. The C2: KEGG gene set was
downloaded using the “msigdbr” package (version 7.5.1) (Liberzon
et al., 2015) as the background set. Subsequently, GSEA was
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FIGURE 1
Identification of Key DEGs and Key Modules of Lysosomal Ion Channels. (A) The volcano plot illustrates the distribution of differentially expressed
genes (DEGs) between patients with 139 AD and 134 control samples in the GSE63061 dataset. Red points denote significantly upregulated genes, while
blue points represent significantly downregulated genes. (B) The heatmap presents the differential gene expression profiles across samples in the
comparison cohort. The upper panel assesses data distribution characteristics, where proximal mean and median values indicate a near-normal
distribution. The lower panel employs a color gradient to represent normalized transcript abundance, with red indicating upregulation and blue indicating
downregulation. (C) Comparison of lysosomal ion channel-related gene (LICRG) scores between patients with AD and control samples reveals a
significant difference between the two groups. Statistical significance thresholds: *p < 0.05, **p < 0.01, ***p < 0.001. (D) The sample clustering tree shows
that all samples were included in subsequent analysis, with no outlier samples detected. The cutreeStatic function was used to identify abnormal samples
within the clustering tree. (E) The optimal soft-thresholding power determination inWGCNA follows scale-free network topologymetrics, with a target fit
index approaching 0.8. (F) The module clustering tree from WGCNA analysis, with different colors representing distinct gene modules. A total of
13 modules were obtained. (G) Inter-modular association profiling highlighted MEblack and MEturquoise as the most strongly correlated WGCNA
eigenmodules with LICRG scores.
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conducted to enrich the ranked genes within the background gene
set, with an adjusted P-value threshold set at < 0.05.

2.10 The reverse transcription quantitative
PCR (RT-qPCR)

A total of 20 blood samples (10 from patients with AD and
10 from healthy controls) were collected from the Shanxi Bethune
Hospital. All participants provided informed consent, and the study
was approved by the hospital’s ethics committee (approval number:
YXLL-2025-151). Total RNA was extracted from the samples using
TRIzol reagent (Ambion, United States), following the
manufacturer’s protocol. RNA integrity and concentration were
assessed using a NanoPhotometer N50. Complementary DNA
(cDNA) synthesis was performed using the SureScript First-
Strand cDNA Synthesis Kit on a Bio-Rad S1000TM Thermal
Cycler. The primer sequences used for the qPCR are listed in
S1 Table (Supplemental). Quantitative real-time PCR (qPCR)
amplification was carried out with a Bio-Rad CFX Connect Real-
Time PCR System. Thermocycling parameters included an initial
denaturation step at 95 °C for 1 min, followed by 40 amplification
cycles (denaturation: 95 °C for 20 s, primer annealing: 55 °C for 20 s,
elongation: 72 °C for 30 s). Gene expression levels were quantified
using the 2−ΔΔCT method.

2.11 Statistical analysis

Statistical analysis was performed in R (version 4.2.2).
Differences between groups were analyzed using the Wilcoxon
test (P < 0.05). For comparisons of PCR results between groups,
an independent samples t-test was employed (P < 0.05).

3 Results

3.1 Identification of 134 DEGs and 847 key
module genes

Differential expression analysis identified 134 DEGs between
AD and control groups, including 6 upregulated and
128 downregulated genes (Figures 1A,B). The heatmap confirmed
robust data quality and reliable differential analysis, revealing a
significant divergence in gene expression patterns between AD and
control groups. Specifically, the AD group exhibited a tendency for
upregulation (P < 0.05), highlighting coordinated gene expression
changes that reflect AD-related biological processes. To identify
module genes linked to lysosomal ion channels in the training set,
WGCNA was performed. This analysis revealed interconnected
gene modules that drive AD pathogenesis, crucial for
understanding how individual genes collaborate to contribute to
the disease. AD samples exhibited significantly higher LICRG scores
than controls (P = 0.00096) (Figure 1C). Analysis of the
GSE63061 dataset identified no aberrant samples (samples with
values or features that statistically significantly deviate from the
majority of observations in the dataset) (Figure 1D), as the cutHeight
parameter for the cutreeStatic function in hierarchical clustering was

objectively set to 45 based on the dendrogram’s natural branching
pattern—ensuring stable cluster separation without over-splitting
biologically relevant groups. The optimal soft threshold (β) was
determined to be 8, based on the scale-free R2 approaching 0.8 and
mean connectivity nearing zero, ensuring the network approximated
a scale-free distribution (Figure 1E). Modules with high topological
overlap were clustered, yielding 13 distinct co-expression groups,
each assigned a unique color (Figure 1F). Significant associations
were found between LICRG scores andmodule eigengenes: MEblack
demonstrated a strong positive correlation (r = 0.78, P = 1e-56),
while MEturquoise exhibited a negative correlation (r = −0.46, P =
7e-16) (Figure 1G). Consequently, the 847 genes in the MEblack and
MEturquoise modules were selected as key module genes.

3.2 Enrichment of 94 intersection genes in
the ribosome pathway

Venn diagrams were employed to identify DEGs associated with
lysosomal ion channels in AD, aiming to filter out “consistently
dysregulated genes” that likely drive AD pathogenesis. By
overlapping the 134 DEGs with the 847 key module genes, a
total of 94 intersecting genes were identified (Figure 2A).
Functional enrichment analysis revealed that these 94 genes were
significantly enriched in 303 GO terms and 23 KEGG pathways (adj.
P < 0.05). Notable GO terms included “ribosome,” “cytoplasmic
translation,” and “structural constituent of ribosome,” among others
(Figure 2B). The top five KEGG pathways significantly enriched
with the intersecting genes were “coronavirus disease-COVID-19,”
“oxidative phosphorylation,” “Parkinson’s disease,” “prion disease,”
and “ribosome” (Figure 2C). In the context of neurodegenerative
diseases, dysfunction in this gene set may lead to increased synthesis
of misfolded proteins or ribosomal dysfunction, thereby
exacerbating pathological damage (Brilkova et al., 2022). A PPI
network was constructed using the 94 intersecting genes, excluding
outlier genes, resulting in a network of 90 nodes and 826 edges
(Supplementary Figure S1). For example, RPL21 and RPL17 showed
strong interactions with other genes. Using the MCODE plugin, a
subnetwork comprising the top 30 genes was generated, revealing
protein-level interactions among these genes. This subnetwork
contained 30 nodes and 387 edges, with genes such as RPS3A
and RPL31 exhibiting close interactions (Figure 2D). These
30 genes were selected as candidate targets for further analysis.

3.3 Identification of 7 candidate biomarkers

Data mining methods, including LASSO and Boruta, combined
with expression level validation, were used to effectively identify
candidate biomarkers. The LASSO method (lambda min = 0.007)
selected 15 genes from the 30 candidate genes (Figure 3A), while the
Boruta method identified 12 genes (Figure 3B). Overlapping the
results from both methods led to the identification of 7 feature genes
(SRP14, RPL11, RPL6, EIF3E, COX7C, RPL7, and RPS24)
(Figure 3C). Comparisons between AD and control samples from
the GSE63061 and GSE63060 datasets revealed significantly
decreased expression of all seven feature genes (P < 0.05),
designating them as candidate biomarkers for AD (Figures 3D,E).
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FIGURE 2
Identification and Functional Enrichment Analysis of Candidate Genes. (A) Venn diagram illustrating the intersection of differentially expressed genes
(DEGs) and keymodule genes identified throughWGCNA analysis. (B)GeneOntology (GO) enrichment analysis of the 94 candidate genes,and Display the
top 30 most significantly enriched functions. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the 94 candidate
genes. (D) Magnified view of the top 30 genes in the PPI network, constructed using the MCODE plugin. This subnetwork includes 30 nodes and
387 edges, highlighting protein-level interactions among these genes. Red nodes indicate genes associated with core biomarkers.
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3.4 Biomarker validation and key cell
identification

To identify key cells, scRNA-seq and cell clustering analysis were
performed. Initially, ineligible cells were filtered out, leaving only
eligible cells for further analysis (Supplementary Figure S2). A set of

2000 HVGs was identified (Supplementary Figure S3), followed by
PCA, which revealed no significant batch effects after data
integration (Supplementary Figure S4). The first 30 PCs were
selected for downstream analysis (Supplementary Figure S5). QC-
passed cells were then assigned to 20 distinct clusters using t-SNE
(Figure 4A), and nine cell types were annotated, including CD4+

FIGURE 3
Identification of Candidate Biomarkers. (A) LASSO regression analysis was performed, where the lambda (λ) value determines the selection of feature
genes. The red vertical line corresponds to the lambda.min value, and the green vertical line represents the lambda value. Genes obtained at theminimum
λ value usually correspond to the optimal results. (B) The boxplot illustrates the importance scores of the genes, with green boxes indicating confirmed
important genes, yellow boxes representing uncertain genes, and the purple box indicating themaximum importance score of the shadow features.
(C) The Venn diagram depicts the intersection of feature genes identified by LASSO and Boruta analyses. A total of 7 feature genes were identified,
including SRP14, RPL11, RPL6, EIF3E, COX7C, RPL7, and RPS24. (D,E) The boxplots show the expression levels of the 7 feature genes in the GSE63061
(139 AD and 134 control samples) and GSE63060 (145 AD and 104 control samples) datasets. These genes were significantly downregulated in AD
samples compared to control samples in both datasets. Statistical significance thresholds: *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Genetics frontiersin.org07

Wang et al. 10.3389/fgene.2025.1676565

mailto:Image of FGENE_fgene-2025-1676565_wc_f3|tif
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1676565


T cells, CD8+ T cells, natural killer (NK) cells, B cells, natural killer T
(NKT) cells, CD4 NKT cells, CD8 NKT cells, mononuclear
macrophages, and megakaryocytes (Figure 4B).

Among the cell types, SRP14 (P = 3.0532e-22), EIF3E (P =
1.5990e-26), and COX7C (P = 3.5062e-03) exhibited consistently

elevated expression across multiple annotated cell populations,
particularly in CD4+ T cells. As a result, SRP14, EIF3E, and
COX7C were selected as biomarkers, and CD4+ T cells were
considered key cells for further investigation (Figure 4C).
Additionally, in CD4+ T cells, transcript abundance of SRP14,

FIGURE 4
Identification of Key Genes and Cell Types. (A) Distribution of cells following dimensionality reduction clustering (Left), and t-SNE clustering results
showing distinct cell clusters within the integrated single-cell dataset (Right). Color denotes predefined groups (Left) and identified cell clusters (Right). (B)
Cell type annotation based onmarker genes. The plot displays the annotated cell types, including CD4 T cells, CD8 T cells, NK cells, B cells, CD4NKT cells,
CD8 NKT cells, NKT cells, mononuclear macrophages, and megakaryocytes. (C) The heatmap shows the expression levels of candidate biomarkers
across different cell types, with significant expression observed in CD4 T cells. The size of the dots represents the expression proportion of the gene in the
respective cell cluster, and the color indicates the expression level, where darker colors represent higher expression levels and lighter colors correspond
to lower expression levels. (D) The boxplot displays the expression levels of SRP14, EIF3E, and COX7C in CD4 T cells from 3 AD and 2 control samples, with
significantly lower expression in AD samples. (E) The bar chart shows the expression levels of SRP14, EIF3E, and COX7C in AD and control samples,
confirming the downregulation of these genes in AD. Statistical significance thresholds: *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 5
Pseudo-temporal Analysis of CD4 T Cells. (A,B) Panel A shows the network diagram of cell interactions in control samples, highlighting significant
interactions between CD4 T cells and other cells. Panel B illustrates reduced interactions in AD samples, suggesting potential disruption in cell
communication. (C,D) Panels C and D display the differentiation stages of CD4 T cells, with cells in the control group predominantly in earlier stages
(lighter blue) and AD group cells in later stages. (E) Panel E shows the expression levels of key genes during differentiation, which initially increase and
then decrease, indicating a dysregulated differentiation process in AD. (F) GO enrichment analysis of the top 100 genes. The bar plot reveals significant
enrichment in terms such as “mononuclear cell differentiation” and “α-β T cell differentiation.” (G) KEGG pathway enrichment analysis of the top
100 genes. The bar plot highlights significant enrichment in pathways like “Th17 cell differentiation” and “apoptosis.”
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EIF3E, and COX7C was significantly reduced in AD samples
(Figure 4D), aligning with expression patterns observed in
transcriptome datasets. RT-qPCR further confirmed the reduced
expression of SRP14 (P = 0.0018), EIF3E (P = 0.0270), and COX7C
(P = 0.0430) in AD samples (Figure 4E). The presence of relatively
large error bars (representing standard deviation/standard error)
was primarily attributed to interindividual heterogeneity within the
clinical AD samples. Specifically, two key factors contributed to this
variability: the broad age range of 65–88 years, leading to inherent
physiological variability, and variations in baseline health status
among the samples, with some patients with AD also diagnosed with
hypertension or type 2 diabetes. Age-related physiological decline,
compounded by oxidative stress from these comorbidities, likely
exacerbated fluctuations in the expression of EIF3E, SRP14, and
COX7C(15). Despite these variable error bars, the core trends
remained consistent, and the observed interindividual
heterogeneity objectively reflected the real-world characteristics of
clinical AD samples, providing a foundation for subsequent
stratified validation studies based on disease stages.

3.5 CD4+ T cells contributed to AD
pathogenesis

To investigate the role of CD4+ T cells in the pathogenesis of
AD, cell communication analysis, pseudotime analysis, and cell
enrichment pathway analysis were performed. Cell-to-cell
communication analysis in the GSE181279 dataset revealed
significant interactions between the key CD4+ T cells and other
annotated cell types in both AD and control samples (Figures
5A,B; Supplementary Figures S6, S7). Notably, interactions
between CD4+ T cells and B cells, as well as NKT cells, were
more pronounced in control samples than in patients with AD. In
the advanced stages of AD, CD4+ T cells undergo enhanced
differentiation into Th1/Th17 subsets, CD8+ T cells either
become exhausted or hyperactivated (Afsar et al., 2023), and
NK cells exhibit impaired functionality. This disruption of
their collaborative interaction (e.g., reduced cell-cell
communication) (Li et al., 2024) leads to “uncontrolled
inflammation and failure of pathological clearance,” ultimately
accelerating neuronal death and cognitive decline. These findings
align with our results.

Pseudotime analysis of CD4+ T cells indicated that cells in the
control group predominantly resided in earlier stages of
differentiation, while CD4+ T cells from patients with AD were
primarily in more advanced stages (Figures 5C,D). Prior to this, our
integrated PCA plot (Supplementary Figure S4) showed that cells
from AD samples and control samples were mixed in the
dimensionality-reduced space, with no obvious group clustering
observed. This confirms that batch effects have been effectively
controlled. The expression levels of COX7C, EIF3E, and
SRP14 showed an initial increase followed by a decrease during
the differentiation process of CD4+ T cells (Figure 5E).

Additionally, the top 100 genes contributing to CD4+ T cell
differentiation were analyzed (Supplementary Figure S8). GO
analysis revealed significant enrichment in terms related to
“mononuclear cell differentiation,” “α-β T cell differentiation,”
“ubiquitin-like protein ligase binding,” and “cell-substrate

junction” (Figure 5F). These results suggest that these genes may
influence CD4+ T cell dysfunction and neuroinflammation in AD by
regulating CD4+ T cell maturation, microenvironmental anchoring,
and post-translational modifications. KEGG pathway analysis
further identified significant enrichment in pathways related to
“Apoptosis,” “Th17 cell differentiation,” “Leishmaniasis,”
“Necroptosis,” and “Osteoclast differentiation” (Figure 5G). These
abnormalities in ADmay lead to the skewing of CD4+ T cells toward
pro-inflammatory subsets, imbalance in cell survival, and the
amplification of neuroinflammation, which exacerbates
neuronal damage.

3.6 Nomogram demonstrates robust
predictive performance

To assess the predictive potential of the biomarkers, a
nomogram was constructed based on the identified biomarkers
(Figure 6A). The nomogram demonstrated that higher total
scores correlated with an increased risk of AD. The calibration
curve showed an HL test P-value of 0.417, indicating good
agreement between predicted and actual probabilities. The
model’s C-index of 0.726 confirmed its effectiveness in
distinguishing between the AD and control groups (Figure 6B).
Furthermore, the decision curve revealed a higher net benefit from
the model compared to using a single factor alone, highlighting its
diagnostic utility (Figure 6C). These results highlight the strong
predictive capacity of the nomogram.

3.7 The exploration of functions of
biomarkers

GSEA was performed to contextualize the biomarkers within
well-established biological pathways, avoiding isolated gene analysis.
The GSEA results showed significant co-enrichment of EIF3E,
COX7C, and SRP14 in pathways such as “ribosome,” “oxidative
phosphorylation,” “Parkinson’s disease,” and “chemokine signaling
pathway” (Figures 7A–C). This suggests that these three biomarkers
may collectively contribute to the pathological progression of AD by
regulating protein synthesis, mitochondrial energy metabolism,
shared mechanisms in neurodegenerative diseases, and
intracerebral immune inflammation.

4 Discussion

AD, a neurodegenerative disorder, is characterized by
pathological changes that disrupt neuronal integrity and synaptic
function, ultimately resulting in cognitive decline (Scheltens et al.,
2021). Lysosomal dysfunction plays a pivotal role in the
accumulation of AD-associated pathological aggregates and
contributes to neurodegeneration (Portin and Wilkins, 2017; Bi
et al., 2018). Specifically, the dysregulation of lysosomal ion channels
impairs the lysosomal degradative capacity, accelerating AD
progression (Riederer et al., 2023). Therefore, lysosomal ion
channels serve as crucial molecular nodes, linking proteostasis
disruption to cognitive decline in AD. Using the GEO database,
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this study applied comprehensive bioinformatics analyses to identify
three key genes—SRP14, EIF3E, and COX7C. Enrichment analysis,
immune infiltration profiling, and regulatory network analysis
provide new insights into AD pathogenesis and potential
diagnostic and therapeutic avenues.

Genes, as fundamental units of hereditary information, control
cellular processes by encoding proteins or regulatory RNAs, with
their spatiotemporal expression tightly regulated by epigenetic
modifications, transcription factors, and post-transcriptional
mechanisms (Portin and Wilkins, 2017). In AD, dysregulation of
specific genes has been implicated in key pathological pathways. For
example, COX7C, a nuclear-encoded subunit of the mitochondrial
cytochrome c oxidase complex, is consistently downregulated in AD
brains and peripheral tissues (Bi et al., 2018; Katsumata et al., 2022).
This downregulation correlates with impaired mitochondrial
respiration, elevated oxidative stress, and reduced Aβ clearance,
as indicated by diminished ATP synthesis and aberrant ROS
accumulation in neuronal models (Figure 3A). Mechanistically,
genetic variants near the COX7C locus may disrupt its

transcriptional regulation, further exacerbating bioenergetic
deficits in AD.

Similarly, SRP14, a component of the signal recognition particle,
exhibits dynamic expression patterns in neurodegenerative diseases
such as amyotrophic lateral sclerosis (ALS) and frontotemporal
dementia (FTD) (Brown et al., 2020). SRP14 regulates TDP-43
proteostasis by modulating its translation and stress granule
dynamics, influencing pathological protein aggregation (Faoro
and Ataide, 2021; Chen et al., 2017). SRP14 may further
compromise lysosomal function in AD by disrupting the
secretion of cathepsins—key enzymes involved in Aβ
degradation—a mechanism distinct from its role in ALS/FTD.
Despite these advances, the roles of SRP14 and EIF3E in AD-
associated lysosomal dysfunction had not been explored until
this study.

Single-cell analysis identified CD4+ T cells as key mediators of
LICRG dysregulation in AD, displaying altered differentiation states
and impaired cell-cell communication. This contrasts with
Parkinson’s disease (PD), where TMEM175 (another lysosomal

FIGURE 6
Nomogram Construction and Validation for Disease Risk Prediction. (A) The nomogram is based on the expression levels of three key genes. Each
gene corresponds to a score on the nomogram,and the higher total score indicates the higher probability of predicting AD. (B) The calibration plot
demonstrates the concordance of nomogram-derived probabilities with observed event frequencies. (C) The DCA curve shows the net benefit of using
the nomogram for AD risk prediction compared to using a single factor alone. The curve indicates a higher net benefit from the nomogram.
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FIGURE 7
Functional Analysis of Key Genes. (A-C) Panels A, B, and C show the enrichment of key genes in the “ribosome,” “oxidative phosphorylation,” and
“Parkinson’s disease” pathways, respectively. The results indicate significant co-enrichment of key genes in these pathways.
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ion channel) is upregulated to mitigate mitochondrial stress,
highlighting disease-specific regulatory differences (Wie et al.,
2021). Moreover, the nomogram model incorporating these
biomarkers demonstrated robust predictive accuracy (AUC =
0.726, 95% CI: 0.682–0.769), validated through calibration curves
and decision curve analysis (DCA). These findings reveal novel
molecular links between lysosomal channels and immune
dysregulation in AD, offering a translatable framework for risk
stratification and therapeutic targeting.

Building on the expression profiles of SRP14, EIF3E, and
COX7C, this study identifies CD4+ T cells as a key cellular subset
in AD. Interactions between CD4+ T cells and NK cells/CD8+ T cells
were significantly reduced compared to controls. Additionally, AD-
associated CD4+ T cells were predominantly arrested at the late
differentiation stage. This phenotypic divergence correlates with the
dynamic expression pattern of LICRGs, which peak during
intermediate differentiation and decline at terminal stages. While
previous studies have implicated CD4+ T cells in AD-related
neuroinflammation, their mechanistic roles remain unclear due
to individual variability and limited longitudinal analyses (Afsar
et al., 2023).

Our multi-omics approach—integrating bulk transcriptomics,
single-cell resolution, and immune cell mapping—uncovers how
LICRG dysregulation in CD4+ T cells disrupts intercellular crosstalk,
potentially exacerbating Aβ deposition through impaired immune
surveillance. For instance, weakened communication between CD4+

T and NK cells may hinder the cytotoxic clearance of Aβ aggregates,
while aberrant differentiation of CD4+ T cells toward pro-
inflammatory Th17 subsets could amplify neurotoxicity. These
findings contrast with PD, where CD8+ T cells predominate in
neuroinflammation, highlighting the distinct immune pathology of
AD (Contaldi et al., 2022). The nomogram model incorporating
SRP14, EIF3E, and COX7C expression demonstrated strong
diagnostic accuracy (AUC: 0.726), offering a clinically actionable
tool for early AD detection. Future research should validate these
biomarkers in cerebrospinal fluid (CSF) and explore therapeutic
strategies to modulate CD4+ T-cell differentiation, such as small
molecules targeting LICRGs to restore lysosomal-immune
homeostasis.

GSEA revealed that SRP14, EIF3E, and COX7C were co-
enriched in pathways critical to AD pathogenesis, including
ribosome biogenesis, oxidative phosphorylation (OXPHOS), PD-
related pathways, and chemokine signaling pathways (Figure 6A).
These findings highlight the multifaceted mechanisms linking
lysosomal ion channel dysfunction to proteostatic collapse,
metabolic failure, and neuroinflammation in AD.

Abnormal activation of the ribosome collision stress pathway
induces metabolic imbalance and collapses protein homeostasis,
accelerating neuronal degeneration and driving Aβ/tau pathological
deposition, thereby exacerbating disease progression (Wu et al.,
2020). OXPHOS impairment in AD microglia is closely linked to
Aβ-induced glycolytic metabolic reprogramming and the H4K12la/
PKM2 positive feedback loop, which further exacerbates energy
imbalance and promotes pathological protein deposition. Targeting
this metabolic axis may restore OXPHOS function and mitigate
neurodegenerative changes (Pan et al., 2022). The chemokine
pathway (CX3CL1/CX3CR1 and P2X7R signaling axis) plays a
critical role in regulating microglial activation states (Suresh

et al., 2021). In AD, dysregulated CX3CL1 signaling impairs
microglial Aβ phagocytosis while enhancing IL-1β release,
amplifying neuroinflammation (Suresh et al., 2021). Conversely,
P2X7R antagonism has been shown to restore synaptic integrity in
preclinical models (Suresh et al., 2021), suggesting context-
dependent roles for chemokine signaling.

Notably, our data revealed striking contrasts between AD and
PD, despite shared pathways such as mitochondrial dysfunction. For
instance, COX7C and EIF3E, which are downregulated in AD, are
upregulated in PD to counteract oxidative stress. Similarly,
TMEM175, a lysosomal K+ channel that is neuroprotective in
PD through pH modulation, is suppressed in AD, exacerbating
lysosomal-mitochondrial miscommunication. These opposing
expression patterns (Figure 6C) suggest that neurodegenerative
diseases co-opt common pathways through divergent regulatory
mechanisms, which is an important consideration for
targeted therapies.

Through the integration of multi-omics approaches, including
differential expression analysis, WGCNA, and scRNA-seq, this
study identified SRP14, EIF3E, and COX7C as core biomarkers
linked to lysosomal ion channel dysregulation in AD. GSEA
further revealed that these biomarkers were significantly
enriched in key neurodegenerative pathways, including
ribosome biogenesis, OXPHOS, and PD-associated signaling,
providing novel insights for AD clinical diagnosis and
therapeutic targeting. The computational predictions were
robustly validated by RT-qPCR in an independent cohort.
However, limitations exist, including the need for further
experimental validation, the potentially limiting sample size in
scRNA-seq for detecting rare immune subsets, and the need for
deeper exploration of the precise mechanistic roles of these
biomarkers in AD pathogenesis. Future research should focus
on elucidating the underlying mechanisms driving AD
progression.

5 Conclusion

This study identified SRP14, EIF3E, and COX7C as lysosomal
ion channel-related biomarkers significantly associated with AD
pathogenesis, with CD4+ T cells serving as critical mediators of
lysosomal-immune dysregulation. Integrated multi-omics analyses
revealed dynamic biomarker expression patterns during CD4+ T cell
differentiation and their enrichment in pathways related to
proteostasis collapse (ribosome biogenesis) and metabolic failure
(OXPHOS). By linking computational discovery with therapeutic
innovation, this work lays the foundation for precision medicine
strategies targeting lysosomal-immune homeostasis in AD.
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