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Protoplast-based systems have been utilised in a wide variety of plant species to
enable genome editing without chromosomal introgression of foreign DNA into
plant genomes. DNA-free genome editing followed by protoplast regeneration
allows elite cultivars to be edited without further genetic segregation, preserving
their unique genetic composition and their regulatory status as non-transgenic.
However, protoplast isolation presents a barrier to the development of advanced
breeding technologies in raspberry and no protocol has been published for DNA-
free genome editing in the species. Pre-assembled ribonucleoprotein complexes
(RNPs) do not require cellular processing and the commercial availability of
Cas9 proteins and synthetic guide RNAs has streamlined genome editing
protocols. This study presents a novel high-yielding protoplast isolation
protocol from raspberry stem cultures and RNP-mediated transfection of
protoplast with CRISPR-Cas9. Targeted mutagenesis of the phytoene
desaturase gene at two intragenic loci resulted in an editing efficiency of 19%,
though estimated efficiency varied depending on the indel analysis technique.
Only amplicon sequencing was sensitive enough to confirm genome editing in a
low efficiency sample. To our knowledge, this study constitutes the first use of
DNA-free genome editing in raspberry protoplast. This protocol provides a
valuable platform for understanding gene function and facilitates the future
development of precision breeding in this important soft fruit crop.
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Introduction

Raspberry (Rubus idaeus; RRID:NCBITaxon_32247) is a high-value horticultural crop
that, alongside other Rubus berries, has undergone a substantial increase in consumption
worldwide in recent decades (Foster et al., 2019). Globally, production increased 48%
between 2011 and 2021 (FAO, 2024). Often sold as a “superfood,” raspberries contain high
levels of anthocyanins, flavanols and phenolic acids that are essential for normal
metabolism. Lack of dietary sources of these bioactive nutrients has been associated
with cancer, stroke, Alzheimer’s and autoimmune diseases (Derrick et al., 2021;
Hancock et al., 2007). Raspberry is a highly heterozygous species that is not true to
seed, meaning both sexual reproduction and selfing can introduce allelic variation that alters
the berry phenotype of elite cultivars. Commercial raspberry production thus relies on
vegetative propagation. This challenge, in addition to a 2-year fruiting cycle in floricanes,
has contributed to a lack of progress on next-generation methods for raspberry breeding.
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Improving agricultural sustainability is a key priority for
reaching net zero (FAO. Emissions due to agriculture, 2020).
Food production systems must undergo sustainable
intensification, and gains can be made in raspberry production
through improving efficiency while reducing food waste.
Advanced breeding to improve traits such as fungal resistance or
fruit firmness would substantially improve shelf life (Simpson et al.,
2017). Enhanced plant and fruiting architecture could reduce labour
demands for crop management and harvesting while eliminating
genetic disorders, such as crumbly fruit syndrome, would prevent
widespread yield losses (Scolari et al., 2023). Such improvements can
also minimise chemical inputs and decrease overall land use, leading
to more productive and sustainable raspberry cultivation. Greater
access to this nutritious species would also support the UN’s
2030 Sustainable Development Goals of zero hunger and good
health and wellbeing (United Nations, 2024).

The advent of CRISPR (clustered regularly interspaced short
palindromic repeats) genome editing has greatly increased the
scope and speed of plant breeding (Jinek et al., 1979). Through the
formation of ribonucleoprotein complexes (RNPs), composed of Cas
nucleases and programmable guide RNA (gRNA), targeted
mutagenesis of any genomic region of interest can be achieved
(Gasiunas et al., 2012; Sternberg and Doudna, 2015; Wright et al.,
2016). The most commonly used nuclease, Cas9, induces a double
strand break (DSB) in genomic DNA at a specific locus identified by
complementary binding of the gRNA (Zhan et al., 2021). Often, error-
prone DNA repair subsequently creates insertions and/or deletions
(indels) at the specified locus, leading to gene knockout (KO).

Applying this system to plant species is challenging as the
plant cell wall is impermeable to nucleic acids encoding Cas9/
gRNA or pre-assembled RNPs. Inbreeding, annual, seed-
propagated crops can utilize Agrobacterium-mediated
transformation or biolistics to transfer DNA encoding
CRISPR/Cas9 into intact cells and to integrate this into
chromosomes. After genome editing has occurred, transgenes
can be easily removed by backcrossing and genetic segregation as
transgenic crops have historically been contentious from
regulatory and public perception standpoints (Chan et al.,
2020; Turnbull et al., 2021). However, to realise the benefits of
genome editing in the advanced breeding of allogamous, clonally-
propagated crops, such as raspberry, editing must take place
without chromosomal introgression of foreign DNA. This allows
elite clones to be edited without the need for further genetic
segregation, preserving their unique genetic composition and
their regulatory status as non-transgenic. Where Agrobacterium-
mediated transformation cannot be used, the resurgence of
protoplast-based techniques offers a transgene-free alternative
(Yue et al., 2021; Yoo et al., 2007; Barceló et al., 2019; Reed and
Bargmann, 2021; Hsu et al., 2021; Woo et al., 2015).

Enzymatic digestion of the plant cell wall (enzymolysis)
liberates single-celled protoplasts (Yoo et al., 2007; Cocking,
1960; Davey et al., 2005) with membranes permeable to
plasmids and pre-assembled RNPs in the presence of
polyethylene glycol (PEG) (Woo et al., 2015). After editing,
protoplast can be regenerated into whole plants (Reed and
Bargmann, 2021; Jeong et al., 2021; Scintilla et al., 2022),
although this is technically challenging and species dependent.
Cas9 and gRNA genes encoded within plasmids are expressed

within the protoplast nucleus, triggering genome editing, but do
not integrate into the genome. Pre-assembled RNPs, exogenously
synthesised and formed extracellularly, are also able to directly
translocate the protoplast membrane to initiate editing (Woo
et al., 2015). RNPs are then degraded by normal cellular
processes. This form of DNA-free genome editing is rapid,
highly specific and indistinguishable from natural
mutagenesis–factors that have recently found favour with
regulators (Genetic Technology (Precision Breeding) Act,
2023; European Commission, 2021). Pre-assembled RNPs are
of particular interest in crop species like raspberry as they
eliminate the chance of random integration of DNA into the
genome, which is a risk with plasmid transfection. The
commercial availability of synthetic gRNAs and Cas nucleases
from many vendors, and evidence for higher editing efficiencies
than plasmid-based techniques (Zhang Y. et al., 2022), also
favour the use of DNA-free RNPs.

Genome editing and genetic engineering in raspberry have not
been extensively developed (Foster et al., 2019). Agrobacterium-
mediated transformation has been achieved by several groups
(Mathews et al., 1995; Mezzetti et al., 2004; Kim and Dai, 2022;
Zhang J. et al., 2022; Khadgi, 2020), however transgenic raspberries
have never been commercialised. To our knowledge, no method for
DNA-free CRISPR genome editing in raspberry has been published,
however there have been attempts to use CRISPR transgenically
(Khadgi, 2020; Miller, 2019), with some potential success with
biolistic delivery. Nonetheless, there is a substantial research gap
in this field. Pre-assembled RNPs present an excellent opportunity
to rapidly test gRNAs if reliable and modern protoplast-based
methods can be elucidated. Existing protoplast research on
raspberry is limited in scope and predates the advent of genome
editing (Phan et al., 1997; Nita-Lazar et al., 2000; Mezzetti et al.,
1999), but provides evidence that raspberry protoplasts can be
isolated and cultured. A high-yielding tissue source of protoplast
is critical, but high heterozygosity in raspberry complicates the issue
as tissue-cultured seedlings, used in many other protocols [e.g. (Yoo
et al., 2007)], would result in allele segregation and genetically
variable regenerated plants and compromise the elite berry
phenotype of commercial raspberry cultivars. Nonetheless, many
raspberry cultivars are suitable for tissue culture; vegetative
propagation is common industry practice (Funt and Hall, 2013)
and raspberry produces shoots vigorously, including directly from
roots, suggesting a propensity for regeneration. As there is no
selection in protoplast regeneration, reporter genes such as
phytoene desaturase (PDS) are useful to assess the success of
genome editing in regenerated plants, particularly during initial
development of protoplast regeneration. KO of PDS, which plays a
critical role in carotenoid biosynthesis, results in a distinctive albino
phenotype that is visible during the early stages of regeneration (Lin
et al., 2018). Functional targets are also of interest, particularly those
that could be beneficial to raspberry shelf life and where gene KO
results in an improved phenotype. For example, evidence from other
fruit species indicates that polygalacturonase (PG) can increase fruit
firmness (López-Casado et al., 2023; Atkinson et al., 2012; Posé et al.,
2013),WRKY52 can improve resistance to B. cinerea (Jia et al., 2020)
and powdery mildew (Wang et al., 2017), and nonexpressor of
pathogenesis-related genes 1 (NPR1) can also improve resistance
to B. cinerea (Li et al., 2020; Li et al., 2021).
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This study demonstrates successful, DNA-free genome editing
of raspberry protoplasts using CRISPR-Cas9 for the first time. We
have applied state-of-the-art protoplast methods to a new species
and achieved a high genome editing efficiency. These are critical
steps in the development of next-generation breeding technologies
(NGBTs) in raspberry and will hopefully stimulate further work in
an underserved yet economically and nutritionally valuable species.

Materials and methods

Plant cultivation

Cold-treated (4°C,≥50 days, ~15 × 20 cm) roots ofR. idaeus cultivar
BWP102 (supplied by a commercial propagator) were planted in 7.5 L
pots containing peat-rich soil (Sinclair All Purpose Growing Medium)
with perlite and fertilised with Hoagland’s solution (Hoagland and
Arnon, 1950) twice a week. Highly vigorous, 1.5 cm diameter, 1 m tall
canes produced from cold-treated roots were cut down after
approximately 1 month in a partially environmentally controlled
glasshouse (set points of 20°C, 16:8 hrs day: night, supplemented
with high-pressure sodium lamps). Petioles and leaves were
removed, and cane stems cut into 50–70 mm segments containing
one axillary bud. Cuttings were sterilised in 70% v/v ethanol for 30 s and
10% v/v sodium hypochlorite (with 0.002% Tween 20) for 4 minutes
(Funt and Hall, 2013). Exposed stem ends were cut off and stem
explants were planted in Murashige and Skoog (MS) basal media with
Gamborg B5 vitamins (Melford; pH 5.8, 30 g L-1 sucrose, 7.5 g L-1 agar,
1 mg L-1 6-benzyl-aminopurine, 0.1 mg L-1 indole-3-butyric acid)
within autoclaved Magenta™ boxes (Merck).

Tissue culture material was grown in a Sanyo MLR-350 growth
cabinet with 45 μmol m-2 s -1 light from fluorescent tubes (Toshiba
FL40SSW/37) at 25°C with a 16: 8h day: night cycle.

Protoplast isolation

Protoplasts were isolated from plantlets (stem cultures) grown from
the axial bud cane cuttings. This material was chosen as a protoplast
source as it is vegetatively grown, sterile, soft and young; therefore, it is
amenable to enzymatic digestion. Plantlets (0.3 g, 20–30 mm tall) from
axillary buds were harvested after 10 days of culture and cut with a
sterile scalpel blade into 0.5–1 mm strips, then immediately immersed
in 13 mL enzymolysis solution (20 mM MES pH 5.8, 0.4 M mannitol,
20 mM KCl, 10 mM CaCl2, 1.5% Cellulase R-10 (Duchefa), 0.5%
Macerozyme R-10 (Duchefa)) in a 90 mm Petri dish (Yoo et al., 2007).
The tissue was vacuum infiltrated for 30 min and then incubated on an
orbital shaker at 50 rpm for 16 h in the dark at 28°C. Protoplast were
harvested by adding 10 mL of W5media (2 mMMES pH 5.8, 154 mM
NaCl, 125 mMCaCl2, 5 mMKCl) to the Petri dish and agitating gently,
then filtering the suspension through a 70 µM cellulose filter (Fisher
Scientific) into a 50 mL centrifuge tube. Protoplast were pelleted by
centrifugation (Sigma 3-16 KL) at 200 rcf for 4 minutes with slow
centrifugal acceleration and breaking (both set at level 6). The
supernatant was removed, and protoplasts were resuspended in
W5 for a second wash at 200 rcf for 4 minutes. Finally, the
supernatant was removed, and 2 mL 0.4 M mannitol (pH 5.8) was
added to resuspend the protoplast.

Protoplast were then purified through a sucrose cushion (Jeong
et al., 2021): 6 mL of 0.6 M sucrose solution was gently overlaid with
the 2 mL protoplast-mannitol suspension in a 15 mL centrifuge tube
and centrifuged at 80 rcf for 5 minutes. Protoplast suspended at the
interface were carefully aspirated into a new 15 mL tube and then
centrifuged at 200 rcf for 4 minutes and resuspended in 5 mL MMG
(4 mM MES pH 5.8, 0.4 M mannitol, 15 mM MgCl2) solution to
form a highly concentrated pellet of viable protoplast. Sucrose
purification was only successful when initial protoplast yields
exceeded 1 × 106 protoplast mL-1.

In vitro cleavage test and gRNA design

PCR product of BWP102 phytoene desaturase (PDS) was used
to test the efficacy of two synthetic gRNAs that targeted separate
regions of the gene in vitro. PDS in raspberry was identified by
BLAST mapping strawberry (Fragaria vesca) PDS sequence to a
novel genome assembly of raspberry cultivar BWP102 (Kevei
et al., unpub.) in Geneious Prime v.2024.0.7 (Dotmatics, RRID:
SCR_010519). gRNAs and primers were designed using the same
genome assembly to amplify two separate coding regions of PDS
(PDS1, PDS2) with gRNA cut sites producing uneven cleavage
products distinguishable by gel electrophoresis (Table 1).
gRNA1 and gRNA2 targeted separate loci in exon 13 and
eight of PDS respectively. Custom Invitrogen TrueGuide
gRNAs and Invitrogen TrueCut Cas9 were commercially
synthesised by Thermo Fisher Scientific. Additional,
functionally relevant gRNAs and primers were also designed
targeting PG, WRKY52 and NPR1 and tested through in vitro
cleavage tests (Supplementary Table S1).

DNAwas extracted from BWP102 leaf tissue with E.Z.N.A Plant
DNA kit (Omega Bio-tek) and amplified with Phusion high-fidelity
polymerase (Thermo Fisher Scientific), followed by purification with
QIAquick PCR purification kit (QIAGEN). The in vitro cleavage test
was followed as in Brandt et al. (2020) (Brandt et al., 2020). In brief,
1 µg gRNA and 1 µg Cas9 were pre-mixed and incubated with 200 ng
PCR product for 2 hours. The sample was run on a 2% agarose gel
(0.5% Tris Borate EDTA buffer, 0.005% Safeview (NBS Biologicals)).
RNP activity was identified by the cleavage of the PCR product into
two distinct smaller bands of expected sizes.

Protoplast transfection

The protoplast suspension was centrifuged at 200 rcf for 4 minutes
with low acceleration and deceleration after sucrose cushion filtration.
The supernatant was removed as much as possible; 0.05% fluorescein
diacetate (FDA) was added to a 10 µL subsample and protoplast yield
was determined via haemocytometry on a fluorescent microscope
(Leica Microsystems, DM2500, RRID:SCR_020224). Protoplast
concentration was standardised to 1 × 106 cells mL-1 in MMG and
200 µL (2 × 105 protoplast total) was transferred to a sterile 1.5 mL
microcentrifuge tube using wide-bore pipette tips.

RNPs were formed by mixing 10 µg of gRNA, 10 µg Cas9, 2 µL
lipofectamine CRISPRMAX (Thermo Fisher Scientific), 2 µL Plus
reagent, 2 µL NEB 3.1 buffer (New England Biolabs) up to 20 µL
with ultrapure H2O in a PCR tube and incubated for 10 min at 25°C.
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Negative controls were identical but excluded gRNA. RNPs were added
to the protoplast suspension followed immediately by 220 µL 40%
PEG4000 (Merck) solution (0.2Mmannitol, 0.1MCaCl2, 2 g PEG4000,
up to 5 mL ddH2O) (Scintilla et al., 2022; Wang et al., 2022; González
et al., 2020; Gou et al., 2020; Lee et al., 2024). The RNP-protoplast
suspension was pipetted 5–10 times with a wide-bore tip and incubated
for 10min (Scintilla et al., 2022; Lee et al., 2024;Wu et al., 2017) at 25°C.
Transfection was terminated by the addition of 800 µL of W5 and the
suspension transferred to a clean 15 mL tube and centrifuged for
2 minutes at 200 rcf. The supernatant was discarded and 800 µL
W5 added for a second wash through centrifugation for 2 minutes at
200 rcf. The supernatant was removed and 500 µL of basic culture
media (MS pH 5.8, 0.4 M mannitol, 30 g L-1 sucrose) was added to
resuspend the protoplast and the suspension was left for 24 h (Park
et al., 2019). Protoplast were lysed by centrifugation at 10,000 rcf for
1minute, the culturemedia was aspirated, andDNAwas then extracted
with the E.Z.N.A Plant DNA kit (Omega Bio-tek).

Determination of editing efficiency with T7EI
and deconvolution

Editing efficiency was determined both in vitro and in silico for
PDS samples. Protoplast DNA was amplified by PCR with Phusion
polymerase with the same respective primer pairs used for the
in vitro cleavage test. Amplification was visualised on a 2%
agarose gel. PCR products were purified with QIAquick PCR
purification kit and the T7 endonuclease I (T7EI) digestion
protocol was followed (New England Biolabs, 2023) with minor
modifications. In brief, PCR amplicons were denatured at 98°C for
30 s and then annealed by decreasing the temperature gradually
by −2°C s-1–85°C, then −0.1°C s-1–25°C. T7EI (New England Biolabs)
was added and incubated for 1 hour at 37°C (Brandt et al., 2020).
Annealed amplicons were purified again and then run on a 2%
agarose gel for 45 min. PCR product from the same genome edited
protoplast DNA samples was purified and sent to GENEWIZ
(Azenta Life Sciences) for Sanger sequencing. Files from negative
control and experimental samples were uploaded onto Tracking of
Indels by Decomposition (TIDE) and deconvoluted (Brinkman
et al., 2014) to estimate editing efficiency.

Determination of editing efficiencywith NGS

PCR product from the same PDS genome edited protoplast
DNA samples described for T7EI/deconvolution and for PG,
WRKY52 and NPR1 was purified and also sent to GENEWIZ
(Azenta Life Sciences) for short-read Illumina next-generation
sequencing (NGS; Amplicon-EZ). Different primer pairs flanking
the same gRNA binding sites were used for PDS NGS as Amplicon-
EZ requires primer pairs <450 bp (Table 1). FASTQ. files from the
amplicon sequencing (≤70k sequences) were paired, trimmed and
merged. Total wild-type and variant sequence percentages were
compared to identify CRISPR indels in Geneious Prime
(Prime, 2024).

Results

Tissue culture and protoplast isolation

The quality of the initial raspberry canes was a critical factor in
protoplast isolation (Figures 1A,B). Cuttings from highly vigorous, 1-
month old canes with no signs of senescence (nowilting/discolouring
of any leaves, deep red thorns, thick bright green stem) generated fast
growing plantlets (Figure 1C) that yielded between 1 × 106 to 1.2 ×
107 protoplasts ml-1, (3.3 × 106 g-1 to 3.6 × 107 g-1) with an average of
~5 × 106 protoplast ml-1 (1.5 × 107 g-1) (Figures 1F,G).

Protoplast isolated from plantlets were 10–40 µM in diameter
and bright green in colour. The sucrose cushion allowed the
concentration of viable protoplast and removal of debris and
dead cells (Figures 1D,E). FDA staining demonstrated that the
vast majority of protoplast were viable for transfection.

In vitro cleavage of DNA amplicons by RNPs

Both PDS RNPs showed a high level of activity against PCR
amplicons with two bands clearly visible below the original band
(Figures 2A,B). Compared to negative controls, the original PCR
product was much reduced in intensity–indicating almost
complete cleavage of the amplicons. PDS RNP1 and

TABLE 1 Oligonucleotides and gRNAs used in this study. Predicted cleavage products were deduced assuming DSB 3bp upstream from PAM site. NGS
primer pairs flank the same respective gRNA binding site.

Oligo feature PDS CRISPR site 1 (PDS1 - gRNA1 - RNP1) PDS CRISPR site 2 (PDS2 - gRNA2 - RNP2)

Forward Primer (5′ to 3′) AAAATAAAATTGAGAACTATGCCCTGG CATGCCTTCATGTGCATCATT

Reverse Primer (5′ to 3′) ATATATGGAAAAGCTCAATGGTACCG AGGCACTAGGCGTTTGAAGA

gRNA sequence (5′ to 3′) GCUAAAUAGAAACCCUCCAAGGG GAUCAUAUCCAGUCAUUGGG

Amplicon size (bp) 497 593

gRNA binding site within amplicon (bp) 213 346

Predicted cleavage products (bp) 285 + 212 346 + 247

NGS Forward Primer (5′ to 3′) TTAGACTGCTGCTCGACGTG CCCTGAGAGACTCTGTTCGC

NGS Reverse Primer (5′ to 3′) CAATCGCCTGTGCACAAAGT TCAGGCACTAGGCGTTTGAA

NGS Amplicon Size (bp) 241 294

PDS, phytoene desaturase; gRNA, guide RNA; RNP, ribonucleoprotein complex; bp, basepair; NGS, next-generation sequencing.
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RNP2 cleavage resulted in predicted bands at approximately
212 bp + 285 bp and 247 bp + 346 bp, respectively. Cleavage
by the RNPs was highly specific as no other bands were visible
(Figures 2A,B). Successful in vitro cleavage was also seen in
amplicons of PG, WRKY52 and NPR1 by their respective RNPs
(Supplementary Figure S1).

Detection of genome editing in protoplasts

The T7EI assay confirmed the presence of mutations in the PDS1
sample through the presence of cleavage products beneath the WT
amplicon band. The T7 endonuclease cleaves mismatched DNA,

therefore degrading and gradually reannealing a mixed pool of
protoplast-derived WT and edited amplicons results in mismatched
double-stranded DNA. One strand contains indels produced through
genome editing, and the other strand contains the WT sequence,
creating a cleavable mismatch. The two bands were approximately
the predicted sizes at 212 bp and 285 bp, however there was an
additional band at 250 bp. Furthermore, the WT amplicon band
was also higher than expected at approximately 510 bp. However,
PDS2 showed no cleavage by T7EI (Figure 2C).

Sanger sequencing followed by deconvolution algorithmically
estimates genome editing efficiency by aligning the sequence trace
files of a gene-edited sequence to a WT sequence. Using the gRNA
sequence to determine the probable cut site, deconvolution

FIGURE 1
Stages of protoplast isolation in raspberry. (A)High-quality canes used for shoot culture, (B) low-quality cane, (C) young plantlets formed from shoot
cultures, (D,E) purification of protoplast before (D) and after (E) sucrose cushion, (F,G) protoplast isolated from plantlets under bright-field (F) and
fluorescent (G) illumination (bars = 100 µM).
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programmes compare the individual basepair confidence of the two
sequences to estimate what indels are present in the gene-edited sample
and their frequencies (Brinkman et al., 2014; Bloh et al., 2021). TIDE
deconvolution estimated editing efficiencies of 14% for PDS1 with
predicted indels ranging from +1 to −5 (Figure 3A). Despite the T7EI
assay not producing any visible cleavage bands, editing efficiency was
estimated at 6.2% for PDS2 with the most common predicted indel of
+1 (Figure 3C). Aberrant signal increased directly downstream of the
gRNA binding site, particularly for PDS1, which was also visible on the
chromatogram (Supplementary Figures S3A, C).

Amplicon sequencing followed by CRISPR analysis revealed
19.0% editing efficiency at PDS1 with 12 variants (minimum

presence in sequence population of 0.1%) ranging from −28 bp to
+1 bp (Figure 3B). The most common indel was a 3 bp deletion
present at 6% and there was some variation in where the DSB
occurred. Some variation may be genuine, but for the most
common mutations, DSB variance could be a sequencing
artifact due to the start and end of the deletion both being a
guanine nucleotide. PDS2 had a 2.3% editing efficiency, with four
variants (present at >0.1% of sequences) ranging from −4 bp to
+1 bp (Figure 3D). The highest frequency indel was a 1 bp
deletion present at 1.2%. CRISPR analysis of PG, WRKY52,
NPR1 revealed an editing efficiency of 1.2%, 0.3% and 6.0%
respectively (Supplementary Figure S2).

FIGURE 2
Detection of in vitro RNP activity and genome editing in protoplasts. (A,B) In vitro cleavage test of RNP1 (A) and RNP2 (B) on leaf-derived PDS PCR
product. (C) T7EI assay of PDS PCR product of gene edited (GE) protoplast transfected with RNP1 and RNP2. Red arrows indicate predicted cleavage
products, and the blue line indicates the additional cleavage product.
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FIGURE 3
Estimated indels predicted by Sanger sequencing/TIDE deconvolution and actual indels detected by NGS. (A,B) PDS1 indels (C,D) PDS2 indels. N
refers to estimated insertions of unknown nucleotides from TIDE analysis. Vertical dashed lines indicate gRNA cut sites, red arrows indicate gRNA
sequences and green lines indicate PAM sequences. All sequences are shown in the 5′ to 3′ direction. Note that gRNA1 binds in the 3′ to 5′ direction.
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Discussion

These results represent the first instance of DNA-free RNP-
mediated genome editing in raspberry protoplast. The transfection
efficiency of 19% with pre-assembled CRISPR RNPs is substantial
and in line with existing research; recent meta-analysis revealed that
the average transfection efficiency of protoplast transfection with PEG
was 17% (Rustgi et al., 2022). If gene edited protoplasts can be
regenerated into raspberry plants, a 19% transfection efficiency would
likely result in higher recovery rate of transformed plants than
Agrobacterium-based methods in raspberry, which is currently
between 0.5%–2% (Mathews et al., 1995; Georgieva et al., 2008).
However, the editing efficiencies identified here are highly variable
between different gRNAs (0.2%–19%), and while similar variation
has been found elsewhere (Rustgi et al., 2022), more consistency in
editing efficiency would be beneficial. Differences in gRNA efficiency is
hypothesised to be due to variance in the accessibility of chromatin at the
binding locus (Lee et al., 2024; Van Campenhout et al., 2019; Uusi-
Mäkelä et al., 2018), therefore large-scale screening of gRNAs may be
unavoidable. Nonetheless, successful DNA-free editing in PG,WRKY52
and NPR1 demonstrates the versatility of this protocol and its potential
with agriculturally relevant functional targets. The development of novel
protoplast-based transfection protocols in crop species has increased
rapidly in recent years, with new methods in grapevine (Scintilla et al.,
2022;Najafi et al., 2023; Tricoli andDebernardi, 2024), tomato (Lin et al.,
2022; Liu et al., 2022), strawberry (Barceló et al., 2019; Gou et al., 2020),
lettuce (Park et al., 2019), and potato (Moon et al., 2021), reflecting
widespread interest. As genome-editing research accelerates in
Arabidopsis, tobacco, wheat and rice (Shan et al., 2020), it will be
vital to invest in method development in a wider range of crops
such as raspberry to ensure that NGBTs can be fully deployed. With
established DNA-free methods, raspberry breeders could target gene
orthologs involved in firmness (e.g., PG (Atkinson et al., 2012; Posé et al.,
2013)), B. cinerea resistance (e.g., WRKY52 (Jia et al., 2020); NPR1 [Li
et al., 2020; Li et al., 2021)], and powderymildew resistance [e.g.,WRY52
(Wang et al., 2017)] that may improve shelf life, a major breeding target
(Funt and Hall, 2013). Fruit flavour/taste, cane habit, plant architecture,
aphid resistance and local climate adaptation (drought/flood tolerance)
could also be broader targets for raspberry breeding through genome
editing if associated genomic and phenomic links can be elucidated. This
study demonstrates the amenability of raspberry to protoplast isolation,
with considerably higher protoplast yields (average 1.5 × 107 protoplast
g-1) than previously reported (3.93 × 106 g-1) (Phan et al., 1997). Yields
from BWP102 are also higher than recent reports in woody species such
as grapevine (6.6 × 106 g-1) (Scintilla et al., 2022) and comparable to
yields of 1 × 107 protoplast g-1 seen inArabidopsis (Yoo et al., 2007). The
most important variable for successful protoplast isolation in raspberry,
as found elsewhere (Yoo et al., 2007; Barceló et al., 2019), is the tissue
quality used as a protoplast source. The outbreeding nature and high
heterozygosity of raspberry adds complexity, compared to many other
inbreeding species, as seeds cannot be used to grow sterile, soft, young
plants for enzymolysis. As such, each raspberry seed is genetically
different, and the genetic backgrounds of elite cultivars must be
preserved to maintain berry consistency and quality. Therefore,
vegetative stem cultures are a good alternative protoplast source.
However, stem cultures are time and energy intensive, susceptible to
contamination, and the health/quality of the canes is hugely influential
on the protoplast yield. Although not systematically explored here,

anecdotal evidence suggests indicators that improve protoplast yield
include bright green stems that had deep red thorns and healthy lower
leaves, alongside rapid growth of plantlets (within 10 days) from axillary
buds in tissue culture. In future, isolation from callus could be an
alternative protoplast source (Kang et al., 2020) to solve issues such as
contamination and yield inconsistency.

Raspberry tissue remained mostly undigested despite 16 h of
digestion, in contrast to Arabidopsis where leaves almost fully
disintegrate into the enzymolysis solution (Jeong et al., 2021). As a
woody species, raspberry likely has higher concentrations of structural
polymers, such as lignin and cellulose, compared to model species. We
hypothesise that levels of structural polymers in raspberry have a
positive correlation to age and abiotic stress (Wang et al., 2016).
Therefore, high levels of structural polymers may interfere with
protoplast isolation (Brandt et al., 2020), resulting in lower yields
from plantlets derived from older canes in poor health.

Pre-assembled RNPs were used in this study for several reasons.
Primarily, non-transgenic crops are preferable as new legislation in
England (Genetic Technology, 2023) permits only precision bred crops
with mutations that could theoretically be produced by natural
mutagenesis. Similar legislation is planned in the European Union
(European Commission, 2021). The genomes of genetically modified
crops inevitably contain foreign DNA (Agrobacterium T-DNA, Cas9/
gRNA DNA or plasmid sequences) which need to be removed through
backcrossing. As previously stated, backcrossing is not practical in
raspberry, and in many other soft fruits, as the species is highly
heterozygous and outbreeding. Public perception of transgenic food
also remains a major issue (Woźniak-Gientka et al., 2022) and would
likely influence marketability and eventual sales. Transgene-free
cultivars generated by pre-assembled RNPs with enhanced
phenotypes present a solution that research shows is more
acceptable with consumers when used to improve sustainability or
for societal benefit (Sprink et al., 2022). Furthermore, the ability to
rapidly introduce targeted non-transgenic mutations directly in clones
with elite genetic backgrounds would be a significant advantage
compared to the years of selection and trials required for
conventional raspberry breeding. Floricane cultivars of raspberry
take 2 years to fruit, thus RNP-based methods represent a great
increase in breeding speed and accuracy. However, the above
advantages still rely upon the elucidation of a protoplast
regeneration protocol in raspberry (Phan et al., 1997).

Plasmid-derived RNPs would likely be effective in this protocol, and
we have successfully tested plasmid YFP expression in
BWP102 protoplasts (Supplementary Figure S4). However, the risk of
genomic plasmid integration (Kim et al., 2014) resulted in a preference for
pre-assembled RNPs. Commercially synthesised Cas9 and gRNA enable
high purity and sequence accuracy, which promotes better editing
efficiencies. Furthermore, it reduces the technical knowledge required
to construct new plasmids for transfection. However, synthetic gRNAs
and Cas9 are expensive, therefore once gRNAs are validated, it may be
cost-efficient for further work to synthesise RNPs in-house.

The cleavage test validated the efficacy of the gRNAs in vitro.
Screening of gRNAs through cleavage tests is recommended prior to
protoplast transfection (Brandt et al., 2020) to validate the activity of
gRNAs using minimal components. Availability of cultivar-specific
genome assemblies were crucial for the design of specific gRNAs and
oligonucleotides with no sequence mismatches or off-target
complementarity. The assembly used in this study is intended for
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publication (Kevei et al., unpub.), however other raspberry cultivar
genome sequences are available (Davik et al., 2022; Price et al., 2023).

Quantifying genome editing efficiency in an amplicon pool is
complex. T7EI and Sanger sequencing/deconvolution were used
initially, which revealed positive results for PDS1, therefore
amplicon sequencing was additionally conducted for
comprehensive analysis. Sanger sequencing followed by
computational deconvolution offers a low-cost alternative when
NGS is financially unfeasible. Many free-to-use programs exist,
namely, TIDE (Brinkman et al., 2014), ICE (Conant et al., 2022)
and DECODR (Bloh et al., 2021). While useful, discrepancies
between different programs mean they cannot be singularly
relied upon (Brockman et al., 2023). Thus, if only using Sanger
sequencing, editing estimates should be complemented with
in vitro proof with T7EI digestion. Taken together, these two
analysis techniques estimate what genotypes are present in the
population and their relative frequencies at low cost. In this study,
the T7EI assay demonstrated successful editing with RNP1,
however did not validate the evidence of editing with
RNP2 from TIDE, likely because editing was at a much lower
frequency. The additional third band present in the T7EI PDS1
sample could be explained by the endonuclease binding to a
proportion of the DNA, reducing mobility through the agarose
gel (New England Biolabs, 2024). Only amplicon sequencing was
sensitive enough to detect the low editing efficiency of RNP2.
Comparing the results of deconvolution and NGS reveals the
former to be a rough estimation of true indels and their
frequencies. Many correct indels were detected, however
frequencies within the sequence pool were not accurate. Until
recently, amplicon sequencing has been prohibitively expensive,
and so methods such as T7EI and deconvolution were appealing.
However, the decreasing cost of sequencing technologies, use of
short-read (<500 bp) sequencing and the lack of high levels of
accuracy with alternative methods, as identified here, indicates that
amplicon NGS is the best choice for the detection of
genome editing.

PDS was chosen as a proof-of-concept reporter gene as null
mutants would present a distinctive albino phenotype early in
protoplast regeneration. We also demonstrate editing in three
agriculturally-relevant functional genes, null mutants of which
have been shown to have increased firmness (PG) (Atkinson
et al., 2012; Posé et al., 2013) and resistance to B. cinerea
(WRKY52 and NPR1) (Jia et al., 2020; Li et al., 2021) and
powdery mildew (WRKY52) (Wang et al., 2017; Li et al., 2021)
in other fruit species. In tandem with genome assemblies, this
method enables rapid editing of any loci within the raspberry
genome. However, as widely documented (Reed and Bargmann,
2021; Liu et al., 2022), protoplast regeneration of gene edited elite
lines remains the greatest challenge to commercial implementation.

Reed and Bargmann (2021); Liu et al. (2022) This study aims to
instigate further research into precision breeding in Rubus species by
providing a straightforward, effective and reproducible protoplast
isolation and quantifiable DNA-free genome editing protocol.
Avenues have been opened for future work on gene expression
and function. If protoplast regeneration methods can be elucidated
in raspberry, genetic improvement of many raspberry traits will
become feasible, with substantial benefits for the sustainability and
efficiency of raspberry production.
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