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Pulmonary surfactant is critically important to prevent atelectasis by lowering the surface
tension of the alveolar lining liquid. While respiratory distress syndrome (RDS) is common in
premature infants, severe RDS in term and late preterm infants suggests an underlying
genetic etiology. Pathogenic variants in the genes encoding key components of pulmonary
surfactant including surfactant protein B (SP-B, SFTPB gene), surfactant protein C (SP-C,
SFTPC gene), and the ATP-Binding Cassette transporter A3 (ABCA3, ABCA3 gene) result
in severe neonatal RDS or childhood interstitial lung disease (chILD). These proteins play
essential roles in pulmonary surfactant biogenesis and are expressed in alveolar epithelial
type |l cells (AEC2), the progenitor cell of the alveolar epithelium. SP-B deficiency most
commonly presents in the neonatal period with severe RDS and requires lung
transplantation for survival. SFTPC mutations act in an autosomal dominant fashion
and more commonly presents with chiLD or idiopathic pulmonary fibrosis than
neonatal RDS. ABCA3 deficiency often presents as neonatal RDS or chiLD. Gene
therapy is a promising option to treat monogenic lung diseases. Successes and
challenges in developing gene therapies for genetic disorders of surfactant dysfunction
include viral vector design and tropism for target cell types. In this review, we explore
adeno-associated virus (AAV), lentiviral, and adenoviral (Ad)-based vectors as delivery
vehicles. Both gene addition and gene editing strategies are compared to best design
treatments for lung diseases resulting from pathogenic variants in the SFTPB, SFTPC, and
ABCAS3 genes.

Keywords: surfactant deficiency, viral vectors, alveoli, pulmonary disease, AEC2, ATIIl, AT2

INTRODUCTION

Pulmonary surfactant is a complex mixture of phospholipids and proteins that is secreted into the
alveolar space, reduces surface tension, prevents end expiratory alveolar collapse, and is required for
gas exchange. Surfactant is synthesized in lamellar bodies, specialized intracellular organelles derived
from lysosomes in alveolar epithelial type II cells (AEC2, aka ATII or AT?2 cells). Phospholipids are
transported into the lamellar bodies by ABCA3 and assemble with surfactant proteins B and C to
form surfactant. The lamellar bodies are released into the alveolar lumen via exocytosis. Pathogenic
variants in genes that encode key components of pulmonary surfactant include surfactant protein B
(SP-B, SFTPB gene), surfactant protein C (SP-C, SFTPC gene), and the ATP-binding cassette
transporter A3 (ABCA3, ABCA3 gene) and are leading inherited causes of neonatal respiratory
distress syndrome (RDS) and childhood interstitial lung disease (chILD) (Garmany et al., 2008).
Treatments for these monogenic pulmonary diseases are limited and non-specific, and for many

Frontiers in Genome Editing | www.frontiersin.org 1

January 2022 | Volume 3 | Article 785829


http://crossmark.crossref.org/dialog/?doi=10.3389/fgeed.2021.785829&domain=pdf&date_stamp=2022-01-14
https://www.frontiersin.org/articles/10.3389/fgeed.2021.785829/full
https://www.frontiersin.org/articles/10.3389/fgeed.2021.785829/full
http://creativecommons.org/licenses/by/4.0/
mailto:ashley-peterson@uiowa.edu
https://doi.org/10.3389/fgeed.2021.785829
https://www.frontiersin.org/journals/genome-editing
www.frontiersin.org
https://www.frontiersin.org/journals/genome-editing#articles
https://www.frontiersin.org/journals/genome-editing
https://www.frontiersin.org/journals/genome-editing#editorial-board
https://doi.org/10.3389/fgeed.2021.785829

Cooney et al.

Surfactant Lung Disease Gene Therapy

,7,/"
Lamellar body
exocytosis

DO OO D OPED PR OO ® ....%

@
- - @ 1) ... o000 00 monolayer
P> oL T
o2 e -
© o 9 S 5.0 ’ P2 P00 PO VBD GO
)
o) o o
o ¢ L\t ABCA3
- = © SP-B
N
Tubular myelin @ | I SP-C

Alveolar Type Il Cell

FIGURE 1| Schematic of SP-B, SP-C, and ABCAS protein localization in an alveolar type Il cell. 1) ABCAS transports phospholipids into lamellar bodies; SP-B and
SP-C provide support during surfactant assembly. 2) Lamellar bodies undergo exocytosis from alveolar type Il cell and unravel into tubular myelin. 3) Tubular myelin
disassembles into a surfactant monolayer through adsorption into a film at an air-liquid interface.
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patients, lung transplant may be the only option for survival
beyond the first months of life (Wambach et al., 2014). Recent
advances offer renewed opportunities to develop gene therapies
for genetic disorders of surfactant dysfunction resulting from
pathogenic variants in SFTPB, SFTPC, and ABCA3. There is no
“one size fits all” approach for developing gene therapy vectors for
SP-B, SP-C, and ABCA3 deficiencies. Non-viral vectors
(i.e., plasmid DNA, nanoparticles, and or in vitro transcribed
mRNA) and Epstein-Barr based plasmid DNA each have
important qualities and have advanced the lung gene transfer
field (reviewed in (Stribling et al., 1992; Tu et al.,, 2000)). This
review will focus on adeno-associated virus (AAV), lentiviral, or
adenoviral (Ad)-based delivery vehicles for a gene addition
approach or delivery of gene editing tools to complement or
repair disorders of surfactant dysfunction, as well as appropriate
models to assess gene transfer efficacy. Our goal for this review is
to introduce potential viral vector-mediated gene therapy options
for surfactant diseases and provide enough details about each
deficiency to highlight why gene therapy may be particularly
challenging for this disease class.

Surfactant Composition and Metabolism

Pulmonary surfactant production is a highly regulated process of
synthesis, secretion, degradation, and recycling. Surfactant is
composed of 90% phospholipids, specifically
phosphatidylcholine and phosphatidylglycerol, and cholesterol,
and 10% surfactant proteins A, B, C, and D (Agassandian and
Mallampalli, 2013). These components are synthesized in the
endoplasmic reticulum in AEC2s and assembled and stored in

lamellar bodies (Figure 1). Surfactant proteins B and C play a role
in reducing surface tension while surfactant proteins A and D are
collectins and play important roles in innate immunity (Pastva
et al, 2007). Surfactant is released from lamellar bodies via
exocytosis into the alveolar lumen. Upon release, the lamellar
bodies unwind to form tubular myelin, an ordered structure
which forms a film at the air-liquid interface (Canadas et al.,
2020).

SP-B, SP-C, and ABCA3 each play distinct roles in surfactant
production and homeostasis. SP-B is a hydrophobic protein required
for surfactant formation and is a key structural support, conferring
surface tension lowering properties with phospholipid molecules to
enhance surfactant spreading (Cochrane and Revak, 1991). SP-C
enhances adsorption at the air-liquid interface to reduce surface
tension. SP-C also plays an immunomodulatory role in clearing
pulmonary infections, as SP-C deficient mice exhibit inflammation
upon loss of SP-C (Glasser et al, 2009). ABCA3 is involved in
lamellar body formation and phospholipid transport. Loss of
ABCA3 results in surfactant lacking phosphatidylcholine and
increased surface tension (Garmany et al., 2006).

SP-B DEFICIENCY

Newborns with SP-B deficiency typically present with RDS
shortly after birth and die of progressive respiratory failure in
the first few months of life without a lung transplant. A few
children with biallelic SFTPB variants and chronic respiratory
insufficiency have been reported (Dunbar et al, 2000). SP-B
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deficiency is an autosomal recessive disease and the most
common pathogenic variant p. Prol133GInfs*95 (previously
known as ‘121ins2’) results in a frameshift and nonsense-
mediated decay of the mRNA transcript. Treatment with
exogenous surfactant enriched in SP-B protein is ineffective
(Thompson, 2001) and lung transplant remains infrequent due
to inavailability of suitable neonatal donor lungs (Eldridge et al.,
2017). Gene addition (Barnett et al., 2017; Leibel et al., 2019; Kang
et al., 2020) and gene editing approaches (Mahiny et al., 2015;
Jacob et al.,, 2017) have demonstrated that complementing SP-B
expression in AEC2s restores the phenotypic defect in vitro and in
vivo. Although gene editing approaches may be successful, the
diversity of pathogenic variants suggests that a gene addition
approach may be a more near term goal for SP-B deficiency.
SP-B plays a major role in the assembly and function of
pulmonary surfactant and is required for proper lamellar body
biogenesis in AEC2s (Figure 1). It commonly exists as a
homodimer and is a small, 79 amino acid hydrophobic protein
that permeabilizes, cross-links, mixes, and fuses cell membranes.
Mature SP-B results from proteolytic modifications involving the
381 amino acid preproSP-B peptide followed by additional
glycosylation and proteolytic events of proSP-B (Guttentag,
2008) (Figure 2A). Pathogenic SFTPB variants that disrupt
glycosylation or proteolytic cleavage sites have been identified
(Lin et al, 2000). While both viral and nonviral delivery
strategies offer promise, here we will focus on viral vectors.

Gene Therapy Approach:

Adeno-Associated Virus Vectors
AAV vectors have gained interest with increasing clinical
applications following the FDA approval of Luxturna (Maguire

et al,, 2008), Zolgensma (Mendell et al., 2017), and promising
studies for Duchenne muscular dystrophy (Duan, 2018). AAV
vectors are episomal, have excellent safety profiles, and persist
long-term in mitotically quiescent cells. Additionally, AAV can
be produced to high titers and has a scalability to produce clinical
grade vector (Selvaraj et al, 2021). However, the ~4.7kb
packaging capacity limit is challenging for large transgenes.
The relatively small coding sequence of SP-B (~1.2 kb) makes
AAV a feasible vector candidate. Indeed, Kang et al. used AAV to
deliver SFTPB and restored surfactant production and improved
survival in the conditional lethal SP-B knockout mouse model
(Kang et al., 2020). AAV6 carrying a proSFTPB ¢cDNA was
delivered to conditional SP-B null mice, which typically die
within 2 days of birth due to respiratory failure. In this study,
survival increased to ~200 days. Additionally, lamellar body
formation was restored and lung structure and function were
improved. Other approaches such as delivering truncated
versions of SP-B demonstrated increased survival in SP-B
deficient mice. These studies also revealed that the C-terminal
portion of the protein is important for surfactant formation
(Akinbi et al., 1997).

When designing a gene therapy vector, an important goal is the
efficient delivery to and the persistent expression of the transgene in
a target cell type. Endpoints to be quantified include the transduction
efficiency, transgene expression (mRNA and protein), and
functional correction. To achieve this with AAV, capsid selection
is necessary for transducing AEC2s. AAV2, AAV6, and AAV6
variant capsids transduce AEC2 organoid models (Meyer-Berg
et al, 2020) as well as both airway and alveolar epithelial cells
(Kang et al,, 2020). The route of administration is an important
consideration for successfully transducing target cells of interest.
AAV9 administered intravenously transduces heart, skeletal muscle,
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and pancreas with better efficacy compared to an AAV8 capsid
(Inagaki et al, 2006). Whether topical lung delivery or systemic
delivery is superior for AEC2 transduction remains to be
determined.

Following efficient transduction of AEC2s, achieving
persistent expression in the lung likely will require
integration in a progenitor cell population. AAV is
generally considered to be non-integrating, but its
persistence in AEC2s is unknown. Incorporating an
integrating system such as the piggyBac transposon into
AAV is a potential strategy to achieve persistent expression
in the alveoli (Cooney et al., 2015; Brommel et al., 2020).
AEC2s are an important progenitor cell in the alveolus
(Olajuyin et al., 2019) and while they retain secretory
functions for surfactant production, they are also critical for
alveolar homeostasis, through self-renewal or differentiation
to alveolar type I cells (Mason and Williams, 1977;
Fehrenbach, 2001). Lastly, promoter and polyadenylation
(pA) tail choice is important to consider. Promoter size is
another key factor in decision making, specifically a short
promoter with sufficient activity. Synthetic promoters such as
F5Tg83 and a short polyA have been created to maximize space
within AAV vectors (Yan et al, 2015). AEC2-specific
promoters for cell specific expression of SP-B and ABCA3
have yet to be evaluated. The SP-C promoter is a candidate for
directing AEC2 specific gene expression (Degiulio et al., 2010).

Gene Therapy Approach: Lentiviral Vectors
Lentiviral vectors demonstrated therapeutic efficacy in ex vivo
gene transfer to hematopoietic stem cells for as ADA-SCID
(Kohn et al, 2021), p-Thalassemia (Thompson et al, 2018),
and Wiskott-Aldrich  syndrome (Sereni et al, 2019).
Insertional mutagenesis is a potential risk with any integrating
vector. The functional consequences of lentiviral vector
integration has received considerable attention (reviewed in
(Schlimgen et al, 2016; Milone and O’Doherty, 2018)).
However, using the current generation of self-inactivating
vectors, the clonal expansion of corrected cells has not been
observed following ex vivo or systemic delivery of lentiviral
vectors. The risk versus benefit must be taken into
consideration when evaluating the use of an integrating vector.
Lentiviral vectors are recognized for their ability to transduce
both dividing and non-dividing cells, integrate for long-term
expression, and allow readministration without blocking immune
responses (Sinn et al., 2008). Lentiviral vectors encoding SFTPB
delivered to alveolar organoids conferred SP-B expression and
reversed the surfactant deficiency phenotype in vitro (Leibel et al.,
2019; Munis et al.,, 2021). A key consideration in designing a
therapeutic lentiviral vector for SP-B deficiency is envelope
selection to transduce the appropriate cell type. Vesicular
stomatitis virus glycoprotein (VSV-G) is the most common
envelope used to pseudotype retroviruses and is reported to
transduce AEC2s (Borok et al., 2001). Other envelopes such as
baculovirus GP64 (Sinn et al,, 2012) and Sendai virus F/HN
(Griesenbach et al., 2012) also transduce alveolar epithelia.
Options for promoter choice include cell type specific or
constitutive elements. Production of clinical grade vector for
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in vivo somatic cell targeting represents a challenge, but
advances in lentivirus manufacturing (Valkama et al., 2018;
Martinez-Molina et al., 2020; Soldi et al., 2020) make this a
promising therapeutic for SP-B deficiency.

SP-C ASSOCIATED INTERSTITIAL LUNG
DISEASE

SP-Cis a 35-amino acid hydrophobic protein that organizes with
SP-B to lower the surface tension of surfactant (Figure 1). The
SFTPC locus spans ~3,500 bp and is expressed from six exons on
chromosome 8. A 197-amino acid protein is first produced with
an N-terminal propeptide domain and C-terminal BRICHOS
domain (pro-SPC). As the mature protein is processed, the
N-terminal domain is cleaved from the proSPC form to SP-C.
The mature protein has a shortened N-terminal domain, linker,
and C-terminal BRICHOS domain (Figure 2B).

Pathogenic variants in SFTPC can arise de novo (~50% of
cases) or are inherited (~50% of cases) (Nogee et al., 2002). A
pathogenic splicing variant in SFTPC within the first base of
intron 4 (c.460+1G > A) was first reported in 2001 in an infant
and mother with interstitial pneumonitis (Nogee et al., 2001).
Subsequently, additional pathogenic SFTPC variants have been
identified, the most frequent of which is p. I73T (Cameron et al.,
2005). Individuals with pathogenic SFTPC variants most
commonly present with sporadic or familial interstitial lung
disease as infants, children, or adults, and less frequently with
neonatal RDS (Nogee et al., 2002). The disease course is highly
variable with some infants presenting with severe respiratory
failure requiring lung transplant, others exhibiting chronic
disease managed with long-term mechanical ventilation
(Liptzin et al, 2015), and others remaining relatively
asymptomatic (Thomas et al,, 2002). Genotype alone is not
predictive of disease presentation, severity, and or course.
Pathogenic SFTPC variants located in the C-terminal
BRICHOS domain, which acts as a chaperone to promote
protein stability, result in increased endoplasmic reticulum
stress, inflammation, and spontaneous pulmonary fibrosis in
a murine model (Katzen et al., 2019). Non-BRICHOS variants,
which include p. I73T, result in defective AEC2
macroautophagy, inflammation, remodeling, and fibrosis
(Nureki et al., 2018).

SP-C associated interstitial lung disease is a gain-of-toxic-
function disease inherited in an autosomal dominant pattern with
variable penetrance (Thomas et al., 2002). Expression of a mutant
SFTPC allele is responsible for the surfactant dysfunction
phenotype. The resultant gain-of-toxic-function requires
silencing of the mutant allele. Therefore, a gene addition
approach is not an option. An allele specific gene knockout or
knockdown approach can be used to disrupt and inactivate or
reduce the abundance of the mutant SFTPC product. CRISPR/
Cas9 nuclease-mediated gene knockout has been validated in
mice in utero by targeting the p.173T allele, resulting in improved
lung morphology, and increased survival of offspring (Alapati
et al, 2019). RNAi and antisense RNA strategies can also be
envisioned.
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Gene Editing Approach: AAV Vectors
Common gene editing approaches, such as CRISPR/Cas9, may be

employed using either homologous recombination or non-
homologous end joining approaches to repair or inactivate the
mutant allele. Alternatively, the advent of cytosine and adenine
base editors and prime editing may allow single base changes
without causing indels (Levy et al., 2020). AAV is commonly used
to deliver gene editing tools, including incorporating a split-intein
system to allow for co-delivery of cassettes larger than the AAV
packaging capacity. Alternatively, the smaller Staphylococcus
aureus Cas9 can be delivered with a sgRNA using a single
AAV vector (Lau and Suh, 2017). As with developing a gene
editing treatment for any disease, an individualized approach
may be required for the array of pathogenic SFTPC variants that
cause interstitial lung disease.

ABCAS DEFICIENCY

ABCA3 deficiency, an autosomal recessive disorder, and is caused
by pathogenic variants in ABCA3. Biallelic variants in ABCA3
cause severe neonatal RDS, chILD, and adult pulmonary fibrosis
(Shulenin et al., 2004; Klay et al., 2020; Tomer et al., 2021). Infants
with biallelic ABCA3 frameshift or nonsense variants present with
neonatal RDS at birth and die within the first year of life without
lung transplant (Wambach et al, 2014). The respiratory
phenotypes and disease courses for individuals with ABCA3
missense variants are variable and include neonatal RDS and
interstitial lung disease.

ABCA3 is a phospholipid transporter located at the lysosomal-
derived lamellar body limiting membrane and plays a critical role
in surfactant assembly and lamellar body formation (Figure 1).
The ABCA3 cDNA encodes a 1,704 amino acid polypeptide.
Mature ABCA3 protein is folded in the endoplasmic reticulum
and undergoes glycosylation in the Golgi (Beers and Mulugeta,
2017). A second post-translational modification involves the
N-terminal proteolytic cleavage of the 190kD protein,
shortening the protein to 150 kD (Engelbrecht et al., 2010)
(Figure 2C). The lamellar bodies from infants and children
with ABCA3 deficiency are small with dense bodies and are
described as having a “fried-egg appearance” (Wert et al., 2009).
Two mechanistic classes of ABCA3 missense variants have been
identified: disruption of intracellular trafficking and impaired
phospholipid transport (Matsumura et al., 2006; Denman et al,,
2018; Wambach et al.,, 2020). The most common pathogenic
variant is p. E292V, a missense variant that impairs phospholipid
transport (Wambach et al., 2016). This variant is commonly
associated with chILD (Wambach et al,, 2014) and is present in
0.4% of individuals in Genome Aggregation database (gnomad.
broadinstitute.org, accessed September 2021).

The overall goal for gene therapy to treat loss-of-function
diseases is to efficiently and persistently (long-term) express
ABCA3 at physiological levels in AEC2s. A gene addition
strategy involves complementing the loss of function with a
full length ABCA3 cDNA. Because most ABCA3 variants are
rare and private, this poses a challenge for developing variant-
specific gene editing or targeted drug approaches. The size

Surfactant Lung Disease Gene Therapy

constraints of some viral vectors present challenges for a
transgene as large as ABCA3.

Gene Therapy Approach: Lentiviral Vectors
Gene addition of ABCA3 cDNA using lentiviral vectors is a
promising therapeutic approach. Lentiviral vectors have a
packaging capacity of at least 7.5kb and could readily
accommodate the 5.1kb ABCA3 transgene and promoter.
Additionally, lentiviral vectors are amenable to pseudotyping
with various envelopes to modify tropism. As discussed in the
lentiviral section of SP-B deficiency, envelope, promoter, and
polyadenylation signal are important considerations in designing
a gene therapy vector for ABCA3 deficiency. The integrating
properties of lentiviral vectors make this vector class an attractive
option for ABCA3 deficiency.

Gene Therapy Approach:

Adeno-Associated Virus ectors

Given that the ABCA3 5.1 kb cDNA size surpasses the 4.7 kb
packaging limit of AAV vectors, an AAV approach to deliver the
full length ABCA3 is challenging with current technologies.
Approaches using AAV to restore ABCA3 deficiency can be
modeled from other diseases, including insertion of a partial
super exon cDNA as described for another ABC transporter
protein, and cystic fibrosis transmembrane conductance
regulator (CFTR also know as ABCC7) (Bednarski et al,
2016). A dual vector approach using split inteins has been
employed to deliver gene editing tools, specifically splitting the
Cas9 transgene between two AAV vectors which are joined by a
C-terminal and N-terminal inteins (Tornabene et al., 2019);
however, this approach may not be feasible in proteins with
multiple transmembrane domains. Further studies are required to
investigate whether ABCA3 could be delivered using such dual
vector platforms.

Gene Therapy Approach: Adenoviral

Vectors

Adenoviral (Ad)-based vectors provide robust expression and a
relatively large carrying capacity (~10 kb). Additional features of
Ad vectors are: 1) they transduce both dividing and non-dividing
cells, 2) they have broad tissue tropism, and 3) they are scalable
for clinical platforms. Still, their greatest hurdle is the innate and
adaptive immune responses which can clear transduced cells. In
efforts to overcome limitations due to immune responses, helper-
dependent Ad (HDAd) vectors were created by deleting all viral
genes, leaving only a packaging signal. The required viral
components are provided by a helper virus in trans during
virus production. A second limitation is that Ad is not an
integrating vector. However, Ad-based delivery of gene editing
tools has shown long-term phenotypic correction of Hemophilia
B in a mouse model (Stephens et al, 2019). Furthermore,
numerous studies have incorporated transposon systems such
as Sleeping Beauty and piggyBac to create hybrid integrating
adenoviral vectors (Cooney et al., 2015; Boehme et al., 2016). Ad-
based vectors remain a candidate platform for gene therapy and
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vaccine developments. An advantage for the production of Ad-
based vectors is their ability to be grown to high titers and
stringently purified (Danthinne and Imperiale, 2000; Nadeau
and Kamen, 2003).

Given the 5.1kb ABCA3 transgene, Ad-based vectors have
been extensively used to study ABCA3 complementation and the
impact of various variants. For example, Ad vectors carrying
ABCA3 variants including p. L101P (mistrafficking mutant) and
p- E292V (impaired phospholipid transport mutant) were used to
functionally characterize mutant effects in a pulmonary epithelial
cell line (A549 cells) (Wambach et al,, 2016; Hu et al., 2020;
Wambach et al., 2020). These studies helped establish how the
proteins from each mutant mechanistic class traffic through the
cell, affect lamellar body formation, and transport
phosphatidylcholine. ~ Identification =~ of  variant-specific
mechansims may inform disease course or therapeutic approach.

PRECLINICAL MODEL SYSTEMS TO
VALIDATE GENE THERAPY STRATEGIES
FOR SURFACTANT DEFICIENCIES

Immortalized pulmonary epithelial cell lines with characteristics
of AEC2s such as A549 cells are a first line model system because
they are easy to passage and maintain, form lamellar body-like
structures which can be visualized by electron microscopy, and
are readily transduced by viral vectors. A549 ABCA3 ™'~ cells are
established and lack well-developed lamellar body-like structures
(Wambach et al., 2020). However, a major limitation for tumor-
derived cell lines such as A549 is that they do not produce
surfactant. Alveolar cells need to differentiate in order to
produce surfactant and express SP-C, a common marker used
to identify AEC2s.

Alveolar epithelial cell organoids derived from human
embryonic or pluripotent stem cells generate alveolospheres in
culture which display functional properties of AEC2s. These cells
can proliferate, differentiate, and be modified to encompass
surfactant dysfunction phenotypes (Jacob et al, 2017; Jacob
et al., 2019). iPSC organoids derived from a patient with SP-B
deficiency mirrored the disease phenotype including decreased
surfactant production. This defect was restored when transduced
with a lentiviral vector carrying SFTPB, including proper lamellar
body formation (Leibel et al., 2019). In total, AEC2 organoids are
a useful model to assess strategies to restore function of surfactant
components.

Measuring restoration of surfactant function is challenging.
Surfactant proteins B and C are typically quantified to confirm the
presence of surfactant proteins in cell lysates or secretions. The
measurement of phospholipid transport using
dipalmitylphosphatidylcholine (DPPC) release is one method
to assess surfactant production (Jacob et al, 2017).

Surfactant Lung Disease Gene Therapy

Instruments such as the pulsating bubble surfactometer can be
used to measure the surface tension lowering properties of cell
secretions.

Mouse models of each of these surfactant-based genetic
diseases have been generated. SP-B knockout mice develop
severe respiratory distress and die within hours of birth and
exhibit dense, abnormal lamellar body-like organelles (Clark
et al, 1995; Stahlman et al., 2000). Restoring SP-B using an
AAV vector improved survival in conditional SP-B knockout
mice (Kang et al., 2020). Alternatively, SP-C knockout mice are
viable and can survive to adulthood. They produce lamellar
bodies and surfactant proteins A, B, and D. Phenotypic
responses include decreased stability of surfactant at low
volumes, pneumonitis and emphysema (Glasser et al., 2001;
Whitsett and Weaver, 2002). ABCA3 knockout mice have a
similar outcome as SP-B knockout mice and do not survive
(Ban et al, 2007; Fitzgerald et al,, 2007). Conditionally null
ABCA3 mice have also been generated (Besnard et al., 2010).

CONCLUDING REMARKS

Gene based therapies for disorders of surfactant dysfunction
resulting from pathogenic variants in SFTPB, SFTPC, and
ABCA3 are now realizable. Generating a delivery vector for
either a gene addition or gene editing approach requires the
careful consideration of vector design, transgene expression
cassette, preclinical models used, and assays to assess the
correction of surfactant production and function.
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