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Monogenic disorders are often the result of single point mutations in specific genes,

leading to the production of non-functional proteins. Different blood disorders such

as ß-thalassemia, sickle cell disease, hereditary spherocytosis, Fanconi anemia, and

Hemophilia A and B are usually caused by point mutations. Gene editing tools

including TALENs, ZFNs, or CRISPR/Cas platforms have been developed to correct

mutations responsible for different diseases. However, alternative molecular tools such

as triplex-forming oligonucleotides and their derivatives (e.g., peptide nucleic acids), not

relying on nuclease activity, have also demonstrated their ability to correct mutations

in the DNA. Here, we review the Repair-PolyPurine Reverse Hoogsteen hairpins

(PPRHs) technology, which can represent an alternative gene editing tool within this

field. Repair-PPRHs are non-modified single-stranded DNA molecules formed by two

polypurine mirror repeat sequences linked by a five-thymidine bridge, followed by an

extended sequence at one end of the molecule which is homologous to the DNA

sequence to be repaired but containing the corrected nucleotide. The two polypurine

arms of the PPRH are bound by intramolecular reverse-Hoogsteen bonds between the

purines, thus forming a hairpin structure. This hairpin core binds to polypyrimidine tracts

located relatively near the target mutation in the dsDNA in a sequence-specific manner by

Watson-Crick bonds, thus producing a triplex structure which stimulates recombination.

This technology has been successfully employed to repair a collection of mutants of

the dhfr and aprt genes within their endogenous loci in mammalian cells and could be

suitable for the correction of mutations responsible for blood disorders.

Keywords: gene-editing, repair-PPRH, triplex, APRT, DHFR, mutation

Scientists estimate that the global prevalence of all monogenic diseases in the human population is
1%, including over 10,000 different conditions (Control of hereditary diseases. Report of a WHO
Scientific Group, 1996). These disorders are often the result of a unique single point mutation in
a specific gene that produces a non-functional protein. Recently, nuclease-based gene editing tools
such as transcription activator like nucleases, zinc-finger nucleases, or CRISPR/Cas platforms have
been extensively used to correct mutations in the DNA (Gaj et al., 2016). Alternatively, molecules
such as triplex-forming oligonucleotides (TFOs) (Seidman and Glazer, 2003) or peptide nucleic
acids (PNAs) (Ricciardi et al., 2018b) that do not rely on the activity of nucleases to produce the
gene correction have been developed. In this instance, the repair event is triggered by the formation
of a local triple helix structure near the mutation site that stimulates the cell’s own endogenous
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repair machinery. Here, we will review an alternative triplex-
formingmolecule named PolyPurine Reverse Hoogsteen (PPRH)
hairpin, which has been developed in our laboratory, to correct
point mutations in the DNA.

PPRHS

PPRHs are non-modified single-stranded DNA molecules (45–
55 nt) formed by two polypurine mirror repeat sequences linked
by a five-thymidine bridge (5T). The formation of the hairpin
structure is due to the establishment of intramolecular reverse-
Hoogsteen bonds between the purines. PPRHs can bind to
polypyrimidine tracts in the double-stranded DNA (dsDNA)
in a sequence-specific manner via Watson-Crick bonds, thus
generating a triple helix in the target site and displacing the
polypurine strand of the dsDNA (Coma et al., 2005). This local
distortion in the dsDNA interferes with DNA transcription and
inhibits the expression of the targeted gene (de Almagro et al.,
2009).

During the last decade, we have used PPRHs as gene silencing
tools to inhibit genes related to cancer progression such as
dihydrofolate reductase (DHFR) (de Almagro et al., 2009, 2011),
telomerase (TERT) (de Almagro et al., 2009), BCL2, topoisomerase
1 (TOP1), mTOR, MDM2, C-MYC (Villalobos et al., 2015),
CHK1, WEE1 (Aubets et al., 2020) and survivin (BIRC5) in vivo
(Rodríguez et al., 2013). Additionally, we applied the PPRHs
technology in immunotherapy approaches by inhibiting the
CD47/SIRPα (Bener et al., 2016) and PD-1/PD-L1 pathways
(Enríquez et al., 2018; Ciudad et al., 2019). PPRHs and their
advantages (low cost of production, stability, and lack of
immunogenicity) as gene silencing tools for cancer have been
reviewed in Ciudad et al. (2017).

REPAIR-PPRHS

It is known that triplex formation can stimulate repair between
a targeted locus and a donor DNA sequence by both homology-
directed repair (HDR) (Datta et al., 2001; Knauert et al., 2006)
and nucleotide excision repair (NER) (Faruqi et al., 2000; Datta
et al., 2001; Rogers et al., 2002) pathways. For that reason, we
believed that PPRHs could represent an alternative tool for gene
correction due to their ability to produce triplex structures and
therefore stimulate recombination (between the template and the
target site) to correct point mutations in the DNA. To do so,
we conceived an advanced design of the PPRH molecules that
we called repair-PPRHs. These molecules are PPRH hairpins that
bear an extension sequence at one end of the molecule which is
homologous to the DNA sequence to be repaired but including
the corrected nucleotide instead of the mutated one (Figure 1A).
In this case, the polypurine hairpin core of the repair-PPRH
is designed to bind to a polypyrimidine sequence located near
the target mutation, thus producing the PPRH/DNA triplex and
stimulating the recombination between the extension sequence
of the repair-PPRH and the mutation target site.

In our seminal paper we used repair-PPRHs to correct a point
mutation in the dhfr gene from Chinese Hamster Ovary (CHO)

cells (Solé et al., 2014). We selected the dhfr gene as a model
because we could easily identify the repaired clones by applying
a DHFR selective culture medium that does not contain glycine,
hypoxanthine nor thymidine (-GHT).

First, DNA binding assays were performed to check the
capacity of PPRHs to open the target dsDNA for the subsequent
binding of a repair oligonucleotide corresponding to the
extension sequence of the repair-PPRH. Two PPRHs containing
13 and 23 purines, respectively, directed against polypyrimidine
sequences located in exon 6 of the dhfr gene were used to perform
the binding experiments. We demonstrated that both PPRHs
were able to bind and open their target dsDNA sequences ranging
from 13 to 25 nt. Moreover, the introduction of an interruption
in the duplex to simulate a point mutation did not alter the
binding of the PPRH to its target sequence (Solé et al., 2014).
The minimum concentration to obtain the binding between the
PPRH and its target sequence was 3 nM. Additionally, (Solé et al.,
2017) proved that even PPRHs susceptible to fold into stable G4
structures can still bind in a sequence-specific manner to the
target DNA and produce triplex formation.

Then, to assess if PPRHs were able to correct a point
mutation, we designed a repair-PPRH directed against a non-
sense mutation (G>C) located in exon 2 of the dhfr minigene
contained in the p11Mut expression vector. To do so, a PPRH
bearing a polypurine hairpin core of 13 nt was combined
with a 25 nt extension sequence homologous to the mutation
site but containing the corrected nucleotide. In cells, two
different approaches were attempted to repair this mutation in
p11Mut. In the first approach, gene correction was achieved
by the co-transfection of both p11Mut and the repair-PPRH
in dhfr-deficient DG44 CHO cells. After incubation, cells were
selected in -GHT medium obtaining different repaired clones.
The frequency of repair was ∼0.15% (Solé et al., 2014).
Gene correction was confirmed by DNA sequencing and by
determining the levels of DHFR mRNA and protein. In the
second approach, we performed the experiment in DG44 cells
stably transfected with p11Mut (DG44-p11Mut cell line) since it
could resemble to our final aim of correcting a point mutation
in the endogenous locus of the gene. We confirmed that the
repair-PPRH was able to correct the mutation at the same
frequency (0.15%) as our first approach (Solé et al., 2014). The
levels of DHFR mRNA and protein were recovered compared
to the mutant DG44-p11Mut cell line (Solé et al., 2014). In a
third approach, we explored the applicability of repair-PPRHs to
correct point mutations at the endogenous level. There, a repair-
PPRH designed against a mutation in exon 6 (G>-) of the dhfr
gene was transfected into the DA5 cell line, which contained this
specific mutation in the endogenous locus of the dhfr gene. After
selection, surviving cell colonies were acquired at a frequency of
0.01% (Solé et al., 2014). In this case, gene correction frequency
was lower than in the previous experiments since the correction
was achieved for the first time in the endogenous locus of the
gene. However, spontaneous corrections were not observed in
any of the experiments. The levels of DHFR mRNA and protein
were rescued compared to the mutant DA5 cell line. Moreover,
we corroborated that the DHFR protein from the repaired clones
showed equal or higher DHFR activity levels than the dhfr+
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FIGURE 1 | Mechanism of action of repair-PPRHs. (A) Representation of the RHp-FANCA-E4 repair-PPRH targeting the c.295 C>T mutation in the FANCA gene. In

this case, the polypurine hairpin core is bound to the repair domain by an additional four-thymidine bridge following the long-distance repair-PPRH approach. Scheme

depicting the mechanism of action of a repair-PPRH when the polypyrimidine target sequence (PY) is located either upstream (B) or downstream (C) of the mutation.

parental cell line, thus demonstrating that the corrected gene was
completely functional (Solé et al., 2014).

FACTORS AFFECTING GENE
CORRECTION FREQUENCY

The study of the influence of both hydroxyurea and aphidicolin
in the repair frequency was also addressed (Solé et al., 2014). It
is known that hydroxyurea inhibits the ribonucleotide reductase
enzyme (Bianchi et al., 1986), thus arresting cells in the S phase
of the cell cycle by blocking or retarding the movement of the

replication fork caused by the dNTP pools imbalance (Saintigny
et al., 2001). In the case of aphidicolin, it is a potent inhibitor
of polymerases α, δ and ε, which leads to the blockage of the
replication fork and provokes a similar effect to hydroxyurea
(Wang, 1991). The effect on replication caused by these agents
leads to double-strand DNA breaks (DSBs), which can stimulate
both the HDR and the non-homologous end joining (NHEJ)
pathways to repair the DNA damage (Lundin et al., 2002).
Accordingly, the incubation of both DG44 and DG44-p11Mut
cell lines with 5µg/mL aphidicolin or 2mM hydroxyurea for
3 h before incubation with the repair-PPRHs increased the repair
frequency by 2-fold (Solé et al., 2014). This is in keeping with
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other studies showing increased gene correction frequencies
when incubating repair oligonucleotides after treatment with
hydroxyurea or aphidicolin (Parekh-Olmedo et al., 2003; Ferrara
et al., 2004; Wu et al., 2005; Chin et al., 2008; Engstrom and
Kmiec, 2008).

Finally, since the RAD51 protein plays a central role in
homologous recombination (Krejci et al., 2012; Papaioannou
et al., 2012) and it is required for triplex-induced recombination
(Datta et al., 2001; Gupta et al., 2002), we checked its role
in the repair event triggered by repair-PPRHs. Co-transfection
of the repair-PPRH with a pRad51 expression vector in DA5
cells led to an increase in gene correction frequency of 10-fold
compared to the transfection of the repair-PPRH alone (Solé
et al., 2014), thus confirming that homologous recombination is
involved in the repair process. Overall, this study represented the
proof-of-concept for the usage of PPRHs as gene editing tools.

CORRECTION OF POINT MUTATIONS IN
THE ENDOGENOUS LOCUS

In the following study, the usage of repair-PPRHs was expanded
by correcting a representative compilation of point mutations
(insertions, deletions, substitutions, and a double substitution)
located in the endogenous locus of the dhfr gene (Solé et al.,
2016). For that purpose, dhfr-deficient CHO cell lines derived
from the parental cell line UA21 (Urlaub et al., 1983), which
carried only one copy of the dhfr gene (hemizygous), were
selected to perform the repair experiments. DU8 (Urlaub et al.,
1989), DF42 (Carothers et al., 1986), DI33A (Chasin et al.,
1990; Carothers et al., 1993a), DA5 and DA7 (Carothers et al.,
1993b) and DP12B and DP6B (Carothers et al., 1993a) cell lines
contained premature STOP codons either in place by a nucleotide
substitution or downstream due to frameshift by single deletions,
insertions, or by exon skipping, thus producing a non-functional
DHFR enzyme (Table 1). Repair-PRHs were designed targeting
the different mutations and transfected in their corresponding
mutant cell lines. After selection in -GHT deficient medium,
repaired clones were expanded and analyzed by DNA sequencing
of the targeted site, thus demonstrating the correction of the
mutation. We also confirmed that the corrected dhfr gene was
completely functional since the levels of DHFR mRNA and
protein were equal or higher than the levels shown by the
parental cell line, as well as DHFR enzymatic activity (Solé et al.,
2016). In addition, we evaluated the variation in gene correction
frequency depending on the number of DF42 cells initially plated
to perform the experiment. The maximum frequency value was
observed (7.6%) when transfection was carried out with only
1,000 cells (Solé et al., 2016).

One can argue that PPRH molecules present a major
limitation since it is necessary to find polypyrimidine
stretches relatively close to the target mutation. Despite
these polypyrimidine domains are more abundant in the human
genome than initially predicted by simple random models
(Goñi et al., 2004, 2006), finding a polypyrimidine sequence
adjacent to the point mutation can be complicated in some
cases. To solve this issue for the DF42 mutant, we designed a

long-distance repair-PPRH whose repair domain was targeting
the mutation located 662 nt upstream from the polypyrimidine
target sequence of the hairpin core. The repair domain of the
repair-PPRH was connected to the hairpin core by another 5T
loop. This long-distance repair-PPRH was able to correct its
targeted mutation showing similar results to the short-distance
repair-PPRH used for the correction of the same mutant, thus
indicating that adjacency between the target mutation and the
polypyrimidine domain was not crucial to achieve the correction.

GENERALITY OF ACTION OF
REPAIR-PPRHS

Recently, we demonstrated the generality of action of repair-
PPRHs (Félix et al., 2020) by correcting three different mutations
in the endogenous locus of the aprt gene in various aprt-deficient
CHO cell lines (Table 1) named S23, S62, and S1 (Phear et al.,
1989). It is worth noting that this gene also served as a disease
model in CHO cells, since aprt deficiency in humans represents
an inherited condition that severely affects the urinary tract
and the kidneys (Bollée et al., 2012; Edvardsson et al., 2019).
In that study, we designed repair-PPRHs containing polypurine
hairpin cores composed of 19–22 nt to assure their specificity
and to minimize the off-target effects as much as possible. In
all the mutant cell lines we demonstrated the correction of the
mutation at the DNA, mRNA and enzymatic levels, showing
that the corrected APRT protein was completely functional.
Moreover, we used a long-distance repair-PPRH in which the
polypyrimidine target sequence was located 24 nt downstream
of the S1 mutation site, however, it showed a similar effect to
that of the short-distance repair-PPRH (Félix et al., 2020). The
influence of the cell cycle phase in the repair event was also
studied by performing gene correction experiments either during
S phase or in asynchronous conditions. The repair frequency was
increased by 2.5-fold in S phase (Félix et al., 2020), which is in
accordance with other studies regarding gene correction with
repair oligonucleotides (Majumdar et al., 2003; Brachman and
Kmiec, 2005; Olsen et al., 2005).

One of our concerns was the possible generation of off-target
edits in the repaired genome caused by the treatment with repair-
PPRHs. Whole genome sequencing analyses of repaired clones
revealed that the repair-PPRH did not produce any random
insertions or deletions (indels) in the genome. Moreover, the
sequence of the repair-PPRH itself was not detected in any
location of the genome (Félix et al., 2020). Finally, we got an
insight into the molecular mechanism responsible for the gene
correction event. The D-loop structure formation upon binding
of the repair-PPRH to its polypyrimidine target sequence was
demonstrated by DNA binding assays (Félix et al., 2020), thus
serving as a recombination intermediate that stimulates DNA
repair (Parekh-Olmedo et al., 2002; Drury and Kmiec, 2003,
2004). The mechanism of action of repair-PPRHs is depicted in
Figures 1B,C.

Despite the advantages of repair-PPRHs, we would like to
state that the main limitations of this technology are the low
repair frequency and the delivery. A way to ameliorate the low
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TABLE 1 | CHO mutant cell lines corrected by repair-PPRHs.

Cell line Gene Mutation Base change Coding change References

DF42 dhfr c.541

Exon 6

Substitution

G > T

STOP in place Solé et al., 2016

DA5 c. 541

Exon 6

Deletion

(-G)

STOP at +584

(normal termination is at +562)

DP12B c.370 – 2

Intron 4

Substitution

A > T

Exon 5 skipped

STOP at +504

DI33A c. 493

Exon 6

Insertion

(+G)

STOP at +505

DU8 c. 136 + 1

Exon 2/Intron 2

Double

substitution

GG > AA

Exon 2 skipped

STOP at +139

DA7 c. 235

Exon 3

Substitution

G > T

STOP in place

S23 aprt c. 7

Exon 1

Substitution

G > T

STOP in place Félix et al., 2020

S1 c. 180

Exon 2

Substitution

C > G

STOP in place

S62 c. 505

Exon 5

Substitution

G > T

STOP in place

Position numbers refer to the translational start site (ATG). The correction of the mutant cell lines using repair-PPRHs can be found in the referenced papers.

repair frequency would be to increase the rate of homologous
recombination. In this direction, as stated previously, co-
transfection of repair-PPRHs with a pRAD51 led to an increase
in the correction frequency. Since the rate of homologous
recombination is higher in the S phase of the cell cycle,
synchronization in the S phase can also increase the correction
frequency, as observed for the dhfr and aprt genes. Regarding
the delivery of repair-PPRHs, the development of new liposome
formulations (Juliano, 2016) or polymeric nanoparticles (McNeer
et al., 2015; Bahal et al., 2016; Ricciardi et al., 2018a) may
contribute to improve gene repair. Finally, modification in the
backbone of repair-PPRHs including phosphorothioate or locked
nucleic acids (LNA)may increase the stability of themolecule and
decrease its degradation by nucleases.

To date, we have only tested repair-PPRHs to correct single
and double point mutations. Anyhow, most monogenic diseases
are just caused by one point mutation in the responsible gene,
thus making repair-PPRHs an alternative tool to correct different
disorders. In this respect, we constructed Table 2 to show the
versatility for designing repair-PPRHs to correct some of the
most common point mutations that affect genes involved in
monogenic blood disorders, with the aim of making them
available for the scientific community.

CRISPR/CAS SYSTEMS

Nowadays, CRISPR/Cas has become a popular gene editing tool
for therapeutic purposes (Osborn et al., 2015; Dever et al., 2016;
Sansbury et al., 2019; van de Vrugt et al., 2019; Xiong et al., 2019).
Nevertheless, several studies have demonstrated the presence of
off-target effects caused by unspecific activity of the CRISPR/Cas
system (Cradick et al., 2013; Lin et al., 2014; Schaefer et al., 2017;
Anderson et al., 2018; Allen et al., 2019; Cullot et al., 2019).

Unintended on-target effects such as large deletions and complex
rearrangements have also been reported (Kosicki et al., 2018). In
this regard, Félix et al. showed the absence of off-target effects
when using repair-PPRHs to correct point mutations in the
aprt gene in mammalian cells. Furthermore, since Staphylococcus
pyogenes and Staphylococcus aureus cause infections at high
frequencies in human beings, an anti-Cas9 preexisting effector
T cell response has been discovered (Charlesworth et al., 2019;
Wagner et al., 2019). On the other hand, PPRHs are non-
modified (cheap) DNA oligonucleotides that do not activate the
innate inflammatory response (Villalobos et al., 2014).

TFOS

The ability of TFOs to stimulate recombination by triple helix
formation in mammalian cells was first described in 1996 (Faruqi
et al., 1996). Consecutive studies highlighted the potential of
TFOs to correct mutations in the DNA by triplex-induced
recombination between the target site and a donor DNA
molecule (Chan et al., 1999; Culver et al., 1999; Datta et al., 2001).
TFO backbone modifications have been developed to increase its
binding affinity while reducing nuclease-mediated degradation.
Peptide nucleic acids (PNAs) are synthetic DNA analogs
composed of N-(2-aminoethyl)-glycine monomers linked by
peptide bonds (Nielsen et al., 1991). This neutrally charged
backbone allows the PNA to bind with high affinity to DNA,
thus forming more stable triplex structures (Kim et al., 1993).
Moreover, PNAs are also resistant to nuclease and protease
activities (Demidov et al., 1994).

PNAs and their derivatives have been developed to correct
mutations responsible for different monogenic diseases.
Intranasal delivery of polymeric nanoparticles containing PNAs
and donor DNA sequences in cystic fibrosis mice led to the
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TABLE 2 | Compendium of repair-PPRHs designed to correct point mutations responsible for 10 different blood disorders.

Blood disorder Gene Mutation Codon

change

Name and sequence (5′->3′) of the Repair-PPRH

G6PD deficiency

(mediterranean)

G6PD c.563 C>T

Exon 6

TCC>TTC

Ser>Phe p.188

RHp-G6PD-E6-C (99 nt)

GCCGTCACCAAGAACATTCACGAGTCCTGCATGAGCCAGATGTAAGGC

TTGGGCAACGGGAGGGAAGGGCGGAttttAGGCGGGAAGGGAGGGCAACGG

Beta-Thalassemia HBB G>A

Intron 1 (+110)

TGG>TAG RHp-HBB-I1-C (91 nt)

ACTGACTCTCTCTGCCTATTGGTCTATTTTCCCACCCTTAGttt

tAAAAGAAAGGGGAAGAAAAGAttttAGAAAAGAAGGGGAAAGAAAA

Sickle cell disease HBB c.70 A>T

Exon 1

GAG>GTG

Glu>Val

p.7

RHp-HBB-E-T (81 nt)

CATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGT

GGGGCAAGGTGAACGttttGCAAGTGGAACGGGG

Porphyria HMBS c.33+1 G>A/T

Exon 1/ Intron 1

Intron retention

67 bp

RHp-HMBS-E1-T (97 nt)

GCAATGCGGCTGCAACGGCGGTGAGTGCTGAGCCGGTGACCtttt

GGAAGGAATGGGGAAATCAGAGAGttttGAGAGACTAAAGGGGTAAGGAAGG

Ferritin Deficiency FTL c.310 G>T

Exon 3

GAG>TAG

Glu>Ter p.104

RHp-FTL-E3-C (93 nt)

TGAAAGCTGCCATGGCCCTGGAGAAAAAGCTGAACCAGGCCttt

tGGAAAAGAGGGGGAGAGAGCAGttttGGAAAAGAGGGGGAGAGAGCAG

Dyserythropoietic

anemia

CODAN1B c.281 A>G

Exon 5

TAT>TGT

Tyr>Cys p.94

RHp-C15ORF41-E5-T (102 nt)

GAGCCATTAATGAGGGCGCATAGTCCACCTCATTGGCCAGGTCCAGGAGCACTGGGG

CAGGAGGTAAAAAGTGGTGAGGttttGGAGTGGTGAAAAATGGAG

Hemophilia A F8 c.6976 C>T

Exon 27

CGA>TGA

Arg>Ter p.2326

RHp-F8-E27 (87 nt)

CGTTACTGACTCGCTACCTTCGAATTCACCCCCAGAGTTGGtttt

GGCAGTGGAGAGGGAGGAGttttGAGGAGGGAGAGGTGACGG

Hemophilia B F9 c.169 C>T

Exon 2

CAA>TAA

Gln>Ter p.57

RHp-F9-E2 (100 nt)

ATTCTCTCTCAAGGTTCCCTTGAACAAACTCTTCCAATTTACCTtttt

AAGAAAAACTGAAATGTAAAAGAAttttAAGAAAATGTAAAGTCAAAAAGAA

Fanconi anemia FANCA c.295 C>T

Exon 4

CAG>TAG

Gln>Ter p.99

RHp-FANCA-E4 (99 nt)

GCCTTGAGGCTTGATCCTGCAAAGCAGAGCCTTAAACtttt

GGGGAGAATAGATGCAAAGGGAAAAAttttAAAAAGGGAAACGTAGATAAGAGGGG

Von Willebrand VWF c.4975 C>T

Exon 28

CGA>TGA

Arg>Ter p.1659

RHp-VWF-E28 (103 nt)

GACGCTCCCCCGAGAGGCTCCTGACCTGGTGCTGCAGAGGTGCTGCTCCGGAGAGG

GGCTGCAGAAGGGGTGGGAGAGGGGAttttAGGGGAGAGGGTGGGGA

The design of the different repair-PPRHs was performed as follows: (i) Finding triplex targeting sites near the mutation using the TFO searching tool (http://utw10685.utweb.utexas.

edu/tfo/) (Gaddis et al., 2006); (ii) Devising the corresponding polypurine hairpin core (underlined sequences); (iii) Determining the repair domain of the repair-PPRH corresponding to

the homologous sequence of the mutation site but containing the corrected nucleotide (green). In the case of a long-distance repair-PPRH, an additional 4–5 thymidine loop is added

between the hairpin core and the repair domain. The abbreviation of the gene responsible for the blood disorder, the position of the mutation and the affected codon are given for each

case. The position of the mutation is referred to the translation start site (ATG). TER, termination codon.

correction of the F508del CFTR mutation in vivo (McNeer et al.,
2015). More recently, PNAs delivered by polymeric nanoparticles
have been used to correct the ß-globin gene both in vivo (Bahal
et al., 2016) and in utero (Ricciardi et al., 2018a) in ß-thalassemic
mice with very low off-target activity. The most recent review
on PNAs as gene editing tools can be found in Economos et al.
(2020).

FINAL REMARKS

It is evident that triplex-mediated repair of mutations in the
DNA constitute a powerful gene editing approach that has
demonstrated its therapeutic effect in vivo. Repair-PPRHs can
represent a new tool in this field since they have shown
their efficacy to correct different point mutations in the dhfr
and aprt loci in mammalian cells with no detectable off-
target activity. In addition, here we describe a collection of
repair-PPRHs designed to correct 10 different blood diseases.

A better understanding of the mechanisms by which the
repair-PPRH triggers the recombination event may lead to
improvements on PPRH design, thus increasing the frequency
of correction.
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