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Introduction: Recent biomedical studies have highlighted the pivotal role of non-
coding RNAs (ncRNAs) in gene regulatory networks, where they influence gene
expression, cellular function, and the onset and progression of various diseases.
Among these, small nucleolar RNAs (snoRNAs), a prominent class of small
ncRNAs, have attracted considerable research attention over the past two
decades. Initially recognized for their involvement in rRNA processing and
modification, snoRNAs are now understood to contribute to broader
biological processes, including the regulation of disease mechanisms,
maintenance of cellular homeostasis, and development of targeted
therapeutic strategies. With ongoing advancements, snoRNAs are increasingly
regarded as promising candidates for novel therapeutic agents in cancer,
neurodegenerative disorders, endocrine conditions, and cardiovascular
diseases. Consequently, there is a growing demand for efficient, cost-
effective, and environment-independent approaches to study snoRNAs, which
has driven the adoption of computational methodologies in this domain.
Methods: In this work, we propose a novel predictive framework, CGSDA, which
integrates a ChebNetII convolutional network with a gated graph sequence
neural network to identify potential snoRNA–disease associations. The model
begins by constructing a snoRNA–disease association network, embedding
residual mechanisms into both modules to effectively capture the
representations of snoRNAs and diseases. These representations are then
fused and dimensionally reduced, after which the refined embeddings are fed
into a predictor to generate association predictions.
Results: Experimental evaluation demonstrates that CGSDA consistently
outperforms baseline models in predictive accuracy. Ablation experiments
were conducted to assess the contribution of each module, confirming that
all components substantially enhance overall performance and validating the
robustness of the proposed method. Furthermore, case studies on lung cancer
and breast cancer showed that 10 out of the top 15 and 12 out of the top 15
predicted snoRNA-disease associations were validated by existing literature,
respectively, confirming the model’s effectiveness in identifying potential
novel snoRNA-disease associations.
Discussion: The implementation of CGSDA, along with relevant datasets, is
publicly available at: https://github.com/cuntjx/CGSDA. This public release
enables the research community to further validate and apply the framework,

OPEN ACCESS

EDITED BY

Massimo La Rosa,
National Research Council (CNR), Italy

REVIEWED BY

Antonino Fiannaca,
National Research Council (CNR), Italy
Ilaria Cosentini,
Consiglio Nazionale delle Ricerche (CNR), Italy

*CORRESPONDENCE

Yusong Lu,
luyusongky@163.com

RECEIVED 13 August 2025
ACCEPTED 06 October 2025
PUBLISHED 16 October 2025

CITATION

Zou Y, Lu Y, Lu S, Wei Z, Li L, Liao S, Zeng T,
Zhang Y and Miao R (2025) CGSDA: inferring
snoRNA-disease associations via ChebNetII
and GatedGCN.
Front. Genet. 16:1684484.
doi: 10.3389/fgene.2025.1684484

COPYRIGHT

© 2025 Zou, Lu, Lu, Wei, Li, Liao, Zeng, Zhang
and Miao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 16 October 2025
DOI 10.3389/fgene.2025.1684484

https://www.frontiersin.org/articles/10.3389/fgene.2025.1684484/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1684484/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1684484/full
https://github.com/cuntjx/CGSDA
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1684484&domain=pdf&date_stamp=2025-10-16
mailto:luyusongky@163.com
mailto:luyusongky@163.com
https://doi.org/10.3389/fgene.2025.1684484
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1684484


supporting advancements in computational identification of snoRNA–disease
associations and facilitating progress in snoRNA-based therapeutic
development, and ultimately benefiting human health.
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1 Introduction

SnoRNAs are a class of ncRNAs predominantly located in the
nucleolus of eukaryotic cells, where they play critical roles in RNA
modification. They are generally categorized into two major groups:
H/ACA box snoRNAs and C/D box snoRNAs. H/ACA box
snoRNAs are primarily responsible for guiding
pseudouridylation, whereas C/D box snoRNAs direct site-specific
methylation. Accumulating evidence indicates that methylation and
pseudouridylation, both mediated by snoRNAs, are essential
processing steps in the maturation of precursor rRNA into
functional rRNA. Notably, a single snoRNA molecule typically
serves as a guide for no more than two individual RNA
modification sites. Beyond these canonical functions, some
snoRNAs also exhibit non-traditional roles; for example (Ender
et al., 2008; Babiarz et al., 2008; Taft et al., 2009), and HBII-180C
(Ono et al., 2010) can function as microRNAs (miRNAs).

1.1 SnoRNA involmente in disease

Emerging evidence demonstrates that snoRNAs are
differentially expressed and participate in key biological processes
such as apoptosis, proliferation, and differentiation. Owing to their
multidimensional regulatory functions, elucidating the molecular
mechanisms through which snoRNAs influence disease
development has become a major frontier in biomedical research
over the past 2 decades. For instance, Tang et al. (2019) investigated
the role of snoRNAs in non-small cell lung cancer (NSCLC) using
both in vitro and in vivo loss-of-function analyses. Their study
revealed that SNORA71A functions as an oncogene in NSCLC and
contributes to disease progression. Similarly, Liu et al. (2022)
examined the role of SNORD1C in colorectal cancer through
multiple experimental approaches, demonstrating that this
snoRNA is involved in several tumor-related processes and plays
a critical role in cancer progression. Xu et al. (2014) employed
quantitative RT-PCR to assess snoRNA expression in tissue samples
from over one hundred hepatocellular carcinoma (HCC) patients,
further validating their findings using cell-based experiments and a
xenograft nude mouse model. Their results showed that
upregulation of SNORD113-1 inhibited HCC growth, suggesting
its potential utility as both a diagnostic biomarker and therapeutic
target. Beyond these individual studies, a growing body of evidence
underscores the involvement of snoRNAs in diverse human
diseases. In 2022, Huang et al. (2022) published a systematic
review summarizing the biological functions and mechanistic
roles of snoRNAs in tumor pathophysiology. Subsequently,
Chabronova et al. (2024) provided a comprehensive review
focusing on snoRNAs in cardiovascular development, physiology,
and heart-related disorders. Their work not only consolidated

current findings but also highlighted the potential clinical
applications of snoRNAs in cardiovascular medicine. In the same
year, Shen et al. (2024) conducted another systematic review that
emphasized the diagnostic and therapeutic significance of snoRNAs
across multiple disease contexts.

In addition to studies on human diseases, several investigations
have explored the association between snoRNAs and animal
pathologies (Omonijo et al., 2023; Regårdh et al., 2022; Anderson
et al., 2022). Such cross-species comparative studies not only
confirm the broad involvement of snoRNAs in disease processes
across species but also help elucidate the conserved functional
mechanisms of snoRNAs in disease development. Therefore,
exploring the association between snoRNAs and diseases can
help reveal the complex mechanisms of disease occurrence and
development and, ultimately, benefit clinical applications.

1.2 Computational approaches for
snoRNA–disease association prediction

As a methodological system characterized by high efficiency in
processing large-scale data, strong scalability, and cross-domain
adaptability, computational approaches have become deeply
embedded in multidisciplinary and interdisciplinary research
fields such as bioinformatics, drug discovery, and systems
biology. These methods, supported by the rapid improvement in
the cost–performance ratio of computational resources and the
iterative advancement of deep learning architectures, now
represent a central paradigm for the integration and analysis of
multimodal data. In the context of snoRNA–disease association
prediction, computational methods have been extensively applied,
offering advantages of low cost, high timeliness, and broad
generalizability when used as guidance tools. To the best of our
knowledge, the first computational framework developed for this
purpose was the iSnoDi-LSGT model, proposed by Zhang and Liu
(2022). This model integrates dual constraints with topological node
embeddings to predict potential snoRNA–disease associations.
Building upon this foundation, several computational frameworks
have since emerged. For example, Sun et al. (2022) introduced the
PSnoD model, which draws inspiration from matrix completion
techniques. Their framework constructs three networks and
incorporates bounded nuclear norm regularization into a matrix
completion strategy to enhance prediction Acc. Momanyi et al.
(2024) proposed SAGESDA, a graph neural network–based
approach that fuses multiple networks to build snoRNA–disease
heterogeneous networks. They then applied the GraphSAGE
algorithm to learn node representations, followed by a dot
product classifier for association inference.

Zhang et al. further advanced the field by developing GCLSDA, a
method based on a lightweight graph convolutional network (GCN).
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TABLE 1 The brief summary of the state-of-the-art methods.

Name Main approach Strengths Limitations

iSnoDi-
LSGT

This method first obtains local similarity constraints
between snoRNAs and diseases, as well as global
topological constraints, then combines non-negative
matrix factorization to predict potential snoRNA-
disease associations

The local similarity constraints and global
topological constraints proposed by the model
enable efficient identification of potential
snoRNA-disease associations. The authors have
deployed the model on a web server, allowing users
to utilize it directly without the need for training

It relies on low-rank assumptions and struggles to
fully capture high-order embeddings of nodes

GCNSDA This computational framework constructs
association networks based on snoRNA-disease
bipartite graphs, then employs GCN for prediction

It can effectively capture local topological
structures and node feature correlations in graph
data

It struggles to capture long-range dependencies in
graphs due to over-smoothing and exhibits high
computational complexity

IGCNSDA This model is built on the GCN framework
combined with a subgraph generation algorithm. It
first employs a GCN module to learn embeddings of
snoRNAs and diseases, then refines these
embeddings through the subgraph generation
algorithm. Finally, it predicts snoRNA–disease
associations by computing the dot product between
the final embeddings of snoRNAs and diseases

The proposed subgraph generation algorithm not
only effectively enhances the model performance
but also endows the model with a certain degree of
interpretability

The model is plagued by the over-smoothing issue,
which in turn reduces the model’s interpretability

PSnoD This model employs multiple networks to construct
heterogeneous snoRNA-disease networks, then
utilizes bounded nuclear norm regularization
(BNNR) to predict potential snoRNA-disease
associations

Owing to the incorporation of additional
constraints and regularization terms into the
model, the model exhibits robust resistance to data
noise

Reliance on low-rank assumptions, limited ability
to fully capture higher-order embeddings of nodes

GCLSDA This model integrates LightGCN with contrastive
learning. LightGCN is first applied to learn
representations of snoRNAs and diseases.
Contrastive learning is then introduced to alleviate
the negative effects of both the sparsity of the
snoRNA–disease association matrix and the
oversmoothing problem inherent in LightGCN.
Similar to IGCNSDA, GCLSDA predicts potential
snoRNA–disease associations by computing the dot
product between the final embeddings of snoRNAs
and diseases

The model alleviates the adverse impacts of sparse
association matrices and over-smoothing on
model performance by integrating contrastive
learning. Additionally, it incorporates noise
augmentation techniques to further enhance
prediction accuracy

The integration of contrastive learning increases
the instability of the model during training

SAGESDA This model begins by integrating multiple networks
to construct a snoRNA–disease heterogeneous
network. Based on this heterogeneous structure,
GraphSAGE is employed to learn feature
representations of the nodes. Finally, potential
snoRNA–disease associations are inferred using a
dot product classifier applied to the learned
embeddings

By adopting mini-batch gradient descent
technology to partition the graph into smaller
subgraphs, the model enhances its accuracy,
training efficiency, and generalization ability

The over-smoothing of the GraphSAGE module
exerts an adverse impact on the model
performance

GL4SDA This framework first leverages snoRNA secondary
structures to generate representations of snoRNAs.
For diseases, feature representations are derived
using a LLMs. These embeddings are then integrated
into a graph neural network with an attention
mechanism, which is employed to predict potential
snoRNA–disease associations

The model effectively enhances its performance by
leveraging snoRNA secondary structure
information and adopting large language models
to generate disease embeddings

The over-smoothing issue in the model’s GNN
module exerts an adverse impact on the model
performance

GCASDA This model is built upon the GCN framework and
incorporates a multi-view graph attention
mechanism. By integrating multiple perspectives of
the snoRNA–disease network, GCASDA enhances
feature learning and predicts potential
snoRNA–disease associations

The model effectively enhances its performance by
leveraging the global features and interaction
features of snoRNA-disease node pairs

The efficiency of computing the global features and
interaction features of snoRNA-disease node pairs
decreases significantly as the data volume increases

GBDTSVM This computational framework integrates two
traditional machine learning methods, GBDT and
SVM, for predicting potential snoRNA–disease
associations. In this model, GBDT is first employed
to extract node representations, which are then input
into the SVM classifier to perform association
prediction

By leveraging the strong feature extraction
capability of GBDT and the classification
advantages of SVM, the model achieves high-
accuracy prediction with low computational cost

As a traditional machine learning model, it may
have limitations in handling high-order feature
interactions in complex graph-structured data
compared to deep graph neural networks
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This approach first extracts node representations of snoRNAs and
diseases via a light GCN (LightGCN), and then applies a contrastive
learning mechanism to mitigate the challenges of sparse correlation
matrices and node embedding over-smoothing, thereby improving
model performance (Zhang et al., 2023). Similar GCN-based or
variant methods include GCNSDA (Liu et al., 2021), GCASDA (Liu
et al., 2024) and IGCNSDA (Hu et al., 2024). Beyond GCNs, Muna
et al. (2025) proposed GBDTSVM, a hybrid framework combining
two classical machine learning algorithms: gradient-boosted
decision trees (GBDT) and support vector machines (SVM). In
this method, GBDT is used to extract node features, which are
subsequently passed to the SVM classifier for snoRNA–disease
prediction. More recently, La Rosa et al. proposed GL4SDA, a
novel framework that integrates multiple modalities. This model
derives snoRNA representations from their secondary structures,
leverages large language models (LLMs) to generate disease features,
and finally employs a graph neural network with an attention
mechanism to predict snoRNA–disease associations. As shown in
Table 1, we have provided a brief summary of the state-of-the-
art methods.

Although the past 2 decades have yielded substantial evidence
supporting snoRNA–disease associations, the systematic collection
of relevant data has lagged behind. This limitation has hindered the
effective application of computational methods in this field, as these
approaches typically require large-scale datasets to achieve optimal
performance. Consequently, the relatively limited availability of
high-quality data has been one of the key factors restricting
broader computational applications in snoRNA–disease
association prediction. Furthermore, there are relatively few high-
performance models in the field of snoRNA-disease association
prediction, and most of them adopt a single graph neural
network for feature extraction or association prediction, which
may bring the following adverse impacts on model performance.
First, the over-smoothing of graph neural networks can degrade
model performance. Second, relying solely on one type of neural
network for feature extraction may exert an adverse impact on
model performance due to the learning bias of the neural network.
To address this gap and to further advance the development and
optimization of predictive models, we propose a novel framework,
CGSDA, designed to identify potential snoRNA–disease
associations. CGSDA integrates two GNN modules: the
ChebNetII convolutional network (ChebNetII) and gated graph
convolutional network (Gated). The framework operates in three
main stages. First, a snoRNA–disease association network is
constructed, with a residual mechanism embedded into both
modules to alleviate over-smoothing during representation
learning. Next, the node embeddings learned by the two graph
neural network modules are fused and subjected to dimensionality
reduction, aiming to mitigate the adverse impact of the learning bias
of a single neural network on model performance. Finally, the
reduced-dimensional representations are passed into an inner
product decoder to generate predictions of potential
snoRNA–disease associations. Comparative experiments
demonstrate that CGSDA consistently outperforms baseline
models in prediction Acc. Furthermore, ablation studies reveal
that each component of the framework contributes significantly
to overall performance, thereby confirming the effectiveness and
robustness of the proposed model.

2 Materials and methods

2.1 Dataset

In this study, two datasets (i.e., dataset SDAD and dataset
MNDR) were employed. Specifically, Dataset SDAD was curated
by La Rosa et al. (2025) and served as a subset of the RNADisease
v4.0 database. SDAD encompasses 60 diseases, 384 snoRNAs, and
911 experimentally validated snoRNA-disease associations. Dataset
MNDR, by contrast, was collected by Sun et al. (2022), and it
contains 27 diseases, 220 snoRNAs, and 459 experimentally
validated snoRNA-disease associations. Detailed information
about the SDAD dataset is available at https://github.com/
BCB4PM/GL4SDA. Dataset MNDR can be downloaded from
https://github.com/linDing-groups/PSnoD or https://github.com/
mariamuna04/gbdtsvm. We place the basic information of the
two datasets in Table 2. In this work, we represent the
snoRNA–disease association network as a graph, where snoRNAs
and diseases serve as the nodes. We use NS and ND to denote the
number of snoRNAs and diseases, respectively, and thus we have
NS � 384 and ND � 60 in SDAD dataset. Here, we use S to denote
the set consisting of snoRNAs, denoted as S � {s1, . . . , sNs}.
Similarly, we use D to denote the set consisting of diseases,
denoted as D � {d1, . . . , dND}. The complete set of nodes is then
given byV � {S, D}. We define the adjacency (association) matrix of
the snoRNA–disease association network as A, where each element
ith row and jth column is specified according to Equation 1:

Aij � 1,
if snoRNA si 1≤ i≤NS( ) is associated

with disease dj 1≤ j≤ND( )
0, unconfirmed or unknown

⎧⎪⎨⎪⎩ (1)

During the training phase, all experimentally validated
snoRNA–disease associations are treated as positive samples,
while the remaining unobserved pairs are regarded as negative
samples. To construct the training set, a subset of the positive
samples is randomly removed from the original snoRNA–disease

TABLE 2 The basic information about SDAD and MNDR dataset.

Name Dataset: SDAD Dataset: MNDR

Number Number

Min degree snoRNAs 1 1

Diseases 1 1

Max degree snoRNAs 9 7

Diseases 174 166

Average degree snoRNAs 2.37 2.09

Diseases 15.17 17

Median degree snoRNAs 2 2

Diseases 4 3

Total snoRNAs 384 220

Diseases 60 27

Associations 911 459
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association matrix A. The resulting matrix, denoted as Atrain, is then
used for model training.

2.2 Initial features of snoRNA

There are numerous methods for extracting features from RNA
molecules, and the choice of method can significantly influence
downstream tasks. Among them, the k-mer algorithm is one of the
most widely used approaches due to its efficiency and broad
applicability. It is implemented in several feature extraction tools
such as Jellyfish, KMC, and Kraken. The k-mer algorithm has two
key capabilities: (1) it counts k-mer occurrence frequencies to
capture sequence composition patterns, repetitive regions, and
mutation hotspots; and (2) it can be adapted to different
applications by varying the value of k. For instance, setting k � 6
allows for the characterization of six-nucleotide conserved regions
within RNA sequences, which can help identify potential miRNA
binding sites. Recent studies have systematically evaluated the
impact of different k values on the performance of various
downstream tasks (e.g., Vinje et al. (2015); Chor et al. (2009);
Tahara et al. (2023)). Despite its advantages, the k-mer algorithm
faces challenges. Extremely long or short sequences may
compromise feature quality, and conventional k-mer approaches
typically focus only on linear sequence information, overlooking
secondary structural features. However, accumulating evidence
demonstrates that RNA secondary structure plays a critical role
in determining function. For example, studies have confirmed that
snoRNA activity is strongly influenced by its structural
conformation (Ganot et al., 1997; Kiss-László et al., 1996). This
highlights the necessity of employing feature extraction algorithms
that incorporate structural information.

One such method is nRC, a tool specifically developed by
Fiannaca et al. (2017) for non-coding RNA (ncRNA) feature
extraction, differs from other methods that overlook ncRNA
structural features in that it can integrate the secondary structure
information of ncRNAs into feature representation, thereby
improving feature quality. Previous studies (e.g., La Rosa et al.
(2025)) have verified that nRC outperforms baseline methods in
ncRNA-related prediction tasks, confirming its suitability for
snoRNA feature extraction. Therefore, we directly used the
features extracted by nRC as the initial features of snoRNAs in
the CGSDA model.

2.3 Initial features of disease

There are multiple approaches to representing disease features.
One of the earliest methods was one-hot encoding based on disease
categories. However, while effective for simple classification, this
representation has shown limited performance in more complex
tasks. Another widely adopted approach is disease semantic
similarity, introduced by Xuan et al. (2013), Schriml et al. (2012),
which leverages the MeSH database (https://www.ncbi.nlm.nih.gov/)
to compute ontology-based similarity between diseases (Lu et al.,
2022; Ouyang et al., 2024). This method has since been applied
extensively across several studies. Importantly, many diseases are
described in detail through textual resources, including clinical

manifestations, pathogenic mechanisms, diagnostic criteria,
classification schemes, and progression patterns. These textual
descriptions capture rich and evolving knowledge about diseases,
yet traditional feature extraction methods often overlook this valuable
source of information.

Large Language Models (LLMs) can effectively understand the
contextual information of text and generate corresponding
numerical features as needed. The bge-icl-en tool, developed by
Li et al. (2024) from the Beijing Academy of Artificial Intelligence
(BAAI), is capable of converting English textual information into
word embeddings. This tool adopts an open-source model and can
be downloaded and deployed by users via https://github.com/
FlagOpen/FlagEmbedding. We chose to generate the initial
features of diseases by inputting the textual summaries of
diseases from the MalaCards database (Rappaport et al., 2013)
into the bge-icl-en tool, based on the two key considerations.

First, the MalaCards database (https://www.malacards.org/)
integrates dozens of data sources and provides detailed textual
descriptions for more than 16,000 human diseases. The textual
information about the disease in MalaCards, including the status
and classification of the disease, pathogenesis, characteristics and
impacts of the disease, etiology and risk factors, preventive
interventions, disease management and prognosis, contains rich
semantic details, which are crucial for distinguishing disease
characteristics. Unlike traditional methods (e.g., one-hot
encoding, ontology-based semantic similarity), LLMs (such as
bge-icl-en) can capture contextualized semantic information,
avoiding the limitations of disease feature representation.

Second, the bge-icl-en tool has demonstrated excellent
performance in multiple text embedding benchmark tests (Li
et al., 2024) and supports open-source deployment, which not
only ensures the accuracy of disease feature extraction but also
guarantees the reproducibility of experimental results.

Specifically, we used the “Summary” field in the disease entries
of MalaCards as the input to bge-icl-en, and the generated
embedding vectors were used as the initial features of diseases.

2.4 CGSDA

Spectral convolutional networks represent an important class of
graph neural networks with broad applications across diverse tasks.
Among the most representative models are ChebNet (Defferrard
et al., 2016) and GCN (Kipf and Welling, 2016), both of which
perform spectral graph convolutions using Chebyshev polynomials.
Notably, GCN can be viewed as a simplified variant of ChebNet, as it
relies only on the first two Chebyshev polynomials. Despite this
simplification, GCN often outperforms ChebNet in practice. To
address this limitation, the ChebNetII model was introduced, which
enhances Chebyshev polynomial approximation through
Chebyshev interpolation, thereby mitigating the Runge
phenomenon and improving model performance. Given its
demonstrated superiority over baseline models, we adopted
ChebNetII in this study to extract feature representations of
snoRNAs and diseases.

Li et al. (2015) integrated gated loop units, optimization
techniques, and graph neural networks to propose GGNNs,
which are more effective than traditional sequence models in
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extracting node embeddings from graphs. As is well known, deep
learning models exhibit “preference learning” toward certain
samples. To enhance both performance and robustness, we
combine the ChebNetII model with the Gated model,
introducing the CGSDA framework for predicting potential
snoRNA–disease associations. The overall structure of the
CGSDA model is illustrated in Figures 1, 3. At a high level, the
core process of the model can be divided into three main steps.

Step 1: The initial features of snoRNAs and diseases are first passed
through a single-layer multilayer perceptron (MLP) for
dimensionality reduction. The resulting downscaled features are
then concatenated and input into the multilayer ChebNetII network.
To mitigate the negative effects of the “oversmoothing” problem
commonly observed in graph neural networks, we introduce a
residual mechanism that concatenates the downscaled
representations with the inputs of each ChebNetII layer.
Finally, the output of the terminal ChebNetII layer is fed into
another single-layer MLP for further refinement and
dimensionality reduction of the node embeddings, yielding the
final output F(L)Cheb of the ChebNetII module. The detailed process
is illustrated in Figure 1.

Step 2: In this step, the ChebNetII module is replaced with the
Gated module, while following a similar process to extract snoRNA
and disease features. Specifically, the initial features of snoRNAs and
diseases are first reduced in dimension using a single-layer MLP. To
address the oversmoothing issue in GNNs and its adverse effect on
model performance, the reduced features are then concatenated into
the multilayer GGNN, enhanced with a residual mechanism. After
processing, the Gated module produces the final output F(M)

Gated. The
detailed workflow is illustrated in Figure 2.

Step 3: In the final step, the embeddings F(L)Cheb and F(M)
Gated, obtained

from Steps 1 and 2, are concatenated to form the final node
embedding FFinal. An inner product is then computed between
FFinal and its transpose FTFinal to predict potential
snoRNA–disease associations. This process is formalized in
Equations 14, 15, and the detailed workflow is illustrated in Figure 3.

2.4.1 Embedding extracted by ChebNetII
To accommodate both the ChebNetII and Gated modules, we

define the association matrix and the initial feature representations
using Equations 2, 3. Specifically, F(0)s denotes the initial features of
snoRNAs extracted with the nRC tool, while F(0)d represents the

FIGURE 1
The overview of CGSDA framework. Embedding extracted by ChebNetII.

FIGURE 2
The overview of CGSDA framework. Embedding extracted by gated graph sequence neural networks.
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initial features of diseases generated by the bge-icl-en tool.
Furthermore, MLP refers to a single-layer MLP network.

Y � 0 Atrain

AT
train 0

[ ], (2)

F MLP( ) � F MLP( )
s

F MLP( )
d

[ ],F MLP( )
s � MLP F 0( )

s( ), F MLP( )
d � MLP F 0( )

d( ).
(3)

For the ChebNetII module, the process of learning node
embeddings can be formally expressed as Equations 4:

F m+1( )
Cheb � 2

K + 1
∑K
k�0

∑K
j�0

γjTk xj( )Tk L̂( )F m( )
Cheb, m � 0, . . . ,M. (4)

In this equation,M denotes the number of network layers in the
ChebNetII module, and F(0)Cheb � F(MLP). The parameterK represents
the order of the Chebyshev polynomial, where Tk(xj) � cos(k ·
arccos(xj)) defines the Chebyshev polynomial and
xj � cos((j+0.5)πK+1 ). The polynomial order K is a critical parameter
linking the theoretical foundation of Chebyshev polynomials to their
practical applications. Both theory and empirical studies have shown
that lower-order polynomials are effective for approximating
smooth and gradually varying functions, whereas higher-order
polynomials are required to capture more complex functional
relationships. However, although increasing the order improves
the model’s capacity to fit complex functions and enhances
approximation Acc., it also leads to higher computational costs
and potential overfitting. Therefore, selecting an appropriate order
requires balancing Acc., efficiency, and stability according to the
specific task. Notably, ChebNetII becomes approximately equivalent
to GCNwhenK � 1. Furthermore, L̂ represents the scaled Laplacian

matrix of the adjacency matrix Y and γj are the learnable parameters
for j � 0, 1, . . . , K.

2.4.2 Embedding extracted by GatedGCN
Similar to the ChebNetII module, the GatedGCNmodule begins

by feeding the initial features of snoRNAs and diseases into a single-
layer MLP for learning and dimensionality reduction. The resulting
feature representations are then concatenated and reintroduced into
the GatedGCN network to generate node embeddings. The learning
process of node representations within the convolutional layers
of the GatedGCN network can be formally described by
Equations 5–7:

h 0( )
v � F MLP( )

v ‖0, v ∈ V. (5)
α l+1( )
v � ∑

u∈N v( )
eu,v ·Θ l( ) · h l( )

v , l � 0, . . . , L. (6)

h l+1( )
v � GRU α l+1( )

v , h l( )
v( ). (7)

Where L denotes the sequence length of the convolutional layer in
the GatedGCN module. h(l)v , l � 0, . . . , L represents the
embedding vector of node v at the l-th convolutional layer, while
F(MLP)
v is the representation of the node’s initial features after

passing through a single-layer MLP. The symbol ‖ denotes a
concatenation operation. N(v) refers to the set of nodes adjacent
to node v, and eu,v indicates the edge weight from source node u to
target node v, with a default value of 1. Θ(l) denotes the learnable
parameter matrix, while the gated recurrent unit (GRU) regulates
the update of node embeddings. The operations of the GRU can be
expressed as Equations 8–11.

β l+1( )
v � σ W l+1( )

αβ α l+1( )
v + b l+1( )

αβ +W l+1( )
β h l( )

v + b l+1( )
β( ), l � 0, . . . , L,

(8)

FIGURE 3
The overview of CGSDA framework. Embedding fusions and predicting potential snoRNA-disease associations.
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ζ l+1( )
v � σ W l+1( )

αζ α l+1( )
v + b l+1( )

αζ +W l+1( )
ζ h l( )

v + b l+1( )
ζ( ), (9)

η l+1( )
v � tanh W l+1( )

αη α l+1( )
v + b l+1( )

αη + β l+1( )
v ⊙ W l+1( )

η h l( )
v + b l+1( )

η( )( ),
(10)

h l+1( )
v � 1 − ζ l+1( )

v( ) ⊙ η l+1( )
v + ζ l+1( )

v ⊙ h l( )
v . (11)

Where σ is the sigmoid function,Wαβ,Wβ,Wαζ ,Wζ ,Wαη,Wη, bαβ,
bβ, bαζ , bζ , bαη, bη are learnable parameters, and ⊙ is the
Hadamard product.

2.4.3 Residual mechanism and feature fusion
To mitigate the negative impact of “oversmoothing” on GNN

performance, we incorporate a residual mechanism into the CGSDA
model. As illustrated in Figure 1, the output features of the single-
layer MLP are directly connected to the inputs of each layer in both
the ChebNetII and GatedGCN modules. This operation can be
formally expressed by Equations 12, 13.

F l+1( )
Cheb � ChebNetII Y,F l( )

Cheb‖F MLP( )( ), (12)
F l+1( )
Gated � GatedGCN Y, F l( )

Gated‖F MLP( )( ). (13)

Deep learning models often exhibit a “preferential learning” bias
toward certain samples, which can negatively affect overall
performance. To address this issue and enhance both the
performance and robustness of the model, we fuse the
embeddings obtained from the ChebNetII and GatedGCN
modules, as defined in Equation 14.

FFINAL � F L( )
Cheb‖F M( )

Gated. (14)
Where F(L)Cheb and F(M)

Gated denote the outputs of the last layer of the
ChebNetII and GatedGCN networks, respectively.

2.4.4 Inner product decoder
After obtaining the final fused embeddings via Equation 14, we

employed an inner product decoder to compute the predicted score
for potential snoRNA-disease associations–this score quantifies the
likelihood of a functional association between a given snoRNA and
disease, serving as the core output of the CGSDA model for both
training and inference. The calculation of the predicted score can be
formalized in Equation 15:

Ŷ � σ FFINAL × FFINAL( )T( ). (15)

where Ŷ denotes the predicted association scores between snoRNAs
and diseases. The operation FFINAL × (FFINAL)T computes the inner
product between each pair of node embeddings–a higher inner
product value indicates a stronger association likelihood. σ(·)
denotes the sigmoid activation function, defined as σ(x) � 1

1+e−x.
Its role is to normalize the inner product results to the range (0, 1),
converting the raw inner product values into probability-like
predicted scores: a score close to one indicates a high likelihood
of a snoRNA-disease association, while a score close to 0 indicates a
low likelihood.

During model optimization, we used the predicted scores Ŷ and
the ground-truth association matrix Atrain to compute the binary
cross-entropy loss. This loss quantifies the discrepancy between the
predicted scores and the true association labels (1 for confirmed
associations, 0 for unconfirmed ones), guiding the model to adjust

parameters (e.g., weights in ChebNetII and GatedGCN modules) to
minimize prediction errors.

2.5 Evaluation measures

Given that our work involves binary prediction in the field of
snoRNA-disease association prediction and considers evaluating
model performance across multiple dimensions, we employed
seven widely used performance metrics. These are AUC, AUPR,
F1 score (F1), Acc., Recall (Rec.), Specificity (Spe.), and Precision
(Pre.). These values range between [0,1], with values closer to one
indicating superior model performance. Among them, AUC
quantifies a model’s ability to distinguish positive samples from
negative samples; a value closer to one signifies better discrimination
capability. AUPR serves as a complementary metric to AUC,
typically reflecting the model’s balance between “prediction
reliability” and “association capture completeness”. A value closer
to one indicates superior overall performance in both aspects. The
F1 score is the harmonic mean of precision and recall, aiming to
balance these two metrics. A high F1 score indicates the model
avoids both excessive false positives and false negatives. Precision is
the proportion of correctly classified samples out of all samples,
reflecting the overall prediction accuracy of the model. Recall
measures the model’s ability to capture all true positive
associations; high recall ensures the model does not overlook
potential snoRNA-disease associations. Specificity quantifies the
model’s ability to correctly identify non-associations.
Complementary to recall, it ensures the model does not mislabel
unconfirmed pairs as associations, thereby reducing unnecessary
experimental validation burdens. Precision measures the proportion
of predicted positive associations that are actually true. High
precision indicates that the model’s top-ranked predictions
possess high reliability.

3 Results

3.1 Parameters tuning and performance
evaluation

CGSDA was implemented using PyTorch and PyG, and all
experiments were conducted on an NVIDIA GeForce GTX
4060 GPU. To evaluate its predictive performance, we applied
10-fold cross-validation (10CV). Consistent with other deep
learning–based association prediction methods, all experimentally
verified associations were treated as positive samples, while
unverified associations were regarded as negative samples during
training. To mitigate the adverse effects of sample imbalance on
model performance, we ensured that the number of positive and
negative samples remained equal throughout the training phase.

The results of the 10-fold Cross-Validations (10CV) are detailed
in Table 3. As presented in Table 3, the proposed computational
method achieved an average AUC of 98.22%, AUPR of 97.19%,
F1 score of 95.68%, accuracy of 95.66%, recall of 96.10%, specificity
of 95.22%, and precision of 95.32% with standard deviations of
0.70%, 1.55%, 0.76%, 0.78%, 1.56%, 2.13%, and 2.03% respectively.
On the MNDR dataset, the method yielded an average AUC of
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98.31%, AUPR of 97.21%, F1 score of 95.58%, accuracy of 95.54%,
recall of 96.63%, specificity of 94.44%, and precision of 94.60%, with
respective standard deviations of 1.04%, 2.67%, 1.06%, 1.08%,
1.65%, 1.96%, and 1.79%.

3.2 Comparative performance with other
latest methods based on 10CV

To further evaluate the performance of CGSDA, we conducted
comparative experiments. In these experiments, we selected
comparative models based on three criteria: (1) methodological
diversity (covering matrix processing methods, GNNs, traditional
machine learning, and large language model-integrated
approaches) to validate the advantages of CGSDA across

different paradigms; (2) recency (all published between
2021 and 2025) to ensure alignment with current research
progress; and (3) relevance (explicitly designed for snoRNA-
disease association prediction rather than general non-coding
RNA-disease tasks). Based on these criteria, we identified nine
baseline models, with a brief description of these models provided
in Table 1. This comparison was conducted using 10-fold cross-
validation on both the SDAD and MNDR datasets. The
performance metrics for each model are presented in Table 4. It
can be observed that our CGSDA model achieved the highest
performance metrics on both datasets. Specifically, on the SDAD
dataset, the AUC and AUPR values reached 98.22% and 97.19%,
respectively, outperforming the second-best model GBDTSVM by
2.16%. On the MNDR dataset, the AUC and AUPR values were
98.31% and 97.21%, respectively, also surpassing the second-best

TABLE 3 Ten-fold cross-validation results performed by CGSDA based on SDAD and MNDR.

Dataset: SDAD

Fold AUC (%) AUPR (%) F1 (%) Acc. (%) Rec. (%) Spe. (%) Pre. (%)

1 98.17 98.13 94.82 94.78 95.60 93.96 94.05

2 97.85 94.98 96.46 96.43 97.25 95.60 95.68

3 98.64 98.13 95.72 95.60 98.35 92.86 93.23

4 98.46 98.01 95.91 95.88 96.70 95.05 95.14

5 98.34 96.71 95.37 95.33 96.15 94.51 94.59

6 97.97 96.50 95.37 95.33 96.15 94.51 94.59

7 98.50 98.76 95.45 95.60 92.31 98.90 98.82

8 96.53 94.27 94.59 94.51 96.15 92.86 93.09

9 98.53 98.77 95.91 95.88 96.70 95.05 95.14

10 99.21 97.68 97.21 97.25 95.60 98.90 98.86

Average 98.22 97.19 95.68 95.66 96.10 95.22 95.32

SD 0.70 1.55 0.76 0.78 1.56 2.13 2.03

Dataset: MNDR

Fold AUC (%) AUPR (%) F1 (%) Acc. (%) Rec. (%) Spe. (%) Pre. (%)

1 99.73 99.47 97.85 97.83 98.91 96.74 96.81

2 98.70 98.94 96.17 96.20 95.65 96.74 96.70

3 97.05 97.32 95.03 95.11 93.48 96.74 96.63

4 98.74 98.47 95.14 95.11 95.65 94.57 94.62

5 98.75 98.64 94.62 94.57 95.65 93.48 93.62

6 97.25 93.43 94.62 94.57 95.65 93.48 93.62

7 98.66 98.16 95.24 95.11 97.83 92.39 92.78

8 99.15 98.91 95.74 95.65 97.83 93.48 93.75

9 96.41 91.34 94.68 94.51 97.80 91.21 91.75

10 98.65 97.43 96.74 96.70 97.80 95.60 95.70

Average 98.31 97.21 95.58 95.54 96.63 94.44 94.60

SD 1.04 2.67 1.06 1.08 1.65 1.96 1.79
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model GBDTSVM. This fully demonstrates the superior predictive
capability of CGSDA compared to the nine baseline models. We
attribute this advantage to three main factors: (1) By integrating
two GNN architectures, CGSDA effectively alleviates the adverse
effects of “preferential learning” biases in deep learning models. (2)
The incorporation of a residual mechanism mitigates the
oversmoothing problem in GNNs, preserving critical feature
information and enhancing performance. (3) Adjusting the
K-value in the ChebNetII module enables the model to capture
complex node-level information more comprehensively.

3.3 Parameters tuning

The parameters of our model can be categorized into four
groups: (1) ChebNetII module parameters, including the number
of network layers and the order of Chebyshev polynomials. (2)
GatedGCN module parameters, such as the number of network
layers and the sequence length of GatedGraphConv. (3) Output
dimensionality of the network layers. (4) Training parameters,

including learning rate, weight decay, dropout rate, and the
number of training epochs. In this section, we will conduct
systematic parameter tuning based on the SDAD dataset to
examine the impact of the aforementioned four parameter
categories on model performance and determine the optimal
parameter settings for our framework.

3.3.1 Optimizable parameters in the
ChebNetII module

• The number of network layers for ChebNetII and GatedGCN
modules. Increasing the number of network layers in the
ChebNetII and GatedGCN modules can enhance model
complexity, thereby enabling the extraction of higher-order
node features. However, an excessive number of layers may
aggravate the “oversmoothing” problem and significantly
increase the computational burden. To comprehensively
evaluate the impact of network depth on overall model
performance, we conducted joint tuning experiments on the
number of layers in both modules. Specifically, the number
of network layers for ChebNetII and GatedGCN was

TABLE 4 The comparison results of CGSDA model and other state-of-the-art models based on ten-fold cross-validation.

Dataset: SDAD

Method AUC (%) AUPR (%) F1 (%) Acc. (%) Rec. (%) Spe. (%) Pre. (%)

iSnoDi-LSGT 75.69 76.32 66.74 61.14 74.03 60.75 57.37

GCNSDA 91.48 93.54 83.48 83.28 84.61 82.04 82.18

IGCNSDA 76.81 76.68 65.49 60.06 75.86 61.54 57.55

PSnoD 90.04 89.29 88.40 88.59 86.96 90.22 89.89

GCLSDA 83.59 82.56 70.60 65.81 86.84 73.08 70.58

SAGESDA 77.41 76.97 70.14 66.81 77.73 79.33 63.81

GL4SDA 90.38 84.34 83.31 84.64 75.84 90.77 92.19

GCASDA 94.32 93.26 91.48 93.55 91.18 90.92 89.72

GBDTSVM 96.06 95.21 93.95 92.96 94.41 92.31 91.72

CGSDA (our) 98.22 97.19 95.68 95.66 96.10 95.22 95.32

Dataset: MNDR

Method AUC (%) AUPR (%) F1 (%) Acc. (%) Rec. (%) Spe. (%) Pre. (%)

iSnoDi-LSGT 78.56 74.29 76.78 73.37 88.04 58.70 68.07

GCNSDA 91.35 85.00 90.13 90.09 89.99 89.95 90.07

IGCNSDA 76.41 76.71 77.30 79.89 68.48 71.29 78.73

PSnoD 90.47 88.18 89.50 89.67 88.04 91.30 91.01

GCLSDA 84.58 82.98 81.34 78.57 93.41 63.74 72.03

SAGESDA 77.65 82.62 75.25 72.83 82.61 63.04 69.09

GL4SDA 90.50 89.68 90.50 90.76 88.04 93.48 93.10

GCASDA 94.80 91.71 91.89 91.85 92.39 91.30 91.40

GBDTSVM 96.10 96.43 92.15 92.85 93.65 88.04 88.89

CGSDA (our) 98.31 97.21 95.58 95.54 96.63 94.44 94.60
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selected from the range {1, 2, . . . , 5}, denoted by MC and
MG, respectively. As illustrated in Figure 4A, the model
achieved optimal performance when the number of layers
in the ChebNetII and GatedGCN modules was set to 2 and
3, respectively. Therefore, we adopted MC � 2 and MG � 3
for subsequent parameter tuning experiments.

• The order of Chebyshev polynomials K. Increasing the order of
Chebyshev polynomials enables the model to capture more
complex functions when learning node embeddings. However,
excessively large orders can reduce computational efficiency
and increase the risk of overfitting. In this study, the K values
of the two-layer ChebNetII network were selected from the
range 1–6. We denote the polynomial orders of the first and
second layers in the ChebNetII module as K1 and K2,

respectively. As shown in Figure 4B, the model achieved
the highest AUC when K1 � 3 and K2 � 5.

3.3.2 Optimizable parameters in the
GatedGCN module

• The number of layers for GatedGCN module. The tuning of
network layers for the GatedGCN module was carried out
jointly with that of the ChebNetII module, as described in
Section 3.3.1).

• The sequence length of the convolutional layer L. We let
L ∈ {1, 2, . . . , 5}. As can be seen in Figure 5A, the model
performance improves as the value of L decreases and
reaches an optimization at L � 1, after which it starts to
decline. Therefore, in the CGSDA model we make L � 1.

FIGURE 4
(A) The number of network layers in the ChebNetII and GatedGCN modules, where M_C and M_G represent the number of network layers in the
ChebNetII module and GatedGCNmodule, respectively. (B) The order of Chebyshev polynomials, where K_1 and K_2 represent the order of the 1st layer
and 2nd layer of the ChebNetII network, respectively.

FIGURE 5
(A) The sequence length of the convolutional layer in the GatedGCN module, denoted by L. (B) The output dimensions of two modules.
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3.3.3 Optimization of network output dimensions
and model training parameters

• The output dimensions of two modules. To ensure proper
concatenation of the embeddings generated by the
ChebNetII and GatedGCN modules, we set their output
dimensions to be equal. We evaluated model performance
across six experiments with output dimensions
{16, 32, . . . , 512}. As shown in Figure 5B, the model
achieved its highest AUC when the output dimension was 64.

• Learning rate and weight decay.We applied the same learning
rate and weight decay across all network layers of CGSDA.
The learning rate was selected from {0.0001, 0.0005, . . . , 0.1}
and the weight decay was chosen from
{0.00005, 0.0001, . . . , 0.05}. As shown in Figure 6A, the
model achieved its highest AUC when the learning rate and
weight decay were set to 0.0005 and 0.0001, respectively.

• Dropout and training epochs. To ensure consistency during
model training, we applied the same dropout rate across all
network layers of CGSDA. The relationship between dropout
and AUC is illustrated in Figure 6B. As shown, variations in
dropout values caused fluctuations in model performance,
with the highest AUC achieved at a dropout rate of 0.01. For
training epochs, we conducted 10 experiments with epochs set
to 100, 200, . . . , 1000. From Figure 6B, we observe that AUC
increased monotonically with training epochs up to 600, after
which it declined. Therefore, we set the training epoch of
CGSDA to 600.

3.4 Ablation tests

As noted earlier, our model primarily consists of two modules,
ChebNetII and GatedGCN, with the residual mechanism
incorporated into both. To evaluate the contribution of each
component to overall performance, we designed three sets of
ablation experiments based on the SDAD dataset. In the first

group, CGSDA-C, the ChebNetII module was removed; in the
second group, CGSDA-G, the GatedGCN module was removed;
and in the third group, CGSDA-RES, the residual mechanism
was removed.

We conducted ablation experiments using 10CV, and the results
are summarized in Table 5. The findings show that removing
individual components of the CGSDA model leads to a decline
in overall performance. Specifically: (1) In comparison with
CGSDA-C and CGSDA-G, the complete CGSDA model
demonstrates that combining the two GNN modules effectively
alleviates the negative impact of “preferential learning” on sample
performance in deep learning models. (2) The inclusion of the
residual mechanism significantly mitigates the oversmoothing
problem in both modules, thereby enhancing overall model
performance.

4 Case study

To validate the predictive ability of our computational
framework for novel snoRNA–disease associations in real-world
applications and to assess its validity and reliability, we designed two
case studies. The first evaluates the model’s predictive power for
previously unseen diseases, while the second examines its ability to
predict novel snoRNA–disease associations. The second case study
follows a similar design to GL4SDA (La Rosa et al., 2025),
GBDTSVM (Muna et al., 2025), and GCASDA (Liu et al., 2024),
which predict new associations while retaining all existing
snoRNA–disease pairs. In this work, we selected “lung cancer
(DOID:1324)” and “breast cancer (DOID:1612)” for the first and
second case studies, respectively. In the first case study, all snoRNAs
associated with the target disease were removed before training,
forcing the model to treat the disease as a new entity and predict its
associations with all snoRNAs. In the second case study, only the
unknown snoRNA–disease associations were treated as the test set.
For both case studies, we ranked the prediction scores generated by

FIGURE 6
Impact of hyperparameters on model performance. (A) Relationship between learning rate, weight decay, and AUC. (B) Relationship between
training epochs, dropout rate, and AUC.
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the CGSDA model and selected the top 15 associations with the
highest scores. These candidate associations were then validated
through a literature search in the PubMed Biology database using
the corresponding snoRNA–disease pairs as keywords. If an
association was confirmed, it was annotated with the PMID of
the supporting publication; otherwise, it was labeled as
Unconfirmed. It should be noted that associations confirmed in
the literature can only be used as evidence if they have been validated
by experiments.

Lung cancer is a highly malignant disease characterized by poor
treatment outcomes and high mortality worldwide. The prognosis
depends heavily on the stage at diagnosis: patients with early-stage
lung cancer have relatively high 5-year survival rates, whereas those
diagnosed at advanced stages face a 5-year survival rate close to 0%.
However, because early-stage lung cancer is typically asymptomatic,
timely detection is challenging. Current screening methods rely
primarily on medical imaging, which may result in missed
diagnoses due to both limited visibility in early disease and
dependence on the physician’s expertise. Consequently,
identifying novel biomarkers for the early detection of lung

cancer is of significant clinical importance. SnoRNAs have
recently emerged as promising candidates in this regard. As
shown in Table 6, 10 out of the top 15 snoRNAs predicted by
the CGSDA model to be associated with lung cancer were validated
by evidence from the literature.

Breast cancer is a common malignant tumor among women,
though it also affects approximately 1% of men (Jameson et al.,
2020).While the etiology of breast cancer is not yet fully understood,
it is well established that factors such as long-term improper diet,
radiation exposure, heredity, and genetic mutations significantly
increase risk. Epidemiological studies indicate that breast cancer
remains the leading cause of cancer-related deaths among women in
many countries, with lower mortality in economically developed
regions likely due to early diagnosis and comprehensive treatment
strategies (Sancho-Garnier and Colonna, 2019). In-depth research
on breast cancer is therefore critical for elucidating its pathogenesis
and risk factors, ultimately supporting early screening, effective
treatment, and improved prognosis. As shown in Table 6, 12 of
the top 15 snoRNAs predicted by our model to be associated with
breast cancer have been validated in the literature.

TABLE 5 Ablation tests.

Method AUC (%) AUPR (%) F1 (%) Acc. (%) Rec. (%) Spe. (%) Pre. (%)

CGSDA-C 96.20 93.75 92.91 92.69 95.60 89.78 90.37

CGSDA-G 95.96 93.89 92.60 92.58 92.86 92.31 92.35

CGSDA-RES 95.24 94.21 91.75 92.06 89.01 95.05 94.72

CGSDA 98.22 97.19 95.68 95.66 96.10 95.22 95.32

TABLE 6 The top 15 predicted snoRNAs associated with lung cancer and breast cancer.

Lung cancer Breast cancer

Score snoRNA PMID Ranking snoRNA PMID

0.9543 SNORD14C 29141226 0.9707 SNORD47 29793177

0.9171 SNORD112 32962511 0.9699 SNORDA55 36585466

0.9083 SNORD112-114 Unconfirmed 0.9518 SNORA25 Unconfirmed

0.8890 SNORA36B Unconfirmed 0.9354 SNORA65 Unconfirmed

0.8787 SNORD116-4 Unconfirmed 0.9312 SNORA24 29287594

0.8552 SNORA12 25159866 0.9276 SNORD114-14 30647841

0.8415 SNORD113 32824183 0.9187 SNORD114-9 36585466

0.8201 SNORA71 31258730 0.9093 SNORD16 38311725

0.7911 SNORD29 32824183 0.9015 SNORA68 38594783

0.7594 SNORNAU50 32111002 0.8999 SNORD66 36585466

0.7276 SNORD114-6 Unconfirmed 0.8807 SNORD69 36585466

0.6803 SNORA47 31052265 0.8757 SNORD76 32160712

0.6719 SNOR38 32962511 0.8625 SNORD33 24260353

0.6400 SNORD96B Unconfirmed 0.8581 SNORD49A Unconfirmed

0.6377 SNORD3A 32962511 0.8244 SNORD74 32160712
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5 Discussion and conclusion

snoRNAs, an important class of small ncRNAs, have attracted
significant research attention over the past 2 decades. Studies of their
functions have expanded from their initial roles in rRNA processing
and modification to broader areas including disease mechanism
regulation, cellular homeostasis, and targeted therapies. With
ongoing research, snoRNAs are increasingly recognized as
potential sources of novel therapeutic agents for cancer,
neurodegenerative disorders, endocrine diseases, and cardiovascular
conditions. Accordingly, there is an urgent need for efficient, cost-
effective, and environmentally independent methods to study
snoRNAs, which has driven the widespread adoption of
computational approaches in this field. In this study, we developed
CGSDA, a model that integrates the ChebNetII Convolutional
Network (ChebII) module with the Gated GCN (Gated) module.
The model first constructs a snoRNA–disease association network
and incorporates a residual mechanism within both modules to learn
the representations of snoRNAs and diseases. These node embeddings
are subsequently fused and downscaled before being input into a
predictor to infer potential snoRNA–disease associations.
Experimental results demonstrate that CGSDA achieves superior
predictive performance compared to baseline models. Furthermore,
ablation experiments reveal that each component of the model makes
a significant contribution to its overall performance, fully validating
the effectiveness of the proposed framework.

In the comparative experiments, the CGSDA model exhibited
excellent performance across multiple metrics with small standard
deviations, demonstrating significant advantages over baseline
models and confirming the good robustness of CGSDA. In the
two types of case studies conducted, 10 and 12 out of the top
15 associations predicted by our model were validated by existing
literature, respectively. This showcases the effectiveness of CGSDA
in identifying biologically meaningful snoRNA-disease associations,
indicating its great potential for guiding downstream
experimental research.

Although CGSDA exhibits outstanding performance and
practicality, it also has the following limitations: (1) The model is
suitable for binary association prediction, and its predictive
performance for multi-type associations requires further
evaluation. (2) Although the nRC tool can integrate the
secondary structure information of snoRNAs, it does not cover
other key biological features of snoRNAs (such as expression levels,
subcellular localization, and interactions with other RNAs), which
may lead to the omission of important clues affecting association
prediction. (3) Additional wet experiments are required to validate
the predicted results. Based on this, in future work, we will expand
the application of the CGSDA model in the field of multi-type
association prediction and collaborate with medical schools to
conduct wet experimental validation of the predicted results.

We attribute the superior performance of CGSDA to three main
factors. First, by integrating the ChebNetII and GatedGCNmodules,
the model effectively mitigates the negative impact of “preference
learning” inherent in deep learning models, as confirmed by our
ablation experiments. Second, the incorporation of a residual
mechanism helps reduce the “oversmoothing” phenomenon,
further enhancing model performance. Third, adjusting the K
value in the ChebNetII module allows the framework to capture

complex node information more comprehensively, contributing to
its predictive Acc.
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