AUTHOR=Asiamah Joshua Yeboah , Mahdi Sakina Haruna , Tamang Kusum R. , Carson Christian Bryan , Koirala Prabesh , Reed Emily Anne , Asare Aaron Tettey , Augustine Anu , Ratnaparkhe Milind B. , Bansal Kailash C. , Valliyodan Babu TITLE=Genome editing in grain legumes for food security JOURNAL=Frontiers in Genome Editing VOLUME=Volume 7 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/genome-editing/articles/10.3389/fgeed.2025.1572292 DOI=10.3389/fgeed.2025.1572292 ISSN=2673-3439 ABSTRACT=Throughout history, leguminous crops have contributed significantly to the human diet. Grain legumes have long been identified as a valuable nutritional source for humans. However, their significance extends beyond nutrition to global food security, reducing reliance on chemical fertilizers, improving soil health and increasing resilience to climate change. Recognizing their vital importance in nutrition and agricultural production, scientists have worked persistently to uncover new genetic traits in legumes, resulting in enhanced yields, improved nutritional value and increased stress tolerance. Recently, the availability of genomic resources for new traits in grain legume plants has greatly increased, laying the groundwork for the adoption of advanced breeding technologies. Gene editing has shown significant potential to improve crop outcomes. This review critically examines the latest developments in gene-editing techniques specific to major grain legumes, focusing on their application in enhancing legume crops with significant agronomic characteristics. The article also shows the potential advantages associated with these advancements. Over the years, advancements in technologies such as Transcription Activator-Like Effector Nucleases (TALENs), Zinc Finger Nucleases (ZFNs), Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), and the more recent Prime Editing technique have significantly contributed to genetic enhancements. These innovations have improved nutritional and market traits, boosted farming incomes, and increased the accessibility of affordable nutritious food, particularly in developing nations. Studies show that CRISPR/Cas9 is the most extensively applied gene editing technology in grain legumes. The advent of this technology has transformed genetic modification by offering exceptional precision and efficiency. This progress has enabled the creation of grain legumes that are more resistant to climate change and enhanced with improved nutritional content. Our research highlights that soybeans have been the primary focus of CRISPR/Cas9 gene editing efforts, surpassing any other grain legume, unlocking significant potential for innovation and improvement. This article presents a scientometric analysis of bibliographic data from the Web of Science using VOSviewer. It highlights global research trends, emphasizing China’s leading role in international collaborations, the prominence of soybean (Glycine max) in CRISPR/Cas9 studies, and the key researchers driving advancements in gene editing for food security.