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The CRISPR system has transformed many research areas, including cancer and
immunology, by providing a simple yet effective genome editing system. Its
simplicity has facilitated large-scale experiments to assess gene functionality
across diverse biological contexts, generating extensive datasets that boosted the
development of computational methods and machine learning/artificial
intelligence applications. Integrating CRISPR with single-cell technologies has
further advanced our understanding of genome function and its role in many
biological processes, providing unprecedented insights into human biology and
disease mechanisms. This powerful combination has accelerated AI-driven
analyses, enhancing disease diagnostics, risk prediction, and therapeutic
innovations. This review provides a comprehensive overview of CRISPR-based
genome editing systems, highlighting their advancements, current progress,
challenges, and future opportunities, especially in cancer and immunology.
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1 Introduction

CRISPR technology has revolutionized genome editing by enabling precise
modifications to the genome, resulting in insertions, deletions, or base substitutions
(Jiang et al., 2020; Manghwar et al., 2019). Initially discovered as a bacterial immune
mechanism (Horvath and Barrangou, 2010), its potential was realized when scientists
demonstrated its programmable nature for editing eukaryotic genomes (Jinek et al., 2012).
The simplicity of generating targeted edits catalyzed the development of advanced genome
editing tools, including CRISPR-Cas9 knockouts (Savic and Schwank, 2016), epigenome
editing (Braun et al., 2017; Cervantes-Gracia et al., 2021; Gilbert et al., 2013; Konermann
et al., 2015), base/prime editing (Anzalone et al., 2020; Anzalone et al., 2019; Gaudelli et al.,
2017), and RNA editing (Abudayyeh et al., 2017; Cox et al., 2017; Xu et al., 2021b; Yu et al.,
2024), which have been extensively applied in functional genomics (Przybyla and Gilbert,
2022), therapeutic discovery (Chavez et al., 2023) and disease modeling (Gopal et al., 2020)
as shown in Figure 1.
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Simultaneously, the emergence of single-cell technologies has
revolutionized our understanding of cellular heterogeneity,
revealing previously unknown cell states and dynamics. Single-
cell RNA sequencing (scRNA-seq) was instrumental in profiling
gene expression at the single-cell level, revealing cellular
composition and function (Jovic et al., 2022). Advances in multi-
omics technologies, such as the integration of scRNA-seq with
single-cell ATAC-seq (scATAC-seq) (Jansen et al., 2019) or
CITE-seq (Stoeckius et al., 2017), have further refined our ability
to map transcriptomic, epigenetic, and proteomic landscapes,
enabling the discovery of novel gene regulatory networks (Badia
et al., 2023).

The convergence of CRISPR technology with single-cell
platforms provides a unique opportunity to investigate gene
function and perturbation effects at an unprecedented resolution.
CRISPR pooled screens integrated with single-cell readouts enable
the identification of gene regulatory networks and cellular responses
(Datlinger et al., 2017). Computational approaches have been
pivotal in enhancing the precision and interpretability of these
studies. For instance, machine learning models have optimized
on-target and off-target specificity for CRISPR applications
(Chuai et al., 2018), while perturbation scores derived from
scRNA-seq data offer quantitative insights into gene functionality
(Rood et al., 2024; Song et al., 2023).

The application of these integrated technologies has been
particularly impactful in advancing cancer research and
immunotherapy. CRISPR-mediated editing has enhanced the
efficacy and safety of CAR-T cell therapies, addressing key
clinical challenges such as minimizing off-target effects, including
cytokine release syndrome (Razeghian et al., 2021). Additionally,
multiplex genome editing has allowed for the modification of
endogenous T-cell receptors, improving their ability to target and
overcome hostile tumor microenvironments (Legut et al., 2018).
Beyond oncology, CRISPR has facilitated the development of viral

vaccines (Bhujbal et al., 2022) and the engineering of immune cells
for personalized medicine, broadening its therapeutic potential and
clinical applications.

This review explores the recent advancements in CRISPR
technologies and single-cell platforms, emphasizing the critical
role of computational tools in bridging experimental data with
actionable biological insights. The subsequent sections provide a
comprehensive exposition: Section 2 presents a historical and
mechanistic overview of the CRISPR-Cas system; Section 3
critically evaluates contemporary technological innovations
encompassing targeted gene disruption, epigenetic modulation,
and precision base/prime editing methodologies; Section 4 details
the integration of CRISPR perturbation screens with single-cell
transcriptomic and epigenomic assays to elucidate cellular
heterogeneity and complex gene regulatory networks; and Section
5 explores the translational implications of these methodologies in
oncology and immunotherapy. By integrating these methodologies,
we aim to highlight their transformative impact on functional
genomics, therapeutic discovery, and immunotherapy alongside
the challenges and opportunities that lie ahead.

2 Overview of CRISPR-Cas system

CRISPR-Cas systems are adaptive immune mechanisms in
bacteria and archaea that defend against invading genetic
elements. These systems consist of CRISPR repeat-spacer arrays,
transcribed into CRISPR RNA (crRNA) and trans-activating
CRISPR RNA (tracrRNA), along with Cas proteins possessing
endonuclease activity (Koonin and Makarova, 2009). CRISPR-Cas
systems are categorized into two classes: Class 1 systems involve
multi-Cas protein effector complexes (Types I, III, and IV), while
Class 2 systems utilize single-effector proteins (Types II, V, and VI)
(Hoffmann et al., 2016; Koonin et al., 2017).

FIGURE 1
Timeline of CRISPR technology advancement. A brief overview of the development of the CRISPR-Cas tool from research to therapeutic application.
The figure showcases advancements in CRISPR technology, application, and integration of single cell screens to enhance biological knowledge.
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The Type II CRISPR-Cas9 system, derived from Streptococcus
pyogenes (SpCas9), was the first to be characterized and widely
applied in genome editing. Cas9, guided by a single-guide RNA
(sgRNA)—a fusion of crRNA and tracRNA—recognizes a specific
DNA target via the protospacer adjacent motif (PAM) and
introduces double-strand breaks (DSBs) (Jinek et al., 2012).

The DSBs generated by Cas9 are repaired through either non-
homologous end joining (NHEJ) or homology-directed repair
(HDR) pathways (Ceccaldi et al., 2016). NHEJ, the predominant
repair mechanism, introduces random insertions or deletions
(indels), often resulting in frameshift mutations that inactivate
target genes. NHEJ is more efficient in mammals than HDR, as it
operates throughout most of the cell cycle and does not require a
homologous template (Lieber, 2010; Weterings and Chen, 2008).

3 Advancement in CRISPR-Cas system

3.1 Evolution of the CRISPR-Cas toolkit

The success of pooled and indel-based screening, combined with
SpCas9’s limitations, such as constrained targeting space and off-
target effects—has driven the development of Cas9 variants (Chen
et al., 2017; Ikeda et al., 2019; Kleinstiver et al., 2015; Lee et al., 2018;
Walton et al., 2020). These variants can be broadly categorized into
canonical and non-canonical types.

Canonical variants involve mutations in one of the
Cas9 endonuclease domains (HNH or RuvC), enhancing editing
efficiency while reducing off-target effects (Ikeda et al., 2019; Kim
et al., 2020; Kleinstiver et al., 2015; Lee et al., 2018).

In contrast, non-canonical variants feature mutations in the PI
domain, expanding the targeting range by relaxing PAM recognition
requirements but often at the cost of reduced editing efficiency
(Casini et al., 2018; Hu et al., 2018; Kim et al., 2020; Walton
et al., 2020).

Canonical variants’ improved performance stems from
minimizing non-specific interactions between the HNH domain
and target DNA, reducing mismatch tolerance (Chen et al., 2017).

Non-canonical variants significantly enhance targeting flexibility by
relaxing the PAM-PI complex (Nishimasu et al., 2018) (Figure 2).

The availability of these Cas9 variants, coupled with high-
throughput screening techniques, has dramatically expanded the
CRISPR-Cas toolkit. This versatility empowers researchers to tailor
CRISPR systems to specific experimental requirements, advancing
functional genomics, therapeutic discovery, and beyond
(Supplementary Table 1).

3.2 CRISPR-Cas in gene regulation and
therapeutics

The Cas9 system and its variants were initially employed for
functional gene assessment through gene knockout. However, to
investigate the roles of transcripts and epigenetics in cellular state
development, Cas9 underwent significant protein engineering. Early
efforts focused on mutating the catalytic domains of Cas9—RuvC
and HNH—to render them catalytically inactive, resulting in
nuclease-dead Cas9 (dCas9). This dCas9 was repurposed for
transcriptional regulation by fusing it with effector domains
(Gilbert et al., 2014). For transcriptional repression, dCas9 was
fused to the KRAB (Krüppel-associated box) domain [CRISPRi
(Bikard et al., 2013; Gilbert et al., 2014; Gilbert et al., 2013)]. In
contrast, transcriptional activation was achieved by coupling
dCas9 with the MS2-VP16 hybrid protein [CRISPRa (Gilbert
et al., 2014; Gilbert et al., 2013; Konermann et al., 2015)]. These
modifications were pivotal in advancing research across human and
mouse models and mouse embryos, enabling the identification of
key regulatory genes critical for cellular development and gene
regulatory networks (Kearns et al., 2014).

However, incorporating repressor or activator domains into the
dCas9-sgRNA-target complex introduces additional layers of
structural complexity to the CRISPRi/a system. This increased
complexity results in a more rigid structural conformation,
limiting the system’s flexibility and efficiency. Furthermore,
structural rigidity can influence the spatial orientation of the
complex, impacting its ability to function optimally at target loci.

FIGURE 2
CRISPR variants of SpCas9, along with mutation regions. Non-canonical variants distinctly have PAM interacting (PI) mutations, whereas canonical
variants mostly have endonuclease domains or nearby chains.
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Additionally, the intricate structure of the CRISPRi/a system can
inadvertently affect the expression of neighboring genes, leading to a
loss of precise control and an increase in off-target effects. Despite its
potential, the modifications introduced by CRISPRi/a remain
temporary and limited in scale. These limitations have restricted
its broader clinical and therapeutic applications, underscoring the
need to develop more robust and scalable systems to enable effective
clinical translation.

Transiting gene editing tools to clinical or therapeutic relevance
necessitates minimal off-target effects, precise editing, and efficient
delivery. To address these challenges, base and prime editors were
developed, enabling precise point mutations without requiring
double-strand breaks (DSBs) or donor templates (Gaudelli et al.,
2017; Komor et al., 2017; Molla and Yang, 2019; Yang et al., 2019;
Komor et al., 2016; Anzalone et al., 2019). These advancements
marked a significant step forward in enhancing the precision and
applicability of CRISPR-based systems.

The base editor system comprises catalytically impaired Cas9,
sgRNA, and a deaminase enzyme. Depending on the deaminase,
base editors are classified into Cytosine Base Editors (CBEs) and
Adenine Base Editors (ABEs). CBEs use cytidine deaminase to
convert C•G base pairs to T•A base pairs (Komor et al., 2016),
while ABEs use deoxyadenosine deaminase to catalyze A•T-to-G•C
conversions (Gaudelli et al., 2017). Both ABEs and CBEs mediate all
four possible transition mutations (C→T, A→G, T→C, G→A),
which collectively account for 30% of currently annotated human
pathogenic variants (Landrum et al., 2016). These systems have
demonstrated therapeutic potential, such as correcting pathogenic
mutations in the HBB promoter by converting C•G to T•A in the
BCL11A erythroid enhancer, a strategy to address
hemoglobinopathies (Zeng et al., 2020). Additionally, advanced
base editor systems [e.g., BE4 and higher (Koblan et al., 2018)]
have incorporated high-fidelity Cas9 variants to enhance targeting
scope and reduce both gRNA-dependent and independent off-target
effects (Anzalone et al., 2020; Rees et al., 2017; Xu et al., 2019),
thereby broadening their utility in therapeutic applications.

Despite these advancements, base editors have limitations. They
are unable to mediate transversion mutations (e.g., C•G-to-A•T,
C•G-to-G•C, T•A-to-A•T, T•A-to-G•C), and they cannot
introduce insertions or deletions. Additionally, undesired
bystander mutations may occur when multiple target nucleotides
fall within the base editing window. To overcome these constraints,
prime editors (Anzalone et al., 2020; Rees and Liu, 2018) were
developed (Anzalone et al., 2019), enabling all 12 possible types of
point mutations and small insertions and deletions with favorable
editing-to-indel ratios.

The prime editing system employs fusion proteins comprising a
Cas9 nickase domain (inactivated HNH nuclease) and an
engineered reverse transcriptase. The system is guided by a prime
editing guide RNA (pegRNA), which specifies the target site through
its spacer sequence and encodes the desired edit within a 3′extension
of the pegRNA (Anzalone et al., 2019). Prime editors have been
successfully tested in multiple human cell lines (Anzalone et al.,
2019), postmitotic mouse cortical neurons (Anzalone et al., 2019),
human induced pluripotent stem cells (Surun et al., 2020), and
mouse embryos (Liu Y. et al., 2020). However, their application in
clinical and therapeutic contexts remains limited compared to base
editors. This limitation is primarily due to an incomplete

understanding of DNA repair mechanisms underlying productive
versus unproductive prime edits and challenges in delivering
complex pegRNA constructs in vivo. Nevertheless, recent
advancements, such as shrinking the size of reverse transcriptase
and manipulating DNA repair pathways to favor 3′edited flaps over
5′flaps, have shown promise in improving the efficiency and viability
of prime editing systems for clinical use (Anzalone et al., 2020).

Together, base editors and prime editors complement each
other, addressing distinct mutational needs and expanding the
scope of precise genome editing. These innovations bring us
closer to realizing the full potential of CRISPR-based systems for
clinical and therapeutic applications, paving the way for gene
therapy-driven treatments.

3.3 Computational insights and advances in
CRISPR-Cas systems

The advent of CRISPR-Cas systems has revolutionized genome
and epigenome editing, accelerating advancements in functional
genomics. This progress underscores the importance of accurately
characterizing and quantifying genome editing outcomes to
facilitate the development of novel tools and bridge the
knowledge gap between genome sequence and function (Clement
et al., 2020). Numerous CRISPR-based screening methods have been
developed, including pooled (Shalem et al., 2015; Wang et al., 2014),
tiling (He et al., 2019), and indel-focused approaches (Kim et al.,
2017), which rely heavily on next-generation sequencing (NGS).
These methodologies involve multiple downstream processing steps,
necessitating robust computational tools to ensure precise
data analysis.

3.3.1 Preprocessing tools for screening datasets
The downstream analysis of CRISPR-based screening data

begins with preprocessing steps critical for ensuring data quality
and reliability. Key tasks include removing sequencing artifacts,
reading alignment to reference genomes, quantifying sgRNA
abundance, and normalizing to minimize experimental biases.
Computational tools tailored to these tasks streamline the data
processing pipeline, enhancing the reproducibility and
interpretability of experimental results (Li et al., 2023). Among
the most widely adopted tools are CRISPResso and MAGeCK,
each designed for distinct aspects of CRISPR data analysis.

CRISPResso (Pinello et al., 2016) is a versatile tool for
qualitative and quantitative assessment of genome-editing
outcomes at target loci using NGS data. It evaluates sequence
quality, ensures high alignment fidelity, and measures insertions,
deletions, and nucleotide substitutions with precision. Furthermore,
it detects frameshift mutations and quantifies repair outcomes,
enabling comprehensive evaluation of editing accuracy. The
advanced version, CRISPResso2 (Clement et al., 2019), extends
its capabilities to encompass base and prime editing experiments,
support multiple editing types, and perform allele-specific
quantification in heterozygous references. This makes
CRISPResso an indispensable tool for studies requiring precise
characterization of genomic alterations.

On the other hand, MAGeCK [Model-based Analysis of
Genome-wide CRISPR/Cas9 Knockout (Li et al., 2014)] is
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tailored for large-scale pooled CRISPR screening experiments. It
excels in identifying positively and negatively selected genes under
different experimental conditions, providing critical insights into
gene functions and pathways. MAGeCK then employs a negative
binomial (NB) model to assess significant differences in sgRNA
abundance between treatment and control groups. Using the Robust
Ranking Algorithm [RRA (Kolde et al., 2012)], MAGeCK prioritizes
genes and pathways, offering key insights into gene functions and
regulatory networks.

Together, CRISPResso and MAGeCK address complementary
aspects of CRISPR-based data analysis. CRISPResso focuses on the
high-resolution characterization of editing events, while MAGeCK
enables genome-wide functional genomics exploration. Beyond
CRISPResso and MAGeCK, numerous additional tools are
available for the preprocessing and analysis of CRISPR-based
screening datasets, as detailed in Supplementary Table 2. These
resources offer researchers diverse options for tailoring their
workflows to maximize the utility and interpretability of CRISPR
screening experiments, fostering advancements in genome editing
and functional genomics.

3.3.2 sgRNA design for on and off-target
CRISPR activity

The downstream analysis of CRISPR-based experiments has
provided critical insights into editing events and their impact on
genomic functions. However, the success of these experiments
fundamentally depends on the efficiency and specificity of the
single guide RNA (sgRNA) or prime editing guide RNA
(pegRNA) sequence, which directs the Cas enzyme to the target
site for editing or substitution. Efficiency reflects the sgRNA’s ability
to target specific sequences effectively, while specificity determines
whether the editing events are unique to the intended site or result in
unintended off-target effects. Several factors influencing efficiency
and specificity have been incorporated into the design principles for
sgRNA sequences [(Chuai et al., 2017)]. Below, we discuss the
advancements in the design of sgRNAs for on-target and off-
target activity.

3.3.2.1 On-target activity design
The on-target activity of sgRNA/pegRNA largely hinges on the

nucleotide composition and structural properties of the sgRNA
sequence. Foundational studies from the Broad Institute (Doench
et al., 2014; Wang et al., 2014) revealed specific nucleotide biases that
enhance on-target efficiency. For instance, guanine immediately
adjacent to the protospacer adjacent motif (PAM) significantly
improves targeting efficiency, whereas cytosine in the same
position reduces efficiency. Conversely, in the seed region of the
sgRNA, cytosine is favored, while guanine is less preferred. These
preferences, validated through statistical binomial tests, have
established a predictive framework for designing sgRNAs with
optimal on-target performance.

Despite these heuristic approaches, traditional methods often
have limited generalizability and adaptability to unseen datasets.
Supervised machine learning models were developed to address this,
incorporating sgRNA sequence features and biological context to
generate predictive scores that rank sgRNAs for potency in diverse
datasets. Early machine learning models, such as support vector
machines [SVM (Wang et al., 2014)], linear regression (Xu et al.,

2015), and logistic regression (Menon et al., 2020), utilized sgRNA
sequences encoded in a one-hot format alongside continuous
biological features such as GC content, self-folding energy, and
melting temperature. These models laid the foundation for more
robust assessments by assigning scores that reflected sgRNA efficacy.

Later advancements integrated ensemble learning methods,
including gradient boosting (Doench et al., 2016) and random
forests (Rahman and Rahman, 2017), to better handle data
complexity and improve predictive robustness. These algorithms
enhanced performance in ranking sgRNAs by incorporating diverse
datasets and capturing intricate sequence-function relationships.

Deep learning models emerged as transformative tools for
sgRNA optimization as the on-target experimental designs
evolved. Frameworks such as convolutional neural networks
[CNNs (Kim et al., 2019; Kim et al., 2018; Kim et al., 2024; Kim
et al., 2020; Yu et al., 2023)] leverage weight-sharing strategies to
capture hierarchical spatial patterns in input sequences, while Long
Short-Term Memory [LSTM (Wang et al., 2019)] networks excel in
modeling dynamic sequence information. With their ability to
abstract k-mer-based features (Akay et al., 2024), transformers
have been integrated with CNNs to yield interpretable, high-
precision results (Liu et al., 2019). CHOP-CHOP (Labun et al.,
2019) and CRISPOR (Concordet and Haeussler, 2018) integrate
these advanced algorithms to balance on-target efficiency with other
considerations, such as GC content and PAM-proximal preferences,
allowing researchers to design sgRNAs tailored to their experimental
needs. Species-specific platforms like CRISPR-PLANT (Xie et al.,
2014), CRISPR-P (Lei et al., 2014), DRSC (Patrick et al., 1988), and
EuPaGDT (Peng and Tarleton, 2015) extend these capabilities to
accommodate unique genomic contexts, such as polyploid species or
gene family targeting. These tools ensure high precision in
experimental designs by incorporating features relevant to
specific organisms.

3.3.2.2 Off-target activity analysis
Complementing the focus on on-target design and assessing off-

target activity is equally critical. Next-generation sequencing (NGS)-
based methods have been developed to evaluate off-target effects,
including GUIDE-seq (Tsai et al., 2015), CIRCLE-seq (Tsai et al.,
2017), Digenome-seq (Park et al., 2017), and DISCOVER-seq
(Wienert et al., 2019). These methods detect double-strand
breaks (DSBs) caused by CRISPR nucleases across the genome,
using approaches such as marker integration (GUIDE-seq), in vitro
DNA digestion (Digenome-seq), circular DNA cleavage (CIRCLE-
seq), or repair protein enrichment (DISCOVER-seq). The resulting
cleaved DNA fragments are mapped to the genome to identify off-
target sites for a given sgRNA sequence.

Early computational tools for analyzing off-target effects, such as
CCTop (Stemmer et al., 2015), MIT Score (Haber et al., 2016), CFD
Score (Doench et al., 2016), and CropIT (Singh et al., 2015), ranked
sgRNAs based on minimal off-target activity. However, these
heuristic methods could not often integrate on-target design
considerations and struggled to capture complex relationships
between on- and off-target sequences.

The introduction of integrated computational tools has
addressed these limitations. Platforms like Elevation (Listgarten
et al., 2018) leverage gradient boosting to incorporate both on-
target and off-target considerations, enabling holistic sgRNA design.

Frontiers in Genome Editing frontiersin.org05

Menon et al. 10.3389/fgeed.2025.1565387

https://www.frontiersin.org/journals/genome-editing
https://www.frontiersin.org
https://doi.org/10.3389/fgeed.2025.1565387


Subsequent efforts employed deep learning algorithms to refine off-
target analysis. These models process sgRNA-DNA sequence pairs
encoded as one-hot representations (Chuai et al., 2018; Lin and
Wong, 2018), word embeddings (Liu et al., 2019; Liu Q. et al., 2020;
Zhang et al., 2021), or numerical embeddings (Vinodkumar et al.,
2021). Supervised learning approaches, particularly classification
frameworks, have demonstrated superior efficiency over
regression models for off-target prediction.

Modern tools for sgRNA design integrate experimental data
with sophisticated computational algorithms to ensure high
efficiency and specificity. This empowers researchers to optimize
genome editing across various scientific disciplines. These
advancements, facilitated by machine learning and deep learning,
enable precise and reliable CRISPR-based applications.

As CRISPR applications diversify, these tools and interfaces
evolve to support new experimental paradigms, including base
editing, prime editing, and RNA targeting. Comprehensive
databases, tools, and interfaces tailored for such applications are
listed in Supplementary Table 3, providing a curated repository for
researchers to explore and adopt cutting-edge CRISPR technologies.

3.3.2.3 Potential advances in AI for designing CRISPR-
Cas system

The development of web-based tools and databases has
streamlined the design of sgRNAs for CRISPR-Cas systems,
emphasizing on-target efficiency and minimizing off-target
effects. Integrating artificial intelligence (AI) into CRISPR design
builds on these advancements and introduces a transformative layer
of precision and innovation. While web-based tools focus on
optimizing sgRNA sequences using established algorithms and
user-friendly interfaces, recent progress in AI, mainly through
Large Language Models (LLMs), extends these capabilities by
addressing complex relationships and structural features that
were previously challenging to model computationally.

Recent studies underscore the importance of structural features in
improving editing efficiency. For instance, systemic modifications to
the spacer and scaffold regions of sgRNA or pegRNA have
significantly enhanced editing outcomes. A study (Huszar et al.,
2023) demonstrated that alterations in the SL1 and SL2 regions of
the scaffold improve prime editing efficiency without affecting the
stability of the Cas9-pegRNA complex. Furthermore, another study
(Li et al., 2022) highlighted that introducing RNA G-quadruplex
structures into sgRNAor pegRNAdesign can boostmodification rates
by up to 80%. Despite these promising findings, incorporating such
intricate features into existing computational frameworks remains a
significant challenge due to the limitations of traditional algorithms.

Traditional deep learning models like CNNs and RNNs are
primarily designed to capture statistical correlations rather than the
mechanistic, biologically meaningful interactions that drive CRISPR
efficiency. CNNs, for example, rely on fixed filter sizes to detect local
sequence motifs, which can cause them to miss long-range
interactions crucial for effective sgRNA targeting. On the other
hand, RNNs—even when utilizing variants like LSTM or GRU—can
encounter issues such as exploding gradients, which restrict their
ability to model extended genomic sequences where distal
interactions may play a significant role.

Furthermore, these architectures are inherently focused on
statistical association, often leading to predictions that do not

necessarily reflect the underlying biological processes. This is
particularly limiting when attempting to incorporate advanced
structural features into models. Traditional approaches like
XGBoost, while effective in handling non-linear relationships,
require extensive feature engineering to capture spatial and
sequential dependencies, resulting in a loss of nuanced structural
information. Consequently, the predictive power of these models
may be compromised when dealing with the sophisticated
modifications observed in CRISPR systems.

This is where LLMs, a class of AI models initially designed for
natural language processing, have shown remarkable promise. These
models (Nguyen et al., 2024; Zhou Z. et al., 2023) excel at extracting
and analyzing sequence information, outperforming traditional deep-
learning models in tasks such as decoding epigenetic patterns,
understanding transcriptional regulation, and identifying disease
associations. Beyond analysis, LLMs have been adapted to generate
customizable gene editors directly derived from Cas operons (Ruffolo
et al., 2024). By bypassing evolutionary constraints, these models
create gene editors with optimal properties, achieving activity and
specificity levels comparable to or surpassing SpCas9. Further
expanding the scope of LLM applications, Li et al. (2024)
employed a reconfigured protein-based LLM to discover an
alignment-free CRISPR-Cas system capable of self-processing pre-
crRNA. Their method involved four steps: (1) using a protein LLM to
discover Cas homologs, (2) employing the model to facilitate self-
processing of pre-crRNA, (3) conducting phylogenetic analysis to
identify candidate Cas12 enzymes, and (4) determining the required
protospacer adjacent motif (PAM). Experimental validations have
confirmed the robustness and reliability of these AI-generated designs,
highlighting the transformative potential of LLMs in advancing gene
editing technologies. Experimental validations further demonstrate
the robustness and reliability of these AI-generated designs.

LLMs’ application extends beyond sequence generation to
encompass structural features critical to editing efficiency and
specificity. These models have the potential to model interactions
such as spacer-scaffold base pairing, the Cas9-sgRNA-target
complex, and the incorporation of RNA G-quadruplexes, which
are key to enhancing editing precision. By integrating such structural
elements, LLMs could redefine the landscape of genome editing,
enabling the design of efficient and precise tools.

The advances brought by AI, particularly LLMs, complement
the progress made by web-based tools and databases, bridging gaps
in CRISPR-Cas design that traditional algorithms could not address.
Together, these technologies are poised to propel the field of genome
editing to new heights, offering researchers a comprehensive toolkit
for designing, optimizing, and implementing CRISPR-based
experiments with unprecedented precision and efficiency.

4 Convergence of CRISPR and single-
cell technologies

4.1 High-throughput pooled
CRISPR screening

The ability to generate targeted edits, coupled with efficient
repair mechanisms, has enabled the development of high-
throughput, genome-scale functional screening. This capability,
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combined with the flexibility of high-throughput screening
methodologies, has catalyzed the development of genome-scale
pooled CRISPR screening approaches. These screens allow
researchers to systematically investigate gene functions,
interactions, and pathways in various biological contexts.

Early studies [62, 63] demonstrated the feasibility of this
technique using single lentiviral vectors to deliver key
components, including Cas9, single-guide RNAs (sgRNAs), and
selectable markers, directly into target cells. This streamlined
delivery mechanism ensures consistent expression of all necessary
components within a single cell, enabling robust and reproducible
gene targeting. These vectors often incorporate fluorescent or drug-
resistance markers, which facilitate the selection and tracking of
successfully transduced cells.

The pooled screening workflow begins with the design and
synthesis of a library containing thousands of sgRNAs targeting
specific genes of interest or the entire genome. Each sgRNA is linked
to a unique barcode, enabling high-throughput analysis. Once
delivered into a population of cells, the CRISPR machinery
induces gene-specific edits across the genome. By coupling these
screens with high-throughput sequencing, researchers can
quantitatively assess the abundance of each sgRNA within the
population, providing insights into the impact of gene
perturbations on cell fitness, survival, or other phenotypic traits.

This approach is compelling for identifying essential genes, drug
targets, and genetic modifiers of disease phenotypes (Doench et al.,
2016). By simultaneously targeting multiple genes, pooled screens
enable the dissection of complex gene networks and pathways,
revealing synergistic or antagonistic relationships that would be
difficult to uncover using traditional single-gene approaches.

The workflow is highly scalable and is adapted for various
applications, including loss-of-function screens using knockout
libraries (Doench et al., 2016; Doench et al., 2014; Wang et al.,
2014), gain-of-function screens through CRISPR activation
(CRISPRa) (Konermann et al., 2015), and epigenetic studies
leveraging CRISPR interference (CRISPRi) (Gilbert et al., 2014).
This streamlined approach facilitated the simultaneous targeting of
multiple genes, enabling a comprehensive analysis of gene
functionality (Chari et al., 2015; Wilson et al., 2018).

4.2 Single-cell CRISPR screens

Integrating pooled screen CRISPR-Cas systems with advanced
single-cell technologies represents the next Frontier in genome
editing and functional genomics. Building on the precision of
CRISPR design tools and the computational advancements
discussed earlier, single-cell CRISPR screens combine the targeted
genome-editing capabilities of CRISPR with the high-resolution
profiling power of single-cell transcriptomics and multiome
technologies (Figure 3). This convergence enables researchers to
interrogate genetic and molecular mechanisms unprecedentedly,
offering more profound insights into cellular behavior and
heterogeneity (Ghamsari et al., 2023).

Single-cell RNA sequencing [scRNA-seq (Jaitin et al., 2014)] and
multiome technologies, which profile both transcriptomics and
chromatin accessibility [e.g., scATAC-seq (Cusanovich et al.,
2015)], have transformed the study of cellular diversity and

regulatory landscapes. These techniques provide high-resolution
snapshots of cellular states, capturing gene expression and
epigenetic dynamics in individual cells. For example, scRNA-seq
has uncovered transcriptomic diversity across tissues, elucidating
the functional roles of distinct cell populations. Multiome
technologies, by integrating chromatin accessibility data with
transcriptional profiles, further enhance our understanding of
gene regulation by linking chromatin states to
transcriptional outcomes.

Combined with CRISPR-Cas systems, these single-cell
approaches allow researchers to dissect the functional
consequences of genetic perturbations at an unparalleled scale.
Single-cell CRISPR screens leverage CRISPR-based gene editing
to induce targeted perturbations and single-cell technologies to
measure the resultant changes in gene expression, chromatin
accessibility, or both. This dual capability enables high precision
identification of gene regulatory networks, cellular pathways, and
context-specific dependencies. For instance, perturbations
introduced by CRISPR can now be linked to cellular phenotypes
captured through single-cell multi-omic profiling, revealing how
genetic modifications shape regulatory landscapes and drive
cellular responses.

This convergence of CRISPR and single-cell technologies builds
directly upon the foundational advancements in on-target and off-
target sgRNA design and optimization discussed earlier. As CRISPR
tools become increasingly precise and AI models enhance their
predictive capabilities, applying single-cell methodologies to
CRISPR screens offers an integrated platform to study complex
biological systems at both the genetic and molecular levels.
Combining precise genetic perturbations with single-cell
resolution readouts, single-cell CRISPR screens provide an
unparalleled ability to interrogate how specific genetic changes
affect cellular phenotypes. These approaches allow researchers to
connect genotype to phenotype with unprecedented granularity,
directly associating genetic variations with their functional
consequences.

Moreover, these methods address key challenges in
understanding cellular heterogeneity. Traditional bulk assays
average the differences between individual cells, obscuring critical
insights into diverse cellular states. In contrast, single-cell CRISPR
screens capture cell variability, revealing how distinct populations
respond to genetic perturbations. Incorporating multiome platforms
further enhances this capability, providing an integrated view of how
gene expression and chromatin accessibility are altered in response
to targeted genome edits.

For example, Perturb-seq (Dixit et al., 2016), has been widely
used tomap the transcriptional consequences of CRISPR-based gene
knockouts using scRNA-seq. Similarly, multiome platforms such as
Perturb-ATAC (Rubin et al., 2019) link CRISPR perturbations to
chromatin accessibility changes, elucidating the regulatory networks
that drive cellular processes. These advancements have proven
invaluable in studying diverse biological systems, including
immune cell activation, differentiation pathways, and cancer
progression.

While single-cell CRISPR screens have provided unprecedented
resolution in studying genetic perturbations, they do not capture the
spatial context in which cells interact and function. However, recent
advancements in spatial transcriptomics have enabled the
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integration of CRISPR-based screening with spatially resolved
molecular profiling, allowing researchers to study gene function
in a tissue-specific context. Emerging technologies such as Perturb-
map (Dhainaut et al., 2022), Perturb-FISH (Binan et al., 2025),
Perturb-DBiT (Baysoy et al., 2024), and Perturb-Multi (Saunders
et al., 2024) have extended the capabilities of single-cell CRISPR
screens by incorporating spatial information, bridging the gap
between perturbation-based functional genomics and spatially
organized cellular environments. These spatial CRISPR screens
provide valuable insights into tissue architecture, cell-cell
interactions, and microenvironmental influences on gene
regulation, offering a new dimension to functional genomics.

The convergence of genome-editing tools with single-cell and
multiome technologies marks a significant leap forward in decoding
the genetic underpinnings of cellular behavior. It enables researchers
to explore gene regulatory networks, uncover disease mechanisms,
and identify potential therapeutic targets with remarkable precision.
This integration is poised to shape the future of genomic research by
providing deeper insights into the complex interplay between genes
and cellular function.

4.3 scRNA-seq and CRISPR perturbation to
link genotype with phenotype at the
cellular level

Building on integrating single-cell technologies with genome-
editing tools, the combination of CRISPR perturbations with
scRNA-seq represents a powerful approach to uncovering
genotype-to-phenotype relationships in diverse cellular contexts.
This approach addresses a critical challenge in modern biology:
linking specific genetic changes to their phenotype outcomes in
heterogeneous cell populations. By enabling precise gene editing and
simultaneous profiling of transcriptomic changes at single-cell
resolution, these methods have opened new avenues for
functional genomics.

The implementation of this strategy relies on platforms like
Perturb-seq (Dixit et al., 2016), CROP-seq (Datlinger et al., 2017),
and CRISP-seq (Jaitin et al., 2016), each of which exemplifies how
CRISPR perturbations can be systematically combined with
scRNA-seq to generate detailed functional data (Supplementary

Table 4). Perturb-seq, for instance, integrates pooled CRISPR
screens with single-cell transcriptional profiling, allowing
researchers to assess the effects of multiple gene knockouts
within a single experiment. Its use of molecular barcodes
enables direct association between specific perturbation and
their transcriptional outcomes, offering a high throughput
means of dissecting gene regulatory networks. Similarly, CROP-
seq simplifies the delivery of guide RNAs by utilizing a lentiviral
vector system, making the approach more accessible and scalable
for diverse experimental settings. CRISP-seq, as one of the earlier
implementations, demonstrated the feasibility of linking genetic
perturbations to transcriptomic changes, setting the stage for
subsequent advancements in the field.

These technologies have significantly advanced the study of
cellular heterogeneity, revealing how individual cells within a
population respond differently to genetic perturbations. In
immune cells, for example, single-cell CRISPR screens have
uncovered key activation and differentiation pathways regulators.
At the same time, in cancer models, they have highlighted resistance
mechanisms to therapeutic agents. Beyond their utility in identifying
gene functions, these approaches provide a framework for mapping
gene regulatory networks by integrating perturbation-induced
transcriptional changes across diverse cell types.

The versatility of CRISPR perturbation combined with scRNA-
seq extends to understanding complex phenotypes in healthy and
diseased states. Researchers can use these methods to study
developmental processes, such as lineage specification and
differentiation, or to investigate how genetic variations contribute
to pathological conditions. The ability to systematically analyze
perturbations at single-cell resolution has been particularly
impactful in studies of an immune response, where it has
identified genes driving specific functional states (Zhou P. et al.,
2023), and in developmental biology, tracing the progression of
distinct cell fates (Yang et al., 2022).

By connecting targeted genetic edits to cellular transcriptional
profiles, CRISPR perturbation with scRNA-seq provides a
transformative tool for decoding the complexity of biological
systems. This approach continues to drive innovations in
functional genomics, setting the stage for a more comprehensive
exploration of cellular responses to genetic and
environmental changes.

FIGURE 3
Overview of single-cell CRISPR screen analysis (Petrub-seq and Petrub-ATAC). This figure illustrates the integrated workflow and analytical
framework employed to interrogate the effects of CRISPR perturbations at single-cell resolution, utilizing two complementary platforms: Petrub-seq for
transcriptomic profiling and Petrub-ATAC for chromatin accessibility mapping.
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4.4 Computational technologies for single-
cell perturbation

The integration of CRISPR perturbation with scRNA-seq has
provided powerful experimental tools to probe genetic functions at a
granular level. However, the full potential of these technologies relies
on sophisticated computational approaches that can analyze and
interpret the vast and complex datasets generated. As single-cell
perturbation experiments scale in complexity, computational
frameworks have become indispensable for identifying
meaningful patterns, quantifying perturbation effects, and linking
them to cellular phenotypes.

One of the foundational challenges addressed by computational
tools is the quantification of perturbation-induced effects across
individual cells. Metrics (Rood et al., 2024) such as the
perturbation-response score (PS) framework [(Song et al., 2023);
Mixscape (Papalexi et al., 2021)] have been developed to measure
how much a genetic perturbation influences a cell’s transcriptional
state (Figure 4). These approaches use statistical modeling to
distinguish genuine biological effects from technical noise, ensuring
robust and reproducible insights. As perturbation datasets grow,
scalable methods for analyzing millions of cells simultaneously
have become critical, enabling researchers to extend these analyses
across diverse cell types and experimental conditions.

FIGURE 4
Computational pipeline for single-cell perturbation data. The figure depicts steps in the pipeline that begins with 1) preprocessing, 2) cell and sgRNA
barcode mapping, and finally 3) the downstream analysis.
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Computational tools also play a crucial role in integrating single-
cell perturbation data with other layers of information, such as
chromatin accessibility, protein expression, or metabolic states.
Advances in machine learning, including algorithms leveraging
variational autoencoders (Lopez et al., 2018) and graph-based
approaches (Roohani et al., 2024; Wolf et al., 2018), have allowed
for dimensionality reduction, feature selection, and cell clustering,
all essential for uncovering the functional consequences of genetic
perturbations. These methods enable researchers to deconvolve
complex datasets and focus on the key regulatory relationships
that drive cellular behavior.

Another significant computational advancement has addressed
batch effects and noise inherent in single-cell experiments. Tools
such as Harmony (Korsunsky et al., 2019), LIGER (Welch et al.,
2019), and, more recently, deep learning-based frameworks
(Lotfollahi et al., 2022; Xu et al., 2021a) have been employed to
harmonize datasets across experimental replicates or conditions. By
correcting these confounding factors, computational methods
ensure that observed perturbation effects are consistent and
biologically relevant, improving the reliability of
downstream analyses.

Emerging tools are increasingly designed to predict the
outcomes of perturbations before they are experimentally tested.
Predictive models, powered by artificial intelligence and trained on
existing perturbation datasets, are now being used to anticipate how
specific genetic edits affect cellular states. This capability accelerates
hypothesis testing and enables researchers to design more efficient
and focused perturbation screens. For example, recent studies
(Kamimoto et al., 2023; Lotfollahi et al., 2019; Zhan et al., 2024)
have applied deep learning to generate virtual perturbation profiles,
offering a cost-effective and scalable way to explore potential gene
functions and interactions.

As single-cell perturbation technologies continue to evolve, the
computational ecosystem must also adapt to keep pace with the
growing complexity of data and experimental design. The ongoing
development of integrative, scalable, and predictive tools promises
to expand the utility of single-cell CRISPR screens, deepening our
understanding of cellular processes and enabling discoveries in both
basic and translational research.

5 Application of CRISPR genome
editing in cancer and immunology

5.1 Cancer therapy using genome editing

CRISPR-based gene editing technologies are revolutionizing
cancer therapy by enabling precise genomic modifications,
enhancing treatment efficacy, and introducing novel therapeutic
strategies. These advancements hold immense potential for
improving targeted interventions and overcoming current
limitations in cancer treatment.

5.1.1 Ex vivo CRISPR therapies
Ex vivo CRISPR therapies leverage the genome-editing

capabilities of CRISPR-Cas systems to reprogram cells outside
the patient’s body before reinfusion. This approach has
demonstrated significant promise in augmenting the efficacy of

immunotherapies, particularly in immune checkpoint inhibition
and adoptive cell therapy (Figure 5A).

CRISPR-Cas9 has notably advanced adoptive T cell therapies,
particularly in enhancing Chimeric Antigen Receptor (CAR) T cell
treatments (Zhou X. et al., 2023). While traditional CAR-T therapies
have shown success in treating hematological malignancies, several
challenges persist, including limited persistence, graft-versus-host
disease (GVHD), cytokine release syndrome (CRS), off-target
effects, and inefficiencies in autologous cell production (Sterner
and Sterner, 2021). CRISPR addresses these challenges by enabling
precise gene modifications that enhance T cell function and
longevity. Multiple studies have demonstrated that ex vivo
CRISPR-based disruption of PD-1 in T cells enhances anti-tumor
activity post-adoptive transfer (Guo et al., 2018; Nakazawa et al.,
2020; Zhao et al., 2018). Notably, a more efficient and flexible
precision gene editing platform named CLASH (Cas12a/Cpf1-
based Library-scale AAV-perturbation with Simultaneous HDR-
knockin) was recently developed to facilitate massively parallel
knock-in engineering in human cells, which enables high-
throughput engineering of CAR-T cells and simultaneously
identifies the best candidates for potential therapeutic
applications (Dai et al., 2023). As of 2025, over 30 clinical trials
have been registered for CRISPR-engineered T cells in cancer
treatment, highlighting the expanding clinical interest in this
transformative technology. For example, CRISPR has facilitated
the development of allogeneic CAR-T cells by knocking out
genes responsible for GVHD and immune rejection, paving the
way for universally compatible, off-the-shelf CAR-T therapies that
increase patient accessibility (Hu et al., 2022). Ottaviano et al. used
CRISPR-Cas9 editing to disrupt T cell receptor α chain and remove
CD52 in CAR19 T cells to create a universal cell therapy, which met
safety goals in a phase 1 trial for CD19+ B-ALL, highlighting
CRISPR’s therapeutic potential (Ottaviano et al., 2022).

Natural killer (NK) cells present an alternative to T cells for CAR
therapy, avoiding severe GVHD or CRS. Recent studies indicate that
CAR-NK cells represent a potent cancer therapy option, particularly
in allogeneic settings, thereby reducing costs and increasing
accessibility (Liu E. et al., 2020; Xiao L. et al., 2019). CRISPR has
been employed to knock out genes that inhibit CAR expression or to
optimize receptor design, thereby enhancing NK cell affinity and
specificity for tumor antigens. For example, CRISPR-mediated
knockout of PD-1 has significantly improved NK cell activity,
cytokine production, and tumor cell cytotoxicity (Pomeroy et al.,
2020). In contrast, disruption of the NKG2A-encoding killer cell
lectin-like receptor C1 (KLRC1) has enhanced NK cell-mediated anti-
tumor responses against multiple myeloma (Bexte et al., 2022). In
Phase I/II clinical trials, allogeneic CD19-targeted CAR-NK cells
demonstrated promising response rates in patients with B-cell
malignancies while maintaining an excellent safety profile, with no
reported cases of severe cytokine release syndrome, neurotoxicity, or
graft-versus-host disease (Marin et al., 2024; Liu E. et al., 2020).

5.1.2 In vivo CRISPR therapies
In vivo, CRISPR-based cancer therapies involve direct gene

editing within living organisms to target oncogenes (e.g., KRAS,
c-Myc, Figure 5B) and tumor suppressor genes (e.g., p53), as well as
to modulate immune cells such as T cells and NK cells, offering the
potential to target and modify cancer within the body directly.
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Currently, clinical trials specifically employing in vivo gene editing
for cancer treatment are limited. However, the field is rapidly
evolving, with ongoing research focused on refining delivery
methods and ensuring the safety and efficacy of these therapies.
It is important to note that while in vivo gene-editing therapies for
cancer are still in the early stages, the promising results from
preclinical studies and advancements in related fields, such as
rare diseases, suggest potential for future clinical applications.

In vivo, CRISPR therapies require efficient delivery systems to
transport CRISPR components into target cells within the body.
These methods can be broadly categorized into viral and non-viral
approaches. The choice of different methods impacts the efficacy,
specificity, safety, and clinical feasibility (Supplementary Table 5).
Adeno-associated viruses (AAVs) and lentiviruses are the most
studied viral vectors for delivering CRISPR-Cas9 systems in vivo.
While these vectors can be engineered for targeted tumor delivery,
their limited cargo capacity and immunogenicity pose constraints.
Conversely, lipid nanoparticles (LNPs) have gained traction for
nucleic acid delivery. For instance, LNPs encapsulating
Cas9 mRNA and gRNAs targeting polo-like kinase 1 (PLK1) in a
glioblastoma mouse model demonstrated effective gene editing and
tumor suppression (Rosenblum et al., 2020).

To mitigate off-target effects, high-fidelity Cas enzymes such as
HF1 (Kleinstiver et al., 2016), HiFi (Vakulskas et al., 2018), and
HypaCas9 (Ikeda et al., 2019), along with improved sgRNA designs
have been developed. Base editing, which enables precise nucleotide
modifications without inducing double-strand breaks, further reduces
off-target risks. A landmark clinical application of base editing involved
treating a 13-year-old girl with T-cell acute lymphoblastic leukemia,
resulting in remission—marking base editing as a promising
alternative to traditional CRISPR editing. However, any genome
manipulation has potential functional consequences that require
thorough evaluation before clinical implementation.

5.1.3 CRISPR screen strategies in cancer
immunology

CRISPR-based gene editing and functional genetic screens
enable the systematic identification of genes and pathways that
regulate immune-cancer interactions, thereby facilitating the

discovery of novel therapeutic targets. These screens typically
apply selective pressures, including cytotoxic T cells, immune
checkpoint inhibitors, cytokines, or co-culture systems that
mimic immune-tumor interactions (Lizotte et al., 2018). Both
in vitro and in vivo CRISPR screens have been successfully
developed to identify novel immunotherapy targets (Parnas et al.,
2015; Schumann et al., 2020; Shifrut et al., 2018; Su et al., 2024; Wei
et al., 2019; Ye et al., 2019). For example, genome-wide CRISPR
screens in primary human T cells have elucidated critical
components of T cell receptor signaling, facilitating the
identification of functional genetic targets in immune cells
(Shifrut et al., 2018). In a murine T cell line, a genome-wide
knockout screen identified FUT8 as a regulator of PD-1 surface
expression (Okada et al., 2017). An in vivo genome-scale CRISPR
screen was performed in CD8 T cells directly under cancer
immunotherapy settings and identified novel regulators of T cell
tumor infiltration and degranulation, such as a previously
uncharacterized helicase, DHX37 (Dong et al., 2019). Similarly,
CRISPR screens in xenograft models identified MEN1 as a dual
regulator of tumor–microenvironment interactions (Su et al., 2024).
In solid tumor mouse models, in vivo screens of tumor-infiltrating
NK cells revealed endogenous genetic checkpoints limiting NK cell
function, highlighting the role of CALHM2 knockout in enhancing
NK cell-based immunotherapies (Peng et al., 2024). Furthermore,
integrating CRISPR screens with single-cell RNA sequencing
(scRNA-seq) has enabled the identification of key transcriptional
regulators in human regulatory T (Treg) cells, uncovering potential
immunotherapeutic targets (Schumann et al., 2020).

As research continues to unveil novel targets regulating anti-
tumor immune responses (Zhang et al., 2025), CRISPR screening
methodologies provide invaluable mechanistic insights that
significantly expand the landscape of cancer immunotherapy.

5.2 Autoimmune therapy by genome editing

CRISPR technology has been diversified to treat autoimmune
disorders by modulating dysregulated immune responses. Recent
studies have identified potential target genes for

FIGURE 5
Outline of ex vivo (a) and in vivo (b) treatment of genetic disease using CRISPR-Cas system.
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immunomodulation in various autoimmune diseases, including
rheumatoid arthritis, inflammatory bowel diseases, systemic lupus
erythematosus (SLE), multiple sclerosis (MS), type 1 diabetes
mellitus (T1DM), psoriasis, and type 1 coeliac disease
(Chehelgerdi et al., 2024; Lee et al., 2022; Ozanne et al., 2000).
Notably, clinical trials employing CRISPR-modified T cells
successfully knocked out genes implicated in immune rejection,
achieving complete B-cell depletion and ameliorating pathological
conditions in patients (Wang et al., 2024).

Innovative approaches combining CRISPR-Cas9 with
transcription activator-like effector nucleases (TALENs) have
demonstrated enhanced specificity and efficiency in editing
immune-regulatory genes, with significant success in treating
autoimmune conditions such as SLE and MS (Ozanne et al.,
2000). This hybrid strategy leverages the strengths of both
systems, enabling precise engineering of immune cells to resist
autoimmunity. Mechanistically, these systems achieve therapeutic
efficacy by either knocking out autoreactive genes or inserting
regulatory elements to suppress pathological immune responses,
thereby mitigating disease progression and improving
patient outcomes.

Similarly, CRISPR-Cas12a has advanced therapeutic
applications in autoimmune disorders by targeting immune-
related genes with high specificity (Houghton et al., 2022). In
Type 1 Diabetes Mellitus (DM), CRISPR-Cas9 has confirmed and
edited single nucleotide polymorphisms (SNPs) directly associated
with disease progression, offering new avenues for intervention (Zhu
et al., 2019). Additionally, studies have identified the critical role of
ERAP1 genes in Psoriasis, where gene knockout significantly
reduced disease progression (Arakawa et al., 2019).

Beyond direct therapeutic applications, CRISPR-based
technologies have facilitated the development of disease models
replicating specific gene mutations implicated in autoimmunity (Xu
and Li, 2020). These models provide invaluable insights into the
pathogenesis of autoimmune disorders, enabling researchers to
dissect disease mechanisms and identify novel therapeutic targets.
For example, CRISPR-engineered models have elucidated critical
pathways in diseases such as SLE and MS, guiding the development
of precision medicine approaches.

In conclusion, the advancements in CRISPR technologies hold
the potential for transformative therapies in autoimmune diseases
and pave the way for more accurate disease modeling. These
innovations deepen our understanding of autoimmune
pathophysiology and open new frontiers for precision medicine,
ultimately improving outcomes for patients with these
complex disorders.

5.3 Genome editing in diagnosing and
treatment of infectious disease

CRISPR technology has significantly advanced diagnostics for
infectious diseases caused by pathogens such as dengue (Li et al.,
2020), Zika (Dukhovny et al., 2019), HIV (Xiao Q. et al., 2019), and
Tuberculosis (Zein-Eddine et al., 2023). Tools like DETECTR
(Broughton et al., 2020) and SHERLOCK (Kellner et al., 2019)
leverage CRISPR’s specificity to detect viral RNA or DNA with
exceptional sensitivity, providing rapid, user-friendly, and portable

diagnostic solutions suitable for point-of-care testing (Lou et al.,
2022). Additionally, innovative CRISPR-based detection platforms,
such as HUDSON, have demonstrated the capability to detect
infections directly from patient samples, expanding the utility of
CRISPR diagnostics in clinical settings.

Beyond diagnostics, CRISPR is utilized to combat infectious
diseases by developing antimicrobial agents that selectively target
specific pathogens based on their genetic sequences (Bikard et al.,
2014). Successful studies on Staphylococcus aureus (Diep et al., 2006;
Weigel et al., 2003) have demonstrated the potential of CRISPR-
based treatments for antibiotic-resistant infections. CRISPR also
plays a pivotal role in vaccine development, identifying novel
antigen candidates (Wang and Doudna, 2023) and inhibiting
viral replication (Komissarov et al., 2022). Recent advancements
have led to the development of vaccines for infections such as H5N1,
DTMUV, and AIV, showcasing the growing relevance of CRISPR in
preventive healthcare and treating infectious diseases (Chang et al.,
2019; Zou et al., 2017).

6 Conclusion and discussion

The review highlights the importance of CRISPR genome
editing, single-cell technologies, and artificial intelligence (AI)
in advancing precision medicine, therapeutics, and functional
genomics. The convergence of these technologies has redefined
our ability to interrogate cellular heterogeneity, gene regulation,
and disease mechanisms with unprecedented precision. The
synergy between CRISPR and single-cell platforms like
Perturb-seq (Dixit et al., 2016), CROP-seq (Datlinger et al.,
2017), and CRISP-seq (Jaitin et al., 2016) has been
instrumental in advancing cancer and immunology research by
facilitating the identification of key regulators of tumor
progression, immune dynamics, and resistance mechanisms.
Furthermore, multi-omics platforms such as MultiPetrub-seq
(Metzner et al., 2025), Spear-ATAC (Pierce et al., 2021),
Petrub-ATAC (Rubin et al., 2019), and CRISPR-sciATAC
(Liscovitch-Brauer et al., 2021) have expanded our
understanding of genetic perturbations by integrating single-
cell transcriptomics and chromatin accessibility, enabling a
deeper analysis of cellular regulatory networks. AI-driven
approaches have refined these methodologies by enhancing
sgRNA design precision, optimizing genome editing workflows,
and improving multi-omics data analytics. Deep learning (Kim
et al., 2019) and transformers (Zhou Z. et al., 2023) based models
have facilitated the identification of novel biomarkers, modeled
tumor evolution, and personalized therapeutic strategies,
demonstrating AI’s essential role in leveraging CRISPR and
single-cell technologies for translational research and clinical
applications.

Despite these significant advancements, several challenges
remain, particularly in ensuring the reproducibility of single-cell
CRISPR screens. Single-cell technologies inherently suffer from
technical variability, including batch effects, dropout events, and
noise in transcriptomic data, which can affect the reliability of
perturbation outcomes. The efficiency of CRISPR-based
perturbations is also subject to variability in guide RNA delivery,
editing efficiency, and transcriptional responses across different
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experimental conditions. Standardizing experimental protocols,
including improved guide RNA design algorithms, robust single-
cell data preprocessing pipelines, and developing high-throughput
benchmark datasets, is crucial to addressing these issues.
Furthermore, computational frameworks for integrating single-
cell CRISPR datasets across multiple studies and experimental
conditions require enhanced batch correction and normalization
strategies. AI-driven harmonization techniques, such as deep
generative models, variational autoencoders, and transfer learning
approaches, hold promise for improving reproducibility in single-
cell CRISPR perturbation screens. Expanding multi-omic
approaches to include proteomics, metabolomics, and spatial
omics will further enhance our understanding of cellular
functions and necessitate innovative computational solutions to
harness these modalities fully. Standardizing AI-driven methods
across diverse datasets is essential to ensuring their robustness and
broad applicability.

The delivery systems for CRISPR therapeutics remain a
significant bottleneck, as current approaches rely heavily on viral
(Sioson et al., 2021) or lipid-based nanoparticles, both of which have
limitations in efficiency, specificity, and scalability. Developing non-
viral delivery systems, tissue-specific targeting mechanisms, and
minimally invasive administration techniques is crucial for
broadening the clinical applicability of CRISPR technologies.
Advances in nanoparticle engineering, RNA-based delivery
systems, and biomaterial-based carriers may provide novel
solutions to enhance the precision and safety of CRISPR-based
therapies. Additionally, off-target effects (Zhang et al., 2015) and
delivery efficiency (Sioson et al., 2021) remain key challenges that
must be addressed to improve genome editing technologies’
specificity and therapeutic potential.

Beyond technical and biological challenges, the equitable
distribution of these advanced therapies poses a socio-
economic barrier to global implementation. While CRISPR
and AI-driven approaches hold promise for personalized
medicine, disparities in access to these innovations persist,
particularly in resource-limited settings. The integration of
CRISPR with multi-omics technologies offers the potential for
personalized immunotherapies tailored to individual genetic
profiles; however, the ethical considerations surrounding
genome editing and the regulatory complexities of clinical
translation require careful oversight. Global regulatory
frameworks are needed to ensure accessibility across diverse
populations and minimize disparities in healthcare innovation.

Integrating CRISPR, single-cell platforms, and AI-driven
models can revolutionize basic and translational research by
addressing these challenges and fostering interdisciplinary
collaboration. As these technologies evolve, they promise to
advance human health by providing transformative solutions to
decode biological complexity and translate genomic insights into
effective clinical therapies.
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