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Karnal bunt of wheat, caused by the fungus Tilletia indica, is a major quarantine
disease that not only affects global wheat trade but also leads to yield loss and
reduced grain quality. With global climate change, the disease has spread to new
areas across continents, increasing vulnerabilities and creating a worrisome
scenario, as once established, it is extremely difficult to eradicate. Host
resistance remains the most effective strategy to combat Karnal bunt.
However, only a few resistant sources have been identified so far and are
being deployed in breeding programs. Various omics approaches including
genomics, transcriptomics, proteomics and metabolomics have gained
considerable attention for their role in enhancing disease resistance and
improving agronomic yield in wheat. Notably, the integration of multiple
omics and epiomics strategies has led to substantial advancements in
identifying candidate genes, analyzing pathways, and understanding key
elements of stress responses, thereby improving yields. Renowned for its
data-mining capabilities, Machine Learning offers an opportunity to enhance
the precision of current trait association methods. Nonetheless, its application in
predicting disease resistance is still not widespread. In this review, we explore
various omics technologies and platforms employed in wheat research to deepen
the understanding of the molecular mechanisms involved in host-pathogen
interactions, thereby advancing resistance to Karnal bunt of wheat.
Furthermore, we emphasize the potential of Machine Learning as a significant
tool for pinpointing genetic loci that contribute to host resistance.

KEYWORDS

wheat, Karnal bunt, multi-omics, disease resistance, machine learning

Introduction

Wheat is a crucial crop ensuring global food and nutritional security. Despite its high
productivity, it is threatened to numerous biotic and abiotic challenges. Among the biotic
stresses, fungal diseases such as rusts and smuts are the most significant threats to wheat.
Karnal bunt, caused by the hemi-biotrophic fungus T. indica (syn. Neovossia indica), is
considered a “minor agronomic but major quarantine threat,” highlighting its dual impact
on crop quality and global wheat trade dynamics. First reported in 1931 in the Karnal
district of India (Mitra, 1931), it has since spread to major wheat-growing regions in India
and other countries (Bonde et al., 2004a). The pathogen is recognized as an international
quarantine fungal pathogen, with the disease reported in countries like Afghanistan,
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Pakistan, Nepal, Mexico, parts of the United States, Iraq, Iran,
Lebanon, Syria, Sweden, Turkey, and South Africa. Currently, it
poses a significant biosecurity concern for wheat exports (Warham,
1987; Tan et al., 2013; Bishnoi et al., 2020). Due to Karnal bunt spore
contamination, wheat exports from India have been rejected in
Turkey and numerous European countries, resulting in stringent
quarantine regulations and export prohibitions (Bishnoi et al.,
2020). Similar to this, several importing nations rejected wheat
imports after KB was found in US states like Arizona, which
disrupted commerce and resulted in financial losses. (Utah
Department of Agriculture and Food, 1996). Climate change
conditions in the coming years have raised warnings about the
disease (Gurjar et al., 2016). Tilletia indica is a soil, seed, and air-
borne fungus that primarily infects the floral parts of wheat (Bains
and Dhaliwal, 1989; Carris et al., 2006). Identifying Karnal bunt
disease in the field is challenging due to its subtle symptoms. The
distinctive symptom is the development of bunt sori on only a few
grains in the head, rather than the entire head (Dhaliwal et al., 1988).
Another notable symptom is the rotten fishy smell emitted by
infected grains, caused by the presence of the trimethylamine
compound (Mitra, 1937). Seed- or soil-borne teliospores appear
to initiate Karnal bunt infection (Dhaliwal, 1989; Goates, 2010). The
thick-walled, resilient teliospores of T. indica can travel long
distances and persist as seed contaminants. Teliospores of T.
indica can travel over long distances and persist as contaminants
in seeds. Contamination levels exceeding 1% degrade wheat quality
due to a fishy odor and black discoloration. When more than 3% of
seeds are infected, the wheat becomes unsuitable for human
consumption (Warham, 1990), leading to economic losses. The

disease poses a threat to countries free of the pathogen, as
undetected teliospores can gradually establish themselves. Nations
such as Australia, Canada, and the United States enforce a zero-
tolerance policy for Karnal bunt spores in wheat imports to prevent
the pathogen’s establishment (Singh J. et al., 2020; Kumar
et al., 2021).

Consequently, it is crucial for wheat breeding initiatives in the
impacted and at-risk nations to intensify their focus on identifying
and developing resistant varieties. In comparison to rusts and
mildews, the progress in identifying, characterizing, and cloning
KB resistance genes has been significantly slower (Singh S. et al.,
2020; Bishnoi et al., 2020). Recent progress in omics technologies,
including genomics, transcriptomics, proteomics, and
metabolomics, has facilitated extensive research aimed at
unraveling the mechanisms of stress tolerance. This has led to a
deeper understanding of gene expression, protein profiling, and the
biological processes that contribute to various stress tolerance traits
(Ma et al., 2022). To manage the vast amount of data produced by
these omics approaches, new analytical tools, high-throughput data
analysis pipelines, and omics databases have been established (Yuan
et al., 2017; Ma et al., 2021; Zhang et al., 2021). All these approaches
offer a deeper understanding of the complex regulatory networks
that govern cellular functions and pathways. In recent years, multi-
omics has gained prominence as a key strategy for deciphering the
plant’s response to abiotic and biotic stresses and for building
predictive models thereby enabling extensive research in various
crops, including wheat as depicted in Figure 1. In contemporary
plant breeding, leveraging cutting-edge technologies to boost disease
resistance is of paramount importance. Renowned for its prowess in

FIGURE 1
Schematic workflow of multi-omics approaches and AI in plant disease resistance in wheat.
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data mining, Machine Learning presents a chance to enhance the
precision of current trait association techniques and has been
utilized to forecast a range of agronomic traits across different
species. This review underscores the advent of advanced next-
generation sequencing techniques and computational
technologies, multi-omics approaches and tools in combination
with the potential of AI and various Machine Learning models
paving the way for enhanced resistance to Karnal bunt of wheat,
fostering sustainable agriculture, and stress resilience, thereby
bolstering food security.

Epidemiology of Karnal bunt

The KB pathogen T. indica can be transmitted through soil,
seeds, or air, with its occurrence influenced by favorable
environmental conditions (Kashyap et al., 2011; Biswas et al.,
2013). A cold and humid climate promotes KB infection via
teliospores, which attack the wheat grain pericarp. Carris et al.
(2006) reviewed that teliospores are robust, with a high capacity for
survival even in harsh conditions, showing resistance to toxic gases,
chemicals, and low pH levels. These teliospores can endure in desert
and frosty environments for extended periods, with a viability of up
to 5 years under extreme stress (Bonde et al., 2004b). Teliospores
typically undergo a dormancy period of 1–6 months before
germinating (Prescott, 1984), with the highest germination rates
observed in teliospores that are a year old (Bansal et al., 1983). This
dormancy feature enhances the survival of T. indica. Once
dormancy ends, teliospores germinate on the soil surface under
suitable conditions to infect wheat plants. Understanding the genetic
control of teliospore dormancy could aid in developing a race
designation system for T. indica. Conditions of low precipitation
combined with high humidity and cold temperatures (8 °C–20 °C)
are ideal for teliospore germination (Duveiller and Mezzalama,
2009). However, KB outbreaks remain unpredictable, as
infections may not occur even when conditions and inoculum
are favorable. Prioritizing the understanding of pathogen-
environment interactions is essential for accurate disease
forecasting.

The development of T. indica commences during the liberation
of teliospores from infected spikes while harvesting and are
dispersed by the wind, leading to KB in the following season.
These teliospores germinate to form primary sporidia in the
subsequent crop cycle. Stubble burning facilitates the long-
distance travel of teliospores, allowing them to move up to 3 km
from the plot (Bonde et al., 1987), which is a critical consideration in
wheat production and stubble management. Although teliospores
can be carried by the wind and survive digestion by animals, the
disease mainly spreads internationally through contaminated seeds
(Duveiller and Mezzalama, 2009). The disease’s significant spread
potential is due to its small, resilient teliospores being dispersed by
wind, seeds, containers, machinery, humans, birds, and animals. The
germinated teliospores (allantoid sporidia) are carried to the flag leaf
by wind or rain, where they multiply and infect spikelets through
rainwater or dew (Carris et al., 2006). Research on the longevity of
allantoid sporidia has yielded varying findings. Initial studies by
Aujla et al. (1985) and Nagarajan et al. (1997) suggested that these
sporidia have a short lifespan due to drying out. In contrast,

subsequent research found that they could remain viable for up
to 60 days at 40%–50% relative humidity and 18 °C and for more
than 46 days at temperatures above 40 °C with 10% relative humidity
(Goates and Jackson, 2006). Goates (2010) discovered that sporidia
can stay dormant in dry soil and quickly regenerate when exposed to
moisture. Although germination has little impact on spore
durability, the viability of germinated secondary sporidia declines
when relative humidity drops below 76% and temperatures exceed
24 °C (Biswas et al., 2013). The infection by T. indica spreads from
the rachis to the glumes during the flowering and grain development
stages, with fungal hyphae invading the germinal end of developing
seeds (Riccioni et al., 2008). Once infection is established, teliospores
develop in the middle layers of the seed pericarp, leading to
endosperm contraction and layer splitting (Carris et al., 2006),
eventually being replaced by teliospore powder. The embryo
usually remains viable except in severe cases, although significant
damage to the endosperm can occur (Fuentes-Davila et al., 1996).
Severe damage to the embryo can prevent germination, thereby
reducing plant growth and yield. During harvest, teliospores are
dispersed through air and soil, potentially causing new infections
under suitable conditions in the following season (Kumar and
Nagarajan, 1998). Table 1 summarizes the environmental factors
favoring KB infection.

Genetics of host resistance
mechanisms to Tilletia indica infection

Hemibiotrophs like T. indica (KB pathogen) initially establish a
silent, symptomless infection and suppress host defenses, making
early detection difficult and allowing the pathogen to escape many
defense responses that are effective against biotrophs (such as HR).
The pathogen later shifts to necrotrophy, killing host tissue and
spreading as a necrotroph. This phase exposes additional challenges,
since conventional necrotroph management (e.g., fungicides, debris
management) may be too late or less effective due to deep tissue
infection and systemic spread. The pathogen’s hemibiotrophic
lifecycle enables it to evade typical resistance mechanisms,
complicating genetic control. Asymptomatic, latent infections
facilitate undetected spread and make quarantine enforcement
difficult. The complex, quantitative nature of resistance and
strong genotype-by-environment effects further hinder reliable
breeding and epidemiological management (Brar et al., 2018;
Bishnoi et al., 2020).

Resistance to KB is revealed via both morphological and
physiological traits. Early studies (Warham, 1988) emphasized
that triticale and durum wheat are generally more resistant than
bread wheat, largely due to morphological traits like pubescence and
compact spike structure, which physically impede fungal invasion.
However, the contribution of these morphological traits is not
absolute. For example, Kumar and Nagarajan (1998)
demonstrated that the posture of the flag leaf can influence KB
infection, as a sharp angle between the flag leaf and the boot may
funnel allantoid sporidia toward the spike, potentially increasing
susceptibility. Gogoi et al. (2002) showed KB susceptible cultivars
like WL711 typically have more stomata and lower hair counts than
resistant genotypes, suggesting stomatal density and hairiness on
glumes and rachis may act as barriers. In addition, resistant lines
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were characterized by compact spikelets and narrower glume
openings, potentially reducing pathogen entry. Yet, Aujla et al.
(1990) and Singh (1992) provided contrasting results regarding
spikelet compactness as a resistance factor—whereas Aujla et al.
associated compact spikelets with resistance, Singh did not find a
significant effect under artificial inoculation, likely because this
method bypasses natural barriers by directly injecting teliospores
into the plant structure.

Collectively, these findings suggest that while morphological
barriers such as pubescence, spikelet compactness, and glume
structure can enhance resistance, their effectiveness is context-
dependent. Under natural conditions, these traits may block or
delay infection, offering a degree of field resistance or escape.
However, under artificial inoculation or high disease
pressure—when the pathogen bypasses external barriers—these
morphological traits alone may not be sufficient to confer
resistance. Additionally, early anthesis may serve as an escape
mechanism, but this too is influenced by environmental factors
and the timing of pathogen attack. Therefore, reliance solely on
morphological defense traits could lead to inconsistent resistance
expression, underscoring the need to combine morphological,
physiological, and genetic resistance strategies in
breeding programs.

Resistance to KB in the host is inherited quantitatively, with
numerous loci of minor effect contributing additively to resistance
on a continuous scale (Fuentes-Davila et al., 1995; Nelson et al.,
1998; Singh et al., 2003; Singh et al., 2007). Resistance to KB is
dominant or partially dominant over susceptibility (Singh et al.,
1995b; Villareal et al., 1995), with several genes exhibiting dominant,
duplicate dominant, and complementary gene actions (Morgunov
et al., 1993; Fuentes-Davila et al., 1995; Singh et al., 1999; Tyagi et al.,
2010). The number of genes that determine KB resistance and their
interactions, whether they are dominant or recessive, varies across
genotypes. Most genetic studies have pinpointed between one and
six key resistance genes (Morgunov et al., 1993; Fuentes-Davila et al.,

1995; Singh et al., 1995a; Singh et al., 1995b; Singh et al., 1999; Swati
and Goel, 2010). However, Sharma et al. (2005) identified up to nine
loci associated with KB resistance in “HD29,” “W485,” “ALDAN’S”/
”IAS58,” and “H567.71/3pPAR,” with the genetic variability of the
parental genotypes not explaining the observed differences. Fuentes-
Davila et al. (1995) identified nine loci with non-allelic genes across
four resistant parents. KB resistance is governed by a single recessive
gene (Bag et al., 1999), and two or three additive genes (Sehgal, 2006)
and two or more additive genes (Sirari et al., 2008) in various
genotypes. Virdi et al. (2016) identified that a single recessive gene
governs KB resistance in “W8627 × PBW343” populations,
concluding that this resistance can be effectively managed in
segregating generations. The pre-breeding/genetic characterization
aspect remains vital in KB resistance breeding. High heritability
estimates are crucial for the transmission of traits to subsequent
generations. The heritability estimates reported for KB resistance
suggest a strong genetic basis (Gupta et al., 2019), indicating that KB
resistance is suitable for QTL mapping. Brar et al. (2018) reported
higher heritability values of 0.75 and 0.78 in wheat populations,
while Emebiri et al. (2019) reported a value of 0.69. Emebiri et al.
(2019) linked the high heritability observed in KB genetic studies to
the precise phenotypic screening methods developed by Fuentes-
Davila et al. (1995). These protocols effectively minimize
environmental influences during field screening, enabling
accurate measurement of genetic inheritance. The high
heritability estimates indicate that KB resistance in wheat is
highly heritable and governed by “relatively simple” genetics,
although further validation through genetic studies is still necessary.

Genomics

The technique of uncovering the chromosomal regions
controlling such complex traits in plants and detecting the
closely linked markers is known as QTL mapping. These maps

TABLE 1 Environmental factors favoring KB infection.

S. No. Environmental
factor

Description Key points/Effects References

1 Temperature Optimal range 8 °C–20 °C (cold climate) Favors teliospore germination and
infection

Duveiller and Mezzalama (2009)

2 Humidity High relative humidity ≥70%; wet conditions during
heading

Prolonged wetness favors sporidia
germination and infection

Carris et al. (2006), USDA
APHIS (2007)

3 Dormancy Teliospores dormant 1–6 months; max germination
at 1 year

Ensures long-term survival and delayed
infection

Prescott (1984), Bansal et al.
(1983)

4 Teliospore resilience Survive harsh environments (desert, frost), resistant
to chemicals, gases, low pH

Teliospores survive years in soil and stored
seed

Bonde et al. (2004a), Carris et al.
(2006)

5 Dispersal Wind disperses spores and sporidia; stubble burning
aids spread up to 3 km

Facilitates local spread; international
spread mainly via contaminated seed

Bonde et al. (1987), Duveiller
and Mezzalama (2009)

6 Sporidia longevity Allantoid sporidia can remain viable days to weeks
under moderate humidity and temperature

Long viability enhances infection potential Goates and Jackson (2006),
Biswas et al. (2013)

7 Infection conditions Infection occurs during flowering and grain
development under cold and humid microclimate

Infection of spikelets, seed pericarp
colonization

Riccioni et al. (2008), Carris et al.
(2006)

8 Environmental
unpredictability

Outbreaks unpredictable despite favorable
conditions and inoculum presence

Emphasizes need for better pathogen-
environment interaction understanding

Biswas et al. (2013)
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can be utilized in breeding for QTL analysis and MAS (Kaur et al.,
2015; Manickavelu et al., 2011). Traditionally, QTL identification for
KB resistance in wheat has relied on biparental populations,
primarily RILs. QTL with significant effects on KB resistance are
uncommon, possibly due to limited parental variability or
environmental factors that obscure genetic effects. Although
large-effect QTL are easier to detect, complex traits generally
exhibit average QTL effects (Mackay, 2001). The current
understanding, based on a few major QTL, remains inadequate.
The most significant QTL, accounting for 25% of phenotypic
variance, is located on the 4BS chromosome in “HD29” and is
associated with “Xgwm538” (Singh et al., 2003), which was later
converted to an SNP marker by Brooks et al. (2006). The QTL
“Qkb.ksu 5BL.1” on chromosome 5BL explained 19% of the
variance, while “Qkb.ksu 6BS.1” on 6BS accounted for 13%
(Table 2). Studies have documented QTL with minor effects

(Bishnoi et al., 2020). To eliminate bias in detected KB QTL, it is
necessary to compare them with expected values to identify any loci
that may have been overlooked (Myles and Wayne, 2008). Gupta
et al. (2019) identified 18 genomic regions explaining 5%–20% of the
variation and one consistent QTL on 2BL in Afghan wheat
accessions. The phenotypic variation attributed to major effect
QTL might be overestimated due to small sample sizes, a
phenomenon known as the “Beavis effect” (Beavis, 1994).
Functional genomics and ESTs can help identify tightly
linked markers.

Advancements in next-generation sequencing (NGS)
technologies have been instrumental in scientific discoveries,
offering genomic tools that enhance wheat research and
transform breeding methods (Hussain et al., 2022). In the field of
wheat, efficient genotyping platforms can be integrated with physical
maps to facilitate gene discovery (Rasheed et al., 2017). SNP

TABLE 2 QTLs identified in previous studies for resistance to KB in wheat.

Sr. No. Line/genotype/origin Chromosome Linked marker/Interval/physical position References

1 Altar 84 3BS, 5AL RFLP Nelson et al. (1998)

2 HD29 4BL Xgwm538 Singh et al. (2003)

3 HD29 4BL (gwm538 SNP) Brooks et al. (2006)

4 HD29 Qkb.ksu-5BL.1 Xgdm116-Xwmc235 Singh et al. (2007)

5 HD29 Qkb.ksu-6BS.1 Xwmc105-Xgwm88

6 W485 Qkb.ksu-4BL.1 Xgwm6-Xwmc349

7 H567.71 4B Xgwm6 Kumar et al. (2015)

8 ALDAN Qkb.dwr-5BL.1 Xwmc235-Xbarc140 Kaur et al. (2015)

9 HD29 5B Xgdm116-Xwmc235

10 HD29 6B Xwmc105-Xgwm88

11 W485 4B Xgwm6-Xwmc349 Bala et al. (2016)

12 WKCBW Qkb.cim-2BL 1086228–1092041 Brar et al. (2018)

13 WKCBW Qkb.cim-3DL 7487658–2252,592

14 Huirivis#1 Qkb.cim-3BS1 1079551–100010977

15 Mutus Qkb.cim-5BS2 2253589–1011847

16 HD29 Qkb.cim-2BL IWB57185 Emebiri et al. (2019)

17 WH542 Qkb.cim-2BL IWA1644

18 WH542 21D IWB2650

19 W485 1B B59865

20 Afghanistan panel 1DL 470084827 Gupta et al. (2019)

2DL 586853396

4AL 656758037

5AS 36718388

6BL 500595153

6BS 21209894

7BS 45306426

7DL 607297738
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genotyping arrays now enable the rapid and cost-effective screening
of thousands of markers within populations. Various SNP arrays
have proven the successful genotyping of wheat. The 9K iSelect array
assessed 2,994 wheat accessions, while the development of a 15K
Infinium array was spurred by a 90K SNP chip. The Affymetrix
Axiom 820K array identified polymorphisms in bread wheat, which
led to the creation of a 35K Wheat Breeders Array. Resequencing
data from eight wheat lines resulted in a 280K array for related
accessions. Additionally, a 660K Axiom array was designed based on
previous arrays, and an Illumina 40K array captures the diversity of
both wheat and barley (Sun et al., 2020). NGS-based genotyping-by-
sequencing detects variation in wheat germplasm. The presence of
millions of SNPs in wheat has significantly advanced the discovery of
new genes through genome-wide association studies (GWAS). The
use of GWAS analysis in identifying wheat KB resistance is still
relatively underutilized. Over 3,000 marker-trait association related
to agronomic traits in wheat have been consolidated into 141 meta-
QTLs, with thirteen identified as breeder’s meta-QTLs for yield
improvement.

Marker-assisted selection (MAS) in both structured and
unstructured families has successfully addressed the challenges of
field screening and improved the precision of identifying resistance
to KB, as reported by Kumar et al. (2016). Traditional breeding
methods face limitations because selecting for minor KB resistance
genes is challenging due to partial resistance and additive gene
effects (Bala et al., 2016). Genome-wide association studies (GWAS)
in unstructured germplasm panels facilitate the creation of
biparental populations. Gupta et al. (2019) discovered QTLs on
chromosomes 1DL, 2DL, 4AL, 5AS, 6BL, 6BS, 7BS, and 7DL.
Emebiri et al. (2019) identified two notable clusters on
chromosome 4B (Qkb.ksu-4B, QKb.cimmyt-4BL, Qkb.cim-4BL)
and chromosome 3B (Qkb.cnl-3B, QKb.cimmyt-3BS, Qkb.cim-
3BS1). Due to the possibility of false positives from small panel
sizes, GWAS analysis requires validation.

Conventional genome-wide association studies (GWAS) face
challenges in detecting rare variants, particularly with complex gene
compositions like haplotypes. Haplotype-based GWAS improves
statistical power for marker-trait associations, enables better
delineation of candidate regions, and captures combinatorial
effects of linked variants, providing a framework for analyzing
quantitative traits in crops (Qian et al., 2017). In 2022, Hamazaki
and colleagues introduced “RAINBOW,” a SNP-set method for
haplotype-based genome-wide association studies (GWAS) that
utilizes haplotype blocks without the need for pre-existing
haplotype data. They evaluated using 100 simulated phenotypic
datasets withOryza sativamarker genotype data and comparing it to
single-SNP GWAS, haplotype-based GWAS, and SNP-set GWAS.
The study demonstrates that SNP-set GWAS offers superior
sensitivity not only for detecting rare variants but also for
identifying genes characterized by complex genetic architectures,
such as those harboring multiple causal variants. Radecka-Janusik
et al. (2022) utilized haplotype-based GWAS to pinpoint
chromosomal regions in derived wheat families associated with
resistance to Fusarium head blight. The robust data set and the
substantial proportion of phenotypic variance explained by the
marker-trait associations provide a promising foundation for the
application of these findings in marker-assisted selection (MAS).
Lisker et al. (2022) performed a haplotype-based GWAS study and

identified trait-improving QTL alleles controlling agronomic traits
under contrasting nitrogen fertilization treatments in the magic
wheat population WM-800. Koua et al., 2024 Genome-wide
dissection and haplotype analysis identified candidate loci for
nitrogen use efficiency under drought conditions in winter wheat.

Understanding wheat genes and genomic elements is essential
for genetic enhancement. Several reference genome sequences have
been published for wheat varieties, including durum wheat, bread
wheat, and progenitor species. These assemblies have unveiled the
genomic landscape of wheat and enabled genome-wide analysis of
repeat and gene families, revolutionizing wheat genomics. Multiple
reference genomes and resequencing data have demonstrated
significant genomic variation. The recognition that a single
reference genome is insufficient to fully represent species
diversity has led to the advent of wheat pan-genomics. Pan-
genomes delve into the complete spectrum of sequence diversity
within a species, covering both core (universal) and unique (specific)
genomic elements, which are essential for understanding agronomic
traits. The initial wheat pan-genome study, which examined
18 different cultivars, discovered new gene regions by analyzing
presence and absence variations in comparison to the Chinese
Spring reference genome (Montenegro et al., 2017; Tiwari et al.,
2024), highlighted the existence of over 50 reference-level genome
assemblies, while (Bayer et al., 2022), pioneered the development of
the first wheat graph pangenome using 16 cultivars with Panache
visualization. Long-read sequencing facilitates complete genome
assemblies, offering insights into complex loci and centromere
diversity. Functional annotation of these variable gene
components revealed a wealth of stress-response genes.
Dispensable gene sets showed greater genomic variation than
core genes, contributing to crop diversity. Reference genome
assemblies enabled the in silico identification of gene families
with stress-related functions. Nucleotide-binding leucine-rich
repeats (NLR) gene family exploration revealed diverse resistance
gene patterns, displaying only 30%–34% of NLR signatures
conserved across the different lines, providing valuable variation
data for breeding disease-resistant cultivars. Given the 16 Gb size of
the wheat genome, the wheat pangenome will be one of the largest
among crop plants, requiring significant computing infrastructure
that the wheat research community must prepare for. An
international consortium is expanding the wheat pangenome by
incorporating genomic data from a diverse array of global genotypes
(Thudi et al., 2025). This collaborative effort is poised to accelerate
wheat improvement by leveraging advanced genomics and enabling
the discovery of novel genetic variation for breeding. Investigating
gene families allows for the identification of members, structural
analysis, evolutionary relationships, expression dynamics, and
functional assignments. Numerous studies have explored the
functional roles of gene families under stress conditions in wheat.

In the hexaploid genome of wheat, KB resistance exhibits unique
inheritance patterns. Although Ae. tauschii (the D-genome donor)
shows KB resistance, the D-genome is less polymorphic compared to
the highly polymorphic B-genome. This highlights the need to scan
the D-genome using diverse Triticum aestivum lines. Singh S. et al.
(2020) identified candidate genes on chromosome 4D, indicating the
D-genome’s potential for KB resistance. Non-pleiotropic KB
resistance genes may not have been favored by natural selection
due to the absence of the pathogen, making Indian wheat germplasm
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an important area for study. Future research on KB should aim to
enhance the resolution of previously mapped QTL and discover new
ones. Understanding QTL with small effects is essential for
developing comprehensive genetic models of KB resistance
(Lorenz and Cohen, 2012). Genomic selection (GS) stands out
for its remarkable ability to accelerate genetic progress by
enhancing selection accuracy while simultaneously reducing
breeding time and costs. The current high density of markers
facilitates haplotype-based genome-wide association studies
(GWAS), analyses of epistatic interactions, GS, and selective
sweep analyses.

This integration of genomics has revolutionized breeding
programs worldwide, improving marker-assisted selection (MAS)
and GS for more rapid breeding outcomes. Research has utilized GS
for abiotic stress tolerance and assessed statistical models to enhance
prediction accuracy. Efforts have been directed towards optimizing
genomic prediction accuracies for resistance to wheat pathogens,
such as powdery mildew (Blumeria graminis), fusarium head blight
(Fusarium graminearum), septoria tritici blotch (Zymoseptoria
tritici), stem rust (Puccinia graminis Pers), leaf rust (Puccinia
triticina Eriks), stripe rust (Puccinia striiformis West),
stagonospora nodorum blotch (Parastagonospora nodorum), spot
blotch (Bipolaris sorokiniana), and tan spot (Pyrenophora tritici-
repentis). Developing wheat varieties that are both climate-resilient
and high-yielding necessitates the integration of omics data with
genomic selection, high-throughput phenotyping, and gene editing.

Transcriptomics

The central dogma of molecular biology outlines the process by
which genetic information is stored in DNA, transcribed into RNA,
and subsequently translated into proteins (Crick, 1970). This genetic
information, shaped by environmental factors, dictates an
organism’s phenotype. The transcription of genes into RNA
molecules is pivotal in defining cell identity and regulating
biological functions. These RNA molecules, collectively known as
the transcriptome, are essential for interpreting genome function
and gaining insights into development and disease. Early research
on gene expression employed techniques such as northern blots and
quantitative polymerase chain reaction (qPCR) to analyze individual
transcripts. However, advancements have led to the development of
transcriptomics, which allows for genome-wide measurement of
gene expression. Challenges in this field include the necessity for
prior sequence knowledge, issues with cross-hybridization artifacts,
and difficulties in quantifying extreme expression levels (Casneuf
et al., 2007; Shendure, 2008). Sequence-based methods were
introduced to directly determine transcript sequences. Expressed
sequence tag (EST) libraries were created through Sanger
sequencing of complementary DNA (cDNA), though this method
had limited throughput (Adams et al., 1991). Tag-based methods
like serial analysis of gene expression (SAGE) and cap analysis gene
expression (CAGE) provided higher throughput and precise
quantification by counting tagged sequences (Velculescu et al.,
1995). Nevertheless, these methods were unable to detect splice
isoforms or discover new genes and were constrained by cloning
requirements and costs. The advent of high-throughput next-
generation sequencing (NGS) revolutionized transcriptomics

through RNA sequencing (RNA-Seq), enabling comprehensive
analysis of gene expression, alternative splicing, and allele-specific
expression (Wang et al., 2009).

Recent developments in RNA-Seq workflow from sample
preparation to sequencing platforms to bioinformatic data
analysis, have made it possible to deeply profile the
transcriptome and provide insight into a variety of physiological
and pathological states. Research on wheat has made substantial use
of RNA-Seq. According to latest reports, RNA-Seq global
transcriptome profiling analysis can detect alternatively spliced
isoforms, coding genes, and differentially expressed lncRNAs in
response pathogen infection. The role of various TFs belonging to
the NAC, WRKY and MADS families was highlighted to be a
significant one under a single or multiple abiotic stress condition
while TFs from the MYB family were highlighted as the key
candidate genes under biotic stress conditions.

In Singh et al. (2024) conducted a transcriptomic study on the
pathogenic dikaryophase to explore the function of the dikaryon in
plant-pathogen interactions during the progression of KB. They
analyzed the dikaryon (PSWKBGD-3) and its two monosporidial
lines (PSWKBGH-1 and 2) using Illumina and PacBio sequencing,
followed by annotation and comparative analysis of the three
genomes to identify polymorphic SSR markers. At 24 h after
inoculation (hai), 48 hai, and 7 days after inoculation (dai), a
total of 54, 529, and 87 genes, respectively, were upregulated in
the dikaryon stage. Additionally, 21, 35, and 134 genes of T. indica
were activated exclusively in the dikaryon stage at these same time
points. Furthermore, 23, 17, and 52 wheat genes were upregulated at
24 hai, 48 hai, and 7 dai, respectively, solely due to the presence of
the dikaryon stage. To explore the molecular foundation of host-
pathogen interactions, the transcriptomes of T. indica-inoculated
wheat genotypes, both resistant (HD29) and susceptible (WH542),
were examined. Over 80,000 genes were expressed in both types of
wheat. Among these, 76,088 genes were expressed in both genotypes,
with 3,184 genes significantly upregulated and 1,778 downregulated.
Additionally, 4,113 genes were uniquely expressed in the susceptible
genotype, while 5,604 were exclusive to the resistant genotype. Of
these, 503 genes showed significant upregulation, and 387 were
downregulated. The genes with the most significant differential
expression were confirmed in both resistant and susceptible
genotypes through qPCR analysis, showing similar expression
levels as observed in RNA-Seq. Beyond the wheat, T. indica
mapping accounted for 7.07% in resistant hosts and 7.63% in
susceptible hosts upon infection, highlighting important
pathogenesis-related genes. This pioneering study offered
comprehensive insights into the wheat–T. indica interaction,
aiding in the management of Karnal bunt disease in wheat
(Gurjar et al., 2022). Figure 2 shows the schematic representation
of transcriptomic analysis in resistant and susceptible genotypes.

Long non-coding RNAs (lncRNAs) are non-coding RNAs that
exceed 200 nucleotides (Kim and Sung, 2012) and play a role in
regulating cellular processes such as transcription, post-translational
processing, chromatin modification, and gene expression (Isin and
Dalay, 2015). They influence downstream target gene expression
through molecular mechanisms at both transcriptional and post-
transcriptional levels (Wang et al., 2019). Despite their limited
protein-coding capacity, lncRNAs exert control over target gene
expression during transcription and translation. Acting as molecular
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decoys, lncRNAs sequester miRNAs, thereby preventing their
interaction with target messenger RNAs (Wang and Chang,
2011). Through these miRNA interactions, lncRNAs regulate
various biological processes (Dhanoa et al., 2018). Although
predicting targets remains challenging due to limited
understanding of lncRNA-target interfaces, genome targeting and
high-throughput screening underscore their vital role in stress
tolerance (Gao et al., 2020). The moment plant experiences a
stress, PAMP-triggered immunity (PTI) is activated by stress
signals, leading to the generation of signaling molecules such as
ROS.When pathogen virulence factors infiltrate plant cells, NB-LRR
resistance genes initiate pathogen-specific effector-triggered
immunity (ETI). Both PTI and ETI activate defense pathways.
Long non-coding RNAs (lncRNAs) play a role in regulating plant
defense by serving as miRNA precursors or target mimics. These
non-coding RNAs enhance tolerance to biotic stress and modulate
gene expression during plant pathogen infections, such as wheat
powdery mildew. Studies have uravelled the contribution of
lncRNAs in modulating the gene expression during host-
pathogen interactions and in plant disease resistance such as
powdery mildew (Cao et al., 2023), stripe rust (Das et al., 2023),
leaf rust (Jain et al., 2020), Fusarium head blight in wheat (Duan
et al., 2020). However, no study has been carried out to unveil the
potential role of lncRNAs to decipher the molecular mechanism of
resistance to Karnal bunt. Research on lncRNA unveiling disease
resistance mechanisms needs to be explored for Kanal bunt of wheat.

Proteomics

Proteomics complements genomics and transcriptomics by
concentrating on gene products, offering a more direct
perspective on cellular immunological processes. It allows for the
simultaneous examination of protein localization, protein–protein
interactions, enzymatic complexes, and post-translational
modifications, all of which are crucial for understanding
plant–pathogen interactions. (Pandey and Mann, 2000; Yates
et al., 2009; Delaunois et al., 2014). Initially, ‘proteomics’ was a
term used to describe techniques for analyzing multiple proteins at
once. Over time, its definition has expanded to include any method
that provides insights into the abundance, characteristics,
interactions, activities, or structures of proteins within a sample.
Currently, proteomics, particularly when based on mass
spectrometry (MS), has evolved into a powerful “hypothesis-
generating engine” that translates extensive data sets to elucidate
complex biological processes (Meissner and Mann, 2014; Altelaar
et al., 2013; Cravatt et al., 2007). In wheat, extensive proteomic
research employing high-throughput techniques have been
investigated on plant-pathogen interactions in response to
Fusarium graminearum, the causal agent of Fusarium Head
Blight (FHB) by (Fabre et al., 2021; Buchanan et al., 2025). In
rusts fungi this omics technology is also utilized to identify novel
biomarkers and disease resistance proteins (Yang et al., 2016a for
stripe rust; Rampitsch et al., 2019; Song et al., 2011 for leaf rust).

FIGURE 2
Schematic model of transcriptomic responses in resistant and susceptible genotypes. Retrieved from https://app.biorender.com/
biorender-templates.
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Nonetheless, literature on Karnal bunt resistance is limited. In 2018,
Pandey et al. presented the first comprehensive proteome map
through a comparative proteomic analysis of T. indica isolates
with varying levels of virulence/aggressiveness. This study aimed
to identify putative pathogenicity or virulence-related proteins
expressed in the highly virulent isolate. The identified proteins
associated with pathogenicity/virulence play crucial roles in stress
response, degradation of the host cell wall, adhesion, penetration,
invasion, colonization, activation of signal transduction pathways,
and morphogenesis. In their He et al. (2022) identified differentially
expressed proteins (DEPs), by employing iTRAQ and Ultra-High-
Performance Liquid Chromatography (UHPLC)-MS/MS analyses.
This analysis revealed 4,553 DEPs after inoculation with Tilletia
controversa and 804 DEPs after inoculation with Tilletia foetida.
Among these, 4,100 and 447 DEPs were upregulated, respectively,
and were associated with metabolic processes, catalytic activity,
photosynthetic membranes, transferase activity, and
oxidoreductase activity. Table 3 summarizes the proteomic
studies across major wheat pathogens. These studies open a
pandora’s box to explore the new avenues for the identification
of putative biomarkers for Karnal bunt resistance in wheat.

Metabolomics

Metabolomics examines small endogenous molecules such as
sugars, amino acids, organic acids, and nucleotides to investigate the
links between genetic structure, gene expression, protein function,
and environmental influences (Fiehn, 2002). These molecules act as
cellular substrates and byproducts, affecting phenotypes. This
approach aids in clarifying the biochemical roles of crude
proteins and their transformation into phenotypes. Plants have
evolved defense mechanisms against pathogens, which include
both constitutive and inducible defenses, as well as biochemical
compounds and metabolites (Heuberger et al., 2014; Nielsen and
Larsen, 2015). Since metabolites are products of transcription and
translation, variations in their quantities reflect plant-microbe
interactions and regulate defense in fungus-infected plants.
Metabolomics has been utilized in wheat research to reveal stress
tolerance mechanisms and identify candidate genes by correlating

metabolite accumulation with stress responses. Its ability to
complement other omics technologies makes it applicable across
various organisms. As products of translation and transcription,
metabolites play a vital role in plant-microbe interactions.

Plants have developed both constitutive and inducible defense
against pathogens (Scheel, 1998). Variations in metabolites signal
plant-microbe interactions and regulate defense mechanisms in
infected plants. In wheat research, metabolomics has been
employed to uncover mechanisms of stress tolerance and
pinpoint candidate genes by linking metabolite accumulation
with stress responses. Its capacity to complement other omics
technologies makes it applicable to a wide range of organisms.
As products of translation and transcription, metabolites are
crucial in plant-microbe interactions. This field merges analytical
chemistry with data processing to evaluate changes in metabolites in
response to environmental factors.

Common platforms for metabolite analysis include mass
spectrometry, NMR, LC-MS, and GC-MS. The sensitivity of mass
spectrometry facilitates the exploration of the metabolome and the
discovery of biomarkers. Advances in air pressure chemical
ionization (APCI), ESI, and MALDI-TOF have enhanced the
accuracy of mass spectrometry (Issaq et al., 2009). NMR is used
to identify ligand properties and protein binding, while GC-MS
analyzes volatile compounds. LC-MS employs ESI and APCI for
analyzing higher mass metabolites. Untargeted metabolomics
examines all detectable metabolites, whereas targeted approaches
concentrate on specific categories. Data processing platforms such as
MET-COFEA, MET-Align, ChromaTOF, and MET-XAlign handle
high-throughput data sets (Ma et al., 2016; Misra and van der Hooft,
2016; Perez de Souza et al., 2017). The processing involves baseline
correction, alignment, peak separation, and normalization prior to
identification. Metabolome databases like METLIN, NIST, and
GOLM are used for metabolite identification (Johnson et al.,
2015). Tools like MetaboAnalyst 5.0, Cytoscape 3.10.1, and
various statistical methods are employed to analyze data and
detect metabolites (Tsugawa et al., 2015; Xie et al., 2015). These
analyses help in identifying metabolic markers associated with
different traits. The Plant Metabolic Network (PMN) and
Metabolomics Workbench offer centralized databases of plant
metabolites and pathways to support research.

TABLE 3 Proteomic studies across major wheat pathogens and their key findings.

Pathogen Key proteomic findings Wheat response
focus

Study highlights References

Tilletia indica (Karnal
bunt)

Identification of virulence factors including
proteins for host defense suppression, lignin
degradation, ROS generation, hydrolytic
enzymes

Pathogen secretome and
mycelial proteins

Integration of proteomics and genomics to
identify candidate pathogenicity factors of
T. indica

Pandey et al.
(2018)

Puccinia striiformis
(Stripe rust)

Differentially abundant proteins involved in
transcription regulation, defense, ROS
metabolism, splicing, chaperonins

Proteins linked to
resistance gene loci, defense
regulation

Transcriptome and proteome combined
analysis identifying stress stage-specific
modules and key regulators

Yang et al.
(2016b)

Fusarium graminearum
(Fusarium head blight)

Core wheat proteome changes under infection,
fungal effectors correlated with wheat protein
responses

Susceptibility factors,
chloroplast function related
proteins

Extensive proteome showing changes
independent of fungal strain
aggressiveness, dual proteomics approach

Fabre et al.
(2021)

Other pathogens (leaf
rust, powdery mildew)

Identification of proteins related to immunity
and resistance pathways

Host immunity, stress
response proteins

Proteomic profiling provides insights into
resistance mechanisms at seedling and
grain stages

Li et al., 2018;
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Metabolomics profiling uncovers alterations in plant
metabolites during pathogen infection (Allwood et al., 2008).
Plants utilize a variety of defense mechanisms to combat
pathogens. Decoding a plant’s entire metabolome is challenging
due to the diversity of metabolites (Tenenboim and Brotman, 2016).
Plants generate metabolites that function as biomarkers for
resistance to biotic stress (Balmer et al., 2013). Comparative
metabolic profiling of diseased and healthy plants reveals the
metabolic networks involved in plant-pathogen interactions
(López-Gresa et al., 2010; Ren et al., 2021 employed LC/MS
metabolomics to investigate the changes in T. controversa-
infected and noninfected grains. The analysis revealed an
increase in prostaglandins and 9-hydroxyoctadecadienoic acids in
the infected grains. The concentrations of cucurbic acid and
octadecatrienoic acid were altered post-infection, impacting plant
defense mechanisms. Eight metabolic pathways were activated
during the pathogen-plant interactions, including those related to
phenylalanine, isoquinoline alkaloid, starch and sucrose, tyrosine,
sphingolipid, arginine and proline, alanine, aspartate, glutamate,
and tryptophan metabolism. Similiarly Weed et al. (2021) explored
the resource allocation of Tilletia caries from wheat throughout its
lifecycle. Utilizing GC-TOF MS and UPLC tandem MS platforms,
we discovered that T. caries has a minimal impact on the global
metabolome of wheat but significantly alters key metabolites
involved in nutrient uptake and diminishes host defense
pathways. The findings highlighted metabolic traits useful for
selecting T. caries-resistant wheat varieties for organic agriculture
and identified metabolites that could aid in the early detection of
infection. Table 4 summarizes the metabolomic profiling and
identified key metabolites with respect to major wheat pathogens.

Metabolome, being smaller than the proteome and genome,
allows for more straightforward data processing. Approximately
3,000 metabolites are involved in major metabolic pathways. The
knowledge of metabolic QTLs (mQTLs) concerning metabolic
networks holds promise for metabolomics-assisted breeding,
aimed at developing elite cultivars and enhancing our
understanding of quantitative genetics (Wen et al., 2015).
Metabolic profiling facilitates the identification of SNP markers
or mQTL mapping for candidate gene discovery by linking
genotype to phenotype. Metabolic markers are instrumental in
identifying agronomic traits and exploring the metabolic
mechanisms underlying phenotypes (Fernandez et al., 2016). The
mQTLs technique combines gene expression and metabolite profiles

to connect phenotype with genotype (Wen et al., 2015). With the
advent of next-generation sequencing (NGS), mQTLs for candidate
genes can be identified using ultra-high-density maps (Scossa et al.,
2016). The integration of multi-omics technologies with genetic
methodologies enables the identification of genes that influence
secondary metabolite production (Beleggia et al., 2016). Research
has pinpointed mQTLs that regulate biotic interactions in plants.
Modern sequencing techniques have facilitated genome sequencing
and mQTL analyses in crops. Host-pathogen genes are identified
through mQTL mapping, which analyzes plant resistance
mechanisms. By integrating metabolomic data with other omics
approaches and systems biology models, a comprehensive
understanding of metabolite interactions within cellular networks
can be achieved (Manickam et al., 2023).

Multi-omics or integrated omics
approach

The integration of genomics, transcriptomics, proteomics, and
metabolomics has significantly enhanced our comprehension for
plant disease resistance mechanisms. With the progress in omics
technologies and computational tools, multi-omics approaches have
become indispensable for tackling stress biology questions in crops
and reducing false positives from single data sources (Ritchie et al.,
2015; Subramanian et al., 2020). This interdisciplinary strategy has
shed light on the molecular, genetic, and biochemical networks that
play a role in host defense, facilitating the discovery of new
resistance genes, pathways, and markers crucial for breeding
initiatives. Web tools like PAINTOMICS, KaPPA-view,
COVAIN, and O-miner are employed to analyze multi-omics
datasets (Kuo et al., 2013; García-Alcalde et al., 2011; Tokimatsu
et al., 2005; Sun and Weckwerth, 2012; Sangaralingam et al., 2019;
Sehgal et al., 2023). PAINTOMICS allows for the integrated
visualization of transcriptomics and metabolomics on KEGG
pathway maps, while KaPPA-view merges transcript and
metabolite data on metabolic pathway maps. COVAIN provides
statistical analysis through KEGG pathway and gene ontology (Sun
and Weckwerth, 2012).

Pandey et al., 2018 conducted the first integrated omics study by
combining the genomics, proteomics and metabolomics dataset.
They explored the proteomes of T. indica isolates with high (TiK)
and low (TiP) virulence. In the TiK proteome, twenty-one protein

TABLE 4 Metabolomic studies for wheat fungal pathogens.

Pathogen Key metabolomic findings Wheat metabolite
changes

Important metabolic
pathways/Compounds

References

Tilletia indica (Karnal
bunt)

Oxalic acid identified as a key
pathogenicity factor

Alterations in organic acids and
secondary metabolites

Involvement of oxalic acid and fungal
toxin-related metabolites

Pandey et al. (2018)

Puccinia striiformis (Stripe
rust)

Elevated flavonoid glycosides in resistant
cultivars

Changes in lipids, fatty acids,
phenylpropanoids

Phenylpropanoid biosynthesis, linoleic
acid metabolism

Mashabela et al.
(2022)

Fusarium graminearum
(Fusarium head blight)

Differential accumulation of amino acids
and hydroxycinnamate derivatives

Activation of shikimate-
mediated secondary metabolism

Amino acid metabolism, tricarboxylic
acid cycle

Liu et al., 2022; Dong
et al., 2023

Tilletia caries Metabolic traits resistance breeding and
early detection

Metabolites linked to nutrient
uptake and host defense

Significant alterations in nutrient
uptake metabolites and defense
pathways

Weed et al. (2021)
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spots that were upregulated were identified using MALDI-TOF/
TOF. The sequences were found to be similar to fungal proteins
crucial for plant infection, such as those involved in stress response,
adhesion, penetration, colonization, and degradation of the host cell
wall. By integrating these findings with the T. indica genome,
homologs of pathogenicity proteins were identified. Malate
dehydrogenase, found in TiK, facilitates the conversion of malate
to oxaloacetate, which is a precursor to oxalic acid, a significant
pathogenicity factor. GC-MS metabolic profiling confirmed these
findings, revealing that oxalic acid was present only in the TiK
isolate. This comprehensive approach identified pathogenicity
factors, offering insights into fungal mechanisms and strategies
for disease management.Similarly, in another study performed by
the same group of researchers, the TiK isolate of T. indica was
cultivated with a host factor derived from the developing wheat
spikes of WH-542 to investigate the mechanisms of disease
pathogenesis. Protein profiles from both mycelial and secreted
proteins were examined using 2-DE, revealing fifteen and twenty-
nine upregulated spots in mycelial and secreted proteins,
respectively, which were identified through MALDI TOF/TOF.
These proteins are involved in suppressing host defense, breaking
down lignin, aiding pathogen adhesion, generating reactive oxygen
species (ROS), producing hydrolytic enzymes, and detoxifying ROS.
By integrating proteomic and genomic analyses, candidate
pathogenicity factors were identified and functionally annotated
through sequence and structure-based analysis, leading to the
discovery of new virulence factors in T. indica (Pandey et al.,
2019). The identification of markers and candidate genes through
multi-omics accelerates the development of Karnal bunt-resistant
wheat varieties. On the other hand, in rice (Rajamuthu et al., 2025)
and legumes (Mohamedikbal et al., 2025), multi-omics studies have
revealed important resistance genes, protein modifications and
metabolic pathways, enabling precision breeding and improved
disease management strategies.

By integrating genomics, transcriptomics, proteomics, and
metabolomics data, multi-omics reveals key genes, proteins,
enzymes, and metabolites that mediate pathogen infection and
plant defense pathways. The integrative biology system paves way
for the following approaches.

i) These mechanistic insights enable researchers to identify
vulnerability nodes in pathogens, such as essential
metabolic enzymes or detoxification pathways, or stress-
response networks in plants, which serve as attractive
targets for customized agrochemical interventions (Fan
et al., 2025).

ii) Multi-omics aids in identifying novel virulence factors,
resistance genes, and metabolic pathways unique to
pathogens, guiding the design of fungicides with increased
specificity and reduced non-target effects. For instance,
proteomics and metabolomics data can highlight distinct
enzymes, transporters, and regulatory proteins in fungal
pathogens that are absent in crops, thereby minimizing
phytotoxicity risks and optimizing the mode of action of
new chemical agents (Rosli et al., 2024; Zhang et al., 2022).

iii) The integrative systems biology leads to systems-level
understanding of biological processes and interactions by
combining computer modeling with a variety of high-

throughput multi-omics data. By combining information
from several layers, makes it possible to find new
connections and mechanisms and providing hypotheses for
experimental validation.

iv) By simulating and forecasting biological system behavior
under various contexts, predictive systems biology can
guide targeted interventions.

v) These studies open new avenues to reveal the effectiveness of
combining multiple omics datasets with computational tools
to decipher complex host-pathogen interactions.

These approaches can be adapted for KB to enable targeted
breeding, molecular diagnostics and precision disease management
strategies unique to Karnal bunt. Wheat breeders now have access to
a range of molecular tools and validated resistance sources, which
aids in disease management and supports global trade by reducing
dependence on chemical controls and easing quarantine restrictions.

Multiepiomics

Epigenetics implies the heritable changes in the way of gene
expression as a consequence of the modification of DNA bases,
histone proteins, and/or non-coding-RNA biogenesis without
disturbing the underlying nucleotide sequence. The changes
occurring between DNA and its surrounding chromatin without
altering its DNA sequence and leading to significant changes in the
genome of any organism are called epigenetic changes (Shilpa
et al., 2022).

Multi-epiomics uncovers the transcriptomic, proteomic, and
metabolomic reactions during pathogen invasion, highlighting
defense-related genes and epigenetic changes that influence
resistance outcomes. These methods shed light on the co-
evolution of hosts and pathogens, aiding in the development of
sustainable resistance strategies. The integration of epigenome and
transcriptome now makes it feasible to target susceptibility genes
and modify regulatory elements. By considering the epigenomic
context, engineering immune receptors, such as NLR proteins,
facilitates the creation of synthetic immune defenses against
pathogens. Research is centered on stable epigenetic alterations
for enduring disease resistance, resulting in epigenetic memory in
crops. Altering epigenetic patterns boosts resistance traits across
generations (Miglani and Kaur, 2024).

In wheat, plants edited for Mlo genes have been developed. In
hexaploid bread wheat, the complete loss of all three Mlo homologs
(TaMLO-A1, TaMLO-B1, and TaMLO-D1) resulted in resistance to
B. graminis f. sp. tritici (Bgt) (Wang et al., 2014; Li et al., 2022). The
wheat gene TaPsIPK1 was identified as an S gene, and its
inactivation via CRISPR/Cas9 conferred resistance to wheat stripe
rust (Wang et al., 2022). EDR1 is conserved across plant species
(Frye et al., 2001). CRISPR/Cas9-generated Taedr1 wheat plants,
targeting all EDR1 homoeologs, exhibited resistance to Bgt without
experiencing mildew-induced cell death (Zhang et al., 2017; Yin and
Qiu, 2019). At the intersection of epigenomics, epitranscriptomics,
and epiproteomics, there is an opportunity to explore post-
translational modifications (PTLMs or PTMs) in detail, which
modulate protein function and cellular processes. PTLMs, such as
phosphorylation, acetylation, ubiquitination, and methylation,
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dynamically regulate protein activity, stability, localization, and
interactions within the cell. These approaches deepen our
understanding of the complex regulatory networks that govern
cellular functions and pathways molecular mechanisms
underlying complex traits and phenotypic plasticity hence paving
the way for crop improvement and stress resilience.

Artificial intelligence (AI) and machine
learning in disease resistance

Artificial Intelligence involves computer systems performing
tasks associated with human intelligence like learning and
decision-making. Machine Learning (ML), an AI branch, creates
algorithms enabling computers to perform tasks without explicit
programming. Deep Learning (DL), a specialized field within ML
uses neural networks with multiple layers to extract hierarchical
features automatically. Machine Learning is a burgeoning field that
significantly improves the performance and interpretation of trait
associations. With technological advancements, larger datasets have
become available for trait association studies. Machine Learning
techniques can pinpoint genes that influence traits like disease
resistance and forecast the effectiveness of these genes in
defending against plant pathogens, thereby uncovering the
interactions between plants and pathogens (Sperschneider, 2020).

Imaging platforms at ground, aerial and spatial levels collect
images for plant phenotyping and stress detection (Sawant, 2017).
Sensors capture spectral variation through RGB optical, infrared
thermal, multispectral and hyperspectral sensors to detect disease.
RGB cameras capture 400–750 nm wavelength in visible light, being
most popular due to low cost (Li et al., 2014). Infrared thermal
devices capture 3–5 μm or 7–14 μm spectral variation to detect
temperature changes from disease infection (Zhu et al., 2018).
Multispectral and hyperspectral cameras (Scotter, 2005) capture
broader wavelengths for health assessments, detecting invisible
symptoms through specific leaf component separation such as
pigment changes (Wan et al., 2022), nutrient accumulation (de
Oliveira et al., 2022) and other stressors (Guerrero et al., 2023). ML
model detection accuracy depends on sensor and data collection
methods chosen such as: scientific requirements for tracking early or
late-stage symptoms; plant and pathogen species determining pixel
resolution and wavelength needs; (c) environmental conditions
affecting camera calibration and background complexity; and (d)
available resources for implementing an effective data collection
pipeline at sufficient resolution for model learning.

Climate change has a profound effect on crop health and the
patterns of diseases (Burdon and Zhan, 2020), complicating their
detection. It modifies temperature, precipitation patterns, and
disease-related factors, which may render historical models less
reliable (Yang et al., 2023). The increased variability in weather
due to climate change results in unpredictable disease outbreaks
(Rosenzweig et al., 2001). It also influences the interactions between
crops and pathogens (Raza and Bebber, 2022), as well as crop
phenology and vulnerability to diseases (Piao et al., 2019; Jeger,
2022). These climate impacts necessitate changes in irrigation,
fertilization, and pesticide application (González-Domínguez
et al., 2020). To tackle the complexities introduced by climate
change, disease detection models must incorporate multiple data

sources and Machine Learning techniques, although further
research is essential. A recent study investigated by (Anand et al.,
2024) Machine Learning methods for Karnal bunt prediction using
meteorological data from different periods - February, March,
15 February to 15 March and overall period from Department of
Climate Change and Agricultural Meteorology, PAU, Ludhiana. For
each period, different disease prediction models performed well.
Random forest regression for February, support vector regression
(SVR) for March, SVR and BLASSO for 15 February to 15 March
period, and random forest for overall period outperformed other
models. In addition to this, Hasan et al. (2018) presented a deep
learning approach using a robust R-CNNmodel to accurately detect,
count, and analyze wheat spikes for yield estimation. The model was
trained on images across different growth stages and optimized for
diverse field scenarios.

Research has been carried out on the application of models for
disease detection. Goyal et al. (2021) introduced an automated
method for classifying wheat diseases, utilizing deep learning-
based image analysis focused on spikes and leaves. This model
achieved an accuracy rate of 97.88%, surpassing VGG16 and
ResNet50 in terms of precision, recall, and F-score metrics. The
results indicate the model’s potential for effective wheat disease
classification and crop quality evaluation. Picon et al. (2019) created
a deep residual neural network algorithm using 8,178 images to
identify septoria, tan spot, and rust under real-world conditions.
Their results confirmed the algorithm’s effectiveness in the early
detection of wheat diseases.

After a disease is identified, autonomous systems for managing
crop diseases can address the issue by applying pesticides in a
targeted manner (Shaikh et al., 2016) or utilizing other forms of
treatment (Abioye et al., 2022). These systems operate through
robotic mechanisms that act based on data from sensors and
imaging. By reducing pesticide usage (Mesías-Ruiz et al., 2023)
and limiting runoff into waterways, autonomous management
lessens environmental impact. Nonetheless, the systems face
challenges related to their cost and complexity (Bhat and Nen-
Fu, 2021). The high expense of implementation (Gackstetter et al.,
2023) and concerns over autonomous decision-making (Bhat and
Nen-Fu, 2021) are significant issues. Although these systems have
the potential to transform agriculture and enhance sustainability, it
is essential to address the technical and ethical challenges they
present. In order to detect subtle disease symptoms, Machine
Learning can be combined with remote sensing and high-
throughput phenotyping for early Karnal bunt detection. This is
achieved by evaluating multispectral and hyperspectral pictures
taken by sensors or UAVs (Unmanned Aerial Vehicles). To
identify diseased plants early, Machine Learning techniques such
as random forests and deep learning extract important traits from
vast amount of intricate phenotypic data. Through this integration,
wheat fields may be monitored quickly, non-destructively, and
extensively, facilitating better resistance screening and prompt
disease control. These methods improve crop health assessment
and early KB detection accuracy and efficiency (Gill et al., 2022;
Anand et al., 2024).

Utilizing Machine Learning and image detection systems for
automated crop disease identification can enhance agricultural
productivity, contributing to food security and economic stability.
These technologies offer precise, real-time assessments of crop
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health. Nonetheless, their implementation in developing nations
encounters obstacles such as restricted access to hardware, software,
technical skills, and infrastructure support.

Future directions

India has been producing record wheat for last few years with
the annual production exceeding 100 million tonnes. With a huge
potential for exports, Karnal bunt, a quarantine disease poses major
threat for the trade (Trethowan et al., 2018). Karnal bunt has a high
potential for re-emergence in endemic regions and poses a risk of
spreading to new regions, thereby causing economic damage to
global wheat production and trade. Controlling KB epidemics and
preventing its spread are priorities in wheat research, with the
deployment of resistant cultivars being crucial. Historically,
developing KB-resistant varieties has been challenging due to
limited resistance sources and the environmental effects on the
expression of quantitative resistance. These challenges can be
addressed by mapping KB-resistance genes within wheat gene
pools and introgressing them into elite cultivars. Identifying
novel resistance sources requires new marker systems and
improved MAS for KB resistance. Research must focus on host-
pathogen interactions, race specification, gene mapping, annotation,
and genomic selection to develop KB-resistant wheat cultivars.

By integrating omics approaches, mathematical and GS models
can predict plant performance under stress, enabling wheat breeders
to select the best gene-trait combinations for improved productivity.
Analyzing the genome, transcriptomes, proteome, and metabolome
simultaneously is essential for developing effective wheat
improvement programs. Integrating AI with omics data
encompassing genomics, transcriptomics, proteomics, and
metabolomics facilitates early detection of plant diseases by
analyzing molecular profiles before symptoms become visible. The
combination of AI-assisted omics with high-throughput phenotyping
enables real-time monitoring of plant health by linking molecular
responses to phenotypic traits, thereby enhancing our understanding
of plant defense mechanisms. AI and omics data support predictive
modelling of disease dynamics, with Machine Learning and deep
learning models taking into account genetic, molecular, and
environmental variables to forecast outbreaks. AI-assisted omics
techniques can advance crop breeding programs for disease
resistance by identifying genetic markers linked to defense
mechanisms. AI-driven recommendations using omics data allow
for precise pesticide application, minimizing environmental impact
and costs. Future research should aim to understand plant responses
to combined biotic and abiotic stress through AI-assisted omics
techniques, unravelling the plant pathogen interactions. The
integration of remote sensing with AI-assisted omics offers spatial
and temporal data on plant health and environmental conditions,
enabling precise interventions to bolster plant defense and reduce

crop losses. Integrative multi-omics enhances our understanding of
how pathogens develop resistance to existing agrochemicals by
identifying epigenetic, transcriptomic, and metabolic adaptations
that can be countered with new chemistries. This approach leads
to sustainable crop protection strategies and ensures the long-term
efficacy of fungicides, particularly when combined with phenotypic
and environmental profiling. Mindful applications of latest emerging
technologies could help in eradication of Karnal bunt disease.
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