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Peruvian agriculture is characterize by crops such as potato, maize, rice,
asparagus, mango, banana, avocado, cassava, onion, oil palm, chili, papikra,
blueberry, coffee, cacao, grapes, quinoa, olive, citrus and others. All of them
have challenges in production in their specific agroecosystems under stress
due to pests, diseases, salinity, drought, cold among others. Gene editing
through CRISPR/Cas is a key tool for addressing critical challenges in
agriculture by improving resilience to biotic and abiotic stress, increasing
yield and enhancing the nutritional value of the crops. This approach allows
precise mutation on site-specific gene at the DNA level, obtaining desirable
traits when its function is altered. The CRISPR/Cas system could be used as a
transgene-free genome editing tool when the ribonucleoprotein (RNP) acts as
a carrier to delivered the CRISPR/Cas components into the plant cell
protoplasts, or when the tRNA-like sequence (TLS) motifs are fused to
single-guide RNA (sgRNA) and Cas mRNA sequence and expressed in
transgenic plants rootstock to produce “mobile” CRISPR/Cas components
to upper tissue (scion). Those innovations could be a potential approach to
strengthen the Peruvian agriculture, food security and gricultural economy,
especially in the tropical, Andean and coastal regions. This review article
examines the advances and strategies of gene editing, focusing on
transgene-free methodologies that could be adopted for research,
development and use, and also identifies potential applications in key crops
for Peru and analyzes their impact in the productivity and reduction of
agrochemicals dependence. Finally, this review highlights the need to
establish regulatory policies that strengthen the use of biotechnological
precise innovations, ensuring the conservation and valorization of
agrobiodiversity for the benefit of Peruvian farmers.
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1 Introduction

The agricultural system presents various challenges during the
production cycle of different crops (Nicholson et al., 2021;
Rodriguez et al., 2024). Given that, external factors such as biotic
and abiotic stress, intensive resource exploitation (p.e: water and
soil) and extreme climatic events (Herring, 2004; Yuan et al., 2024),
turns unfavorable conditions for food production and availability of
essential resources in the crops, contributing significantly to global
food insecurity. In this context, gene editing mediated by CRISPR/
Cas system is a promising tool to develop resilient crops, that allows
precise mutation on site-specific gene at the DNA level to display
new traits than can be incorporated and used in the plant breeding
programs (Ceasar and Kavas, 2024; Ndudzo et al., 2024).

To get a loss of function of a site-specific gene, Zinc Finger
Nucleases (ZFNs) (Davies et al., 2017) and Transcription Activator-
Like Effector Nucleases (TALENs) (Sprink et al., 2015) have been
used, but over the time have presented some limitations (Gaj et al.,
2013) in their accuracy and cost. However, CRISPR/Cas system has
emerged as a transformative breakthrough (Cardi et al., 2023) given
its simplicity, efficiency and ease to use for many scientists that have
adapted it as a reliable tool for genome editing on different
organisms, including plants (Gan and Ling, 2022). Also, could be
considered a “transgene-free” tool (i.e., without stable insertion of
any transgenes) when the ribonucleoprotein (RNP) is used as a
carrier of the CRISPR/Cas components into the protoplasts (Tiwari
et al., 2022) or when tRNA-like sequence (TLS) motifs are fused to
single-guide RNA (sgRNA) and Cas mRNA sequence and
expressing in transgenic plants rootstock, enabling systemic
mobility of CRISPR/Cas system components through to others
tissues of the scion (Yang et al., 2023). In addition to RNP-based
methods, other transgene-free strategies have been developed,
including the use of in vitro transcripts (IVTs) (Liang et al.,
2018) and viral replicons (Shen et al., 2024). These molecules can
be introduced not only into protoplasts but also directly into intact
plant tissues through delivery techniques such as biolistics.
Moreover, the co-editing strategy has recently gained attention as
an efficient and promising alternative for transgene-free genome
editing (Jia et al., 2024). All these strategies rely on the same
principle: sgRNA designed based on the site-specific target gene
leads a Cas protein to make a precise cut in the gene, enabling a
modification without the need for stable transgene integration
(Workman et al., 2021).

The Clustered Regularly Interspaced Short Palindromic Repeats,
also called CRISPR discovered in bacteria, mostly employs the
Cas9 protein; however additional Cas variants exhibiting distinct
properties, such as Cas12 (previously Cpf1), Cas13 and Cas14,
which makes gene editing even more versatile (Hillary and Ceasar,
2023; Movahedi et al., 2023). In addition, base editing technology is a
promising alternative because it allows even higher precision in the
design of exact base edits without generating double-strand breaks
(Azameti and Dauda, 2021). Therefore, these genome editing tools are
considered as next-generation strategies for plant breeders to modify
specific genes of the whole genome to generate resilient crops to biotic
and abiotic stresses and, therefore, reduce herbicide and insecticide
products in the production system.

Peru is a megadiverse country that offers a wide diversity of
crops (Pearsall, 2008; MIDAGRI, 2025b) such as potato, maize, rice,

asparagus, mango, banana, avocado, blueberry, coffee, cacao, grapes,
quinoa, olive, citrus among others (Porro et al., 2015; Schwarz et al.,
2019). Its economy depends in part on the agriculture and livestock
sector, which accounts for approximately 6% of the national Gross
Domestic Product (GDP), with crop production representing more
than 60% of this value (Banco Central de Reserva del Perú, 2024).
According the latest 2017 Census, more than 20% of the population
resides in rural areas (INEI, 2017), where 78% is dependent on
agriculture for their livelihood (Cabrera-Cevallos and De la O
Campos, 2023). Likewise, agro-export companies have
maintained a sustained growth, reaching a value of US$
1,314 million in January of this year, which represents an
increase of 23.3% compared to the same month of 2024. Among
the main exported products, blueberries are the second most
exported agroindustrial product, after grapes, with a value of US$
128 million (ADEX, 2025).

Biotechnological innovations could play a key role in strengthening
the country’s food security and agricultural economy (Potter et al.,
2023). In the Peruvian context, the cultivation of genetically engineered
(GE) crops meeting the legal definition of living modified organisms
(LMOs) is currently limited by the moratorium (Law no. 29811)
approved by the Congress in 2011 and subsequently extended in
2021 for another 15 years, through Law no. 31111, however there
are three exceptions: 1) laboratory research; 2) use in pharmaceuticals
and veterinary products; and 3) use in food, animal feed, and in food
processing. It means that it is not possible planting GE crops (also called
as transgenic crops) in the agricultural fields around the Peruvian
territory. According The Cartagena Protocol on Biosafety (CPB), an
LMO is defined as “any living organism that possesses a novel
combination of genetic material obtained using modern
biotechnology” (Secretariat of the Convention on Biological Diversity,
2000). Based on this, the CRISPR/Cas system could be considered as a
transgene-free tool when the RNPs technology is employed into
protoplasts, avoiding the integration of exogenous DNA into the
plant genome (Kim et al., 2024) or when the CRISPR/Cas sequences
system is fused to the TLS motifs, thus allowing its transport from the
rootstock to multiple scion tissues, this approach enables the generation
of mutated seeds without the need to incorporate transgenic sequences
(Hu and Gao, 2023; Yang et al., 2023). Both strategies could provide a
pathway solution for biotechnological restrictions for cultivation of
genetically engineered (GE) organisms.

This review article examines the gene editing advances and
strategies, focusing on transgene-free methodologies that could be
adopted in the Peruvian agriculture for research, development and
access. And also emphasizes the potential applications in key crops
for Peru and analyzes their impact on productivity and reduction of
agrochemicals dependence. Finally, the review focus on the need for
evidence-based regulatory policies that strengthen the use of
biotechnological precise innovations in the Peruvian agriculture.

2 CRISPR/Cas advances and
applications in plants

CRISPR/Cas technology has overcome numerous limitations
associated with traditional breeding techniques (Muha-Ud-Din
et al., 2024). Major achievements include increased resistance to
pathogens, tolerance to unfavorable environmental conditions, and
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improved nutritional quality of crops, which are essential for
enhancing food security and adapting agriculture to climate
change (González et al., 2020; Shinwari et al., 2020) (Figure 1).

Precise edits using the CRISPR/Cas system have been achieved
to improve disease resistance and increase yield in cereal, fruit,
vegetable and tuber crops. Much of the research in recent years has
focused on the three staple food crops: rice, wheat, and maize (Xu
et al., 2024; Li et al., 2022; Liu et al., 2021), reflecting the strategic
importance in sustainable food production. A bibliographic analysis
based on Web of Science data confirm the importance of CRISPR/
Cas system in the research field (Figure 2). Rice stands out as the
crop with the highest number of scientific publications
(2,501 articles), showing an increasing trend in gene editing
studies over the years. It is followed by tomato (822 articles),
maize (675 articles), wheat (654 articles) and potato
(384 articles), reflecting the scientific community’s interest in
optimizing these crops using biotechnological tools.

Rice (Oryza sativa L.), a staple food in the diet of more than half
the world’s population, plays a vital role in food security, especially
in Asia, where it is often the primary source of nutrients. In Peru,
rice is also a key component of the national diet, with a per capita
consumption of approximately 54 kg per year, the highest in Latin
America (INEI, 2024). Its production is concentrated in the
departments of San Martin, Piura, Lambayeque, La Libertad and

Amazonas, which together accounted for 72.36% of the national rice
production of 2024 (MIDARGI, 2025a). Despite its importance, rice
production faces significant challenges against several plant
pathogens, including Meloidogyne graminicola, a root-knot
nematode (RKN) responsible for yield losses between 17% and
32% (Kyndt et al., 2014; Mantelin et al., 2017). Most rice
cultivars are highly susceptible to this plant-parasitic nematode,
and changes in agricultural practices have exacerbated its prevalence
(Mantelin et al., 2017). Numerous investigations on gene editing
have been carried out in response to this challenge and the search for
improvements in cultivation (Table 1).

A prominent example of increasing resistance to M.
graminicola was conducted using CRISPR/Cas9 system to edit
the susceptibility gene OsHPP04 in rice. Transgene-free mutants
showed enhanced immune responses and retained agronomic
traits, highlighting the potential of gene editing for nematode-
resistant crops (Huang et al., 2023). Another study focused on
improving resistance to blast (Pyricularia oryzae) by editing the
susceptibility genes OsDjA2 and OsERF104. The edited plants
showed no adverse effects on growth, thus demonstrating the
safety and efficacy of this technique (Távora et al., 2022). In
China, research has also been conducted to increase yield
(including increased panicle length and grain size) and
improve cold tolerance. This was achieved by simultaneously

FIGURE 1
Potential targets of plant gene editing using CRISPR/Cas system for potato improvement. Potato and other crops can be also improved by
addressing any possible regulator of yield, quality, and biotic or abiotic stress tolerance.
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editing three key genes (OsPIN5b, GS3 and OsMYB30) using the
CRISPR/Cas9 system (Zeng et al., 2020).

Wheat is the second most important staple food globally,
providing more than 20% of the daily calories and protein
consumed. It is grown in 89 countries and contributes to the

diets of approximately 2.5 billion people (Gohar et al., 2022).
However, it faces challenges such as climate change and
diseases caused by pathogenic fungi, such as rust and ear
blight, which threaten its global production (Junk et al., 2016).
In response, gene editing offers innovative solutions to ensure

TABLE 1 CRISPR/Cas applications in cereal crop improvement*.

Crop Edited gene Improved trait References

Hordeum vulgare
(barley)

GST, IPI, PDI, CRT, HSP70, HSP26,
HSP16.9

Enhanced recombinant protein yield and distribution Panting et al. (2021)

PTST1, Gbss1a Increased amylose content and improved grain viability Zhong et al. (2019)

Oryza sativa (rice) LKR/SDH Increased lysine content in grains without affecting agronomic traits Rastogi et al. (2025)

OsCKX1–OsCKX11 Increased panicle size, grain number, and altered seed morphology and starch
composition

Zheng et al. (2023)

OsHPP04 Improved resistance to root-knot nematode without yield penalties Huang et al. (2023)

Waxy Optimized amylose content for better cooking and eating quality Huang et al. (2020)

CrtI, PSY Increased carotenoid content without trade-offs Dong et al. (2020)

OsGAD3 Increased GABA levels, grain weight, and protein content Akama et al. (2020)

OsBADH2 Enhanced aroma for better sensory quality and market value Ashokkumar et al.
(2020)

OsPIN5b, GS3, OsMYB30 Improved panicle length, grain size, and cold stress tolerance Zeng et al. (2020)

OsGS3, OsGW2, OsGn1a Enhanced grain size, width, weight, and number Zhou et al. (2019)

OsPLDα1 Reduced phytic acid to improve micronutrient bioavailability Khan et al. (2019)

Triticum aestivum
(wheat)

TaARF12 Reduced plant height, larger spikes, and increased grain yield Kong et al. (2023)

TaGW7 Increased grain width and weight; decreased grain length Wang et al. (2019b)

Zea mays (maize) CLE Increased meristem size and grain yield traits Liu et al. (2021)

Wx1 Increased amylopectin content and waxy corn yield Gao et al. (2020a)

SH2, GBSS Higher sugar and amylopectin levels in sweet and waxy maize Dong et al. (2019)

TABLE 2 CRISPR/Cas applications in fruit crop improvement*.

Crop Edited gene Improved trait References

Citrus maxima (pomelo) CsLOB1 Bacterial canker resistance in citrus achieved in the T0 generation Jia andWang (2020)

Citrus sinensis (sweet orange) CsLOB1 Enhanced resistance to bacterial canker Huang et al. (2022)

Fragaria x ananassa (strawberry) RAP Improved fruit coloration via modulation of anthocyanin transport Gao et al. (2020b)

Malus sieversii (red-fleshed apple) MdMKK9 Enhanced anthocyanin accumulation and tolerance to low-nitrogen
conditions

Sun et al. (2022)

Musa acuminata (diploid banana) MaACO1 Delayed ripening and extended shelf life Hu et al. (2021)

LCYε Increased β-carotene content with reduced levels of α-carotene and lutein Kaur et al. (2020)

Musa spp. (triploid banana and
plantain)

eBSV Resistance to endogenous BSV activation under stress in B genome
germplasm

Tripathi et al. (2019)

Solanum melongena (eggplant) SmelPPO4, SmelPPO5,
SmelPPO6

Reduced fruit browning through targeted suppression of PPO genes Maioli et al. (2020)

Vaccinium spp. (blueberry) CENTRORADIALIS (CEN) Modulated vegetative growth through functional disruption of CEN gene Omori et al. (2021)

Vitis vinifera (grapevine) TMT1, TMT2 Reduced sugar accumulation in grape berries Ren et al. (2021)
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their sustainability and nutritional quality in the future
(Elsharawy and Refat, 2023).

Since the pioneering study by Wang et al. (2014), which laid the
foundation for gene editing in wheat, significant advances have been
achieved through the use of CRISPR/Cas9 system. In that regard,
other studies achieved editing of the TaGW7 gene, showing dose-
dependent effects on grain morphology, increasing grain width and
weight while reducing its length. Similarly, editing TaARF12 led to
yield improvements of up to 11.1% by reducing plant height and
promoting more prominent ears and a higher grain number
(Table 1). In turn, Wang et al. (2018) implemented a multiplex

editing strategy targeting TaGW2, TaLpx-1, and TaMLO, where
knockout of TaGW2 resulted in a significant increase in seed size
and grain weight, with heritable effects observed in subsequent
generations.

Maize (Zea mays L.) has become the most widely grown and
traded crop globally, playing a key role in the production of food,
feed and biofuels (Erenstein et al., 2022). However, its yield is
affected by drought in 20% of the cultivated area for each year,
and numerical simulation reveals that yield loss will increase by
14.10%–33.40% during 2020–2050 (Bi et al., 2023). High
temperatures (above 32 °C) have also been reported to affect

TABLE 3 CRISPR/Cas applications in vegetable crop improvement*.

Crop Edited gene Improved trait References

Brassica napus (rapeseed) BnSFAR4, BnSFAR5 Higher seed oil content without loss of plant vigor Karunarathna et al. (2020)

Brassica oleracea (chinese kale) BoaCRTISO Improved leaf coloration via pigment modulation Sun et al. (2020)

Brassica rapa (chinese cabbage) BraFLC2, BraFLC3 Early flowering without vernalization requirement Jeong et al. (2019)

Cucurbita maxima (pumpkin) RBOHD Improved salinity tolerance via root ion balance Huang et al. (2019)

Solanum lycopersicum (tomato) SlAMS Reduced pollen viability for male sterility induction Bao et al. (2022)

SlPelo, SlMlo1 Dual resistance to tomato yellow leaf curl virus and powdery mildew Pramanik et al. (2021)

MAX1 Resistance to Phelipanche aegyptiaca via strigolactone suppression Bari et al. (2021)

SlHyPRP1 Salinity tolerance via loss of negative regulatory domains Tran et al. (2021)

SlMAPK3 Heat stress tolerance via ROS and stress pathway regulation Yu et al. (2019)

ALS1, ALS2, ALS3 Resistance to chlorsulfuron herbicide Danilo et al. (2019)

SlJAZ2 Resistance to bacterial speck without loss of defense against necrotrophs Ortigosa et al. (2019)

TABLE 4 CRISPR/Cas applications in tuber crop improvement*.

Crop Edited gene Improved trait References

Ipomoea batatas
(sweetpotato)

IbGBSSI, IbSBEII Improved starch properties via amylose modification Wang et al. (2019a)

Manihot esculenta
(cassava)

MeSSIII-1 Increased amylose and resistant starch content in the storage roots Lu et al. (2025)

CYP79D1, CYP79D2 Reduced cyanide levels for enhanced food safety Gomez et al. (2023)

MeSWEET10a Increased tolerance to bacterial blight Elliott et al. (2023)

MeCYP79D1 Reduced linamarin and cyanide content for enhanced food safety Juma et al. (2022)

nCBP-1, nCBP-2 Improved tolerance to brown streak disease with reduced root necrosis and virus load Gomez et al. (2019)

Solanum tuberosum
(potato)

InvVac, PPO2 Improved cold storage and bruising resistance via suppression of cold-induced
sweetening and enzymatic browning

Massa et al. (2025)

StPM1 Improved resistance to Phytophthora infestans Bi et al. (2024)

Parakletos Broad-spectrum resistance to biotic and abiotic stresses with increased field yield Zahid et al. (2024)

StDND1, StCHL1,
StDMR6-1

Enhanced resistance to late blight Kieu et al. (2021)

Coilin Increased resistance to potato virus Y and stress tolerance Makhotenko et al. (2019)

StPPO2 Reduced enzymatic browning in tubers González et al. (2020)

S-RN Self-incompatibility breakdown for hybrid breeding Enciso-Rodriguez et al.
(2019)

* Note: Only peer-reviewed scientific studies published between 2019 and 2025 are included.
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flowering by decreasing pollen viability, thereby reducing
fertilization and grain yield (Kumar et al., 2021). In addition,
pests and diseases can cause losses exceeding 3.75 million tons
per year (Hampf et al., 2021). Hence, it is essential to develop maize
cultivars that are more productive, resistant, and tolerant to biotic
and abiotic stresses. Examples of improvements with CRISPR/
Cas9 include editing the ARGOS8 promoter, which has increased
yield under drought conditions (Shi et al., 2017), Furthermore,
modifications in Stiff1 and ZmGA20ox3 genes have strengthened
stalks and created semi-dwarf plants suitable for high-density
plantings (Liu et al., 2023). Other examples of yield improvement
and disease tolerances are given in (Tables 1–4).

3 Strategies to obtain transgene-free
genome editing crops

Over the years, gene editing technology has undergone rapid
innovation, significantly expanding its range of applications due to
its high efficiency and precision. These attributes, combined with
their accessibility and versatility, have bring a major transformation
in biotechnological solutions, particularly in agriculture sector
where the primary goals are to reduce production costs and
enhance the yields of crops with agronomic relevance traits
(Mohd-Fadhli and Boon-Chin, 2024; Ndudzo et al., 2024).

The emergence of the CRISPR/Cas system has provided a more
accessible, versatile and efficient alternative for gene editing in plants
(Kaul et al., 2025). This system has facilitated the development of
transgene-free technologies, such as the direct delivery of
ribonucleoprotein (RNP) complexes (Zhang et al., 2021) and the
use of TLS motifs (Yang et al., 2023), which are emerging as
promising strategies adapted to crops with different in vitro
transformation and regeneration capabilities. RNPs with CRISPR/
Cas complex cleave DNAmore rapidly than other delivery methods,
and reach a maximum mutation frequency rather soon after
transfection, normally within 24 h (Bloomer et al., 2022).
Additionally, when delivered as ribonucleoprotein (RNP)
complexes, Cas9 degrades more rapidly compared to other
delivery methods, thereby reducing the risk of off-target genome
edits (Bloomer et al., 2022; Kim et al., 2014). In non-recalcitrant

crops, RNP complexes represent a highly promising alternative for
genome editing via protoplast transformation. This strategy involves
the direct delivery of the Cas9 protein complexed with sgRNA,
forming a functional unit capable of inducing precise genomic
modifications without the integration of transgenic sequences
(Zhang et al., 2021). Model crops of agronomic interest such as
potato (Solanum tuberosum) (González et al., 2020), tomato
(Solanum lycopersicum) (Lin et al., 2022), tobacco (Nicotiana
tabacum) (Liu et al., 2020), grape (Vitis vinifera) and apple
(Malus domestica) cultivars (Malnoy et al., 2016) have been the
subject of multiple investigations using this system, achieving the
introduction of targeted mutations effectively and without leaving
foreign genetic residues (Figure 3).

On the other hand, a major challenge in the gene editing of
recalcitrant crops is their intrinsic difficulty for genetic
transformation and in vitro regeneration, which limits the
applicability of these technologies (Nivya and Shah, 2023). This
limitation is particularly evident in many commercial cultivars,
which often lack the capacity for efficient transformation. In
addition, callus culture process is time-consuming and can lead
to undesirable somaclonal variations, further complicating the
development of stable edited lines (Wang and Wang, 2012). In
this context, the incorporation of TLS motifs into the sgRNA of the
CRISPR/Cas system is presented as an innovative strategy. These
motifs allow the modified sgRNA to mobilize systemically through
the phloem, reaching distant tissues that would otherwise be
inaccessible for direct editing (Wu, 2023; Yang et al., 2023)
(Figure 4). This strategy has been applied in model species such
as Arabidopsis thaliana and Brassica rapa, by constructing 3′-end
fusions of the Cas9 sequence gene and sgRNA sequences with TLS
motifs, with the aim of facilitating the systemic transport of RNA
from transgenic rootstocks to wild-type scions (Yang et al., 2023).
This approach has made it possible to achieve heritable gene editing
in recipient tissues without the integration of transgenes in the
offspring, thus constituting a promising alternative for transgene-
free gene editing in recalcitrant crops (Lyu, 2023).

We summarize that both strategies would be considered as
possible ways to obtain transgene-free genome editing crops
without the integration of exogenous DNA in the plant genome,
and their applicability depends largely on the type of crops, the
availability of efficient regeneration protocols and the technical
conditions of the laboratory. CRISPR/Cas9-RNP would be useful
for non-recalcitrant crops (p.e: potato, banana, strawberry, coffee)
and CRISPR/Cas9-TLS offers an alternative and innovative pathway
for recalcitrant crops (p.e: cacao), avoiding the need to directly edit
protoplasts.

4 Potential applications in Peruvian
agriculture

Plant gene editing could make a significant contribution to
Peruvian agriculture by offering innovative solutions to enhance
the productivity and sustainability of the agricultural sector (Zhang
et al., 2018). These innovations could strengthen food security and
the agricultural economy in Peru, especially in tropical, Andean and
coastal regions, where the crops face production challenges in their
specific agroecosystem (Reynel et al., 2013; USAID, 2017) (Figure 5).

FIGURE 2
Bibliometric analysis of CRISPR/Cas application in different crops
for specific traits.
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In this context, CRISPR/Cas and other gene editing technologies are
important tools to drive sustainable and competitive agricultural
development (Camerlengo et al., 2022).

One of the most significant advantages of gene editing is its
potential to develop crops with enhanced resilience to climate
change, a critical challenge for modern agriculture. Through
targeted genetic and epigenetic modifications, it is possible to
increase plant tolerance to adverse environmental conditions,
such as drought and water scarcity (Shinwari et al., 2020). This is
especially relevant for the Andean region, where drought is a
constant threat to crops such as potato, maize, quinoa, beans and
others crops. Recent studies have shown that CRISPR/Cas9 has the
potential to modify important genes associated with drought
resistance in maize (Liu et al., 2023). Shi et al. (2017) have
shown that it is possible to adapt this crop to the dry
environmental conditions of the country and thus increase its
yields. Similarly, temperature-sensitive crops such as potatoes
(Gangadhar et al., 2014), could benefit from genetic
modifications designed to enhance their heat tolerance and
safeguarding their yields in an environment of accelerated
climate change (Chincinska et al., 2023).

In areas with frequent flooding, gene editing offers a promising
solution by enabling the development of rice varieties with improved

water-use efficiency. Recent studies have shown that it is feasible to
increase the resistance of rice to both drought (Yang et al., 2022) and
flooding by optimizing key physiological traits. These advancements
include improved water retention under drought conditions and the
ability to maintain gas exchange during submergence, thereby
preventing cellular hypoxia and supporting plant growth in
extreme environment (Yang et al., 2022).

Pest and disease management is another area where gene editing
provides effective responses. Potato, a representative crop of Peru, has
been investigated in order to enhance its resistance to pests such as
potato tuber moth (Salim et al., 2024) and diseases such as late blight
(Phytophthora infestans) (Karlsson et al., 2024; Zahid et al., 2024). The
International Potato Center (CIP with headquarters in Peru), has been
conducting research in Africa and Asia based on gene editing of this
Andean tuber to generate more productive crops, resistant to diverse
climatic conditions and capable of repelling pests or being immune to
diseases (Sánchez-Valdivia, 2024). These advances, applied in Peru,
would increase potato productivity and reduce pesticide use, thereby
contributing to sustainable agriculture. In this context, we are
conducting research using the RNP-mediated CRISPR/Cas9 system
to inactivate polyphenol oxidases in native Peruvian purple potato
cultivars and reduce enzymatic browning. Also, other crops, such as
cotton and maize, have undergone genetic modifications to develop

FIGURE 3
Plant genome editing using a CRISPR/Cas9 ribonucleoprotein (RNP) complex. The process begins with the design of the sgRNA (1), followed by the
assembly of the Cas9 protein with single guide RNA (sgRNA) to form the RNP complex (2). Plant protoplasts are isolated (3), and the RNP complex is
delivered into the cells (4), where it induces site-specific DNA cleavage (5). The cell’s endogenous repair machinery introduces insertions or deletions at
the break site through error-prone non-homologous end joining (NHEJ), leading to gene knockout (6). Regeneration and selection of edited cells
are performed (7), followed by DNA extraction (8), PCR amplification (9), and mutation detection (10). Successfully edited plants are then obtained and
analyzed (11).
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natural compounds that repel insects, reduce the need for insecticides
and protect the environment (Meissle et al., 2022).

The use of improved crops, which leads to a reduction in the use
of insecticides, not only benefits the environment, but also food
safety. According to a report by the National Agricultural Health
Service (SENASA) in 2022, analyses of food samples in Peru showed
that the pesticide limits established in the Food Safety Law
(Legislative Decree no. 1062) were exceeded in between 16% and
26% of samples. Tomatoes (77% of the samples), peppers and yellow

peppers had concentrations above the permitted levels (Senasa,
2023). The results emphasize the importance of regulating the
use of pesticides in Peruvian agriculture and promoting
innovative plant biotechnology solutions to safeguard food safety
and protect consumer health.

Improving the nutritional profile of crops is a critical objective in
the context of Peruvian agriculture. Biofortification offers a viable
approach to combat malnutrition in vulnerable rural populations by
increasing the content and bioavailability of essential nutrients in staple

FIGURE 4
Plant genome editing using a CRISPR/Cas9-tRNA-like sequence (TLS). This strategy begins with a transgenic rootstock engineered to express a
mobile CRISPR/Cas9-TLS construct (1). An unmodified (non-transgenic) scion is grafted onto this rootstock (2), enabling the long-distance transport of
the CRISPR/Cas9-TLS from root to shoot (3). Once in the shoot, the system initiates production of Cas9 protein and assembly of CRISPR complex in
different organs (4), enabling genome editing in reproductive tissues (5). This results in the generation of edited, transgene-free progeny (6), which
segregate into mutant and wild-type lines. This approach offers a promising platform for transgene-free gene editing in crop breeding.
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foods (Goswami et al., 2022; Kiran et al., 2022). In 2023, Peru reported
that 11.5% of children under 5 years of age were suffering from chronic
malnutrition (Endes-Inei, 2024). This result is alarming, given that
undernutrition during childhood can cause irreversible impacts on
children’s cognitive and physical growth (Suryawan et al., 2022).

Plant breeding needs to be directed not only at increasing yield,
but also incorporate strategies to enhance the nutritional quality of
crops. Over the years, durum wheat varieties have achieved
significant gain in productivity, but they exhibited a decline of
11%–25% in Fe+2 and Zn+2 concentrations, apparently due to a
dilution effect (Murphy et al., 2008). Biofortification seeks to
counteract this trend by simultaneously enhancing crop yields
and increasing the concentration of essential micronutrients in
staple cereals cultivated in Peru (Kadam et al., 2023). In addition,
studies on crops such as potatoes, rice, cassava, tomatoes, maize,
bananas, and carrots have shown that they have the potential to
improve nutrient profiles and agricultural performance (Garg et al.,
2018). However, recent studies emphasizes that the success of
biofortification must be coupled with studies on the
bioavailability of the nutrients to ensure that intended health
benefits are realized (Huey et al., 2024).

Thus, gene editing plays a crucial role for advancement of
agricultural innovation in agrifood systems to be become more
sustainable, resilient and climate-adaptive, providing sufficient safe
and nutritious foods for healthy diets under different
agroecosystems of the countries, including Peru. However, a
significant gap remains in the identification and functional
characterization of new specific genes in crops that could be
targeted through gene editing to achieved desirable agronomic
and nutritional traits.

5 Regulatory policy in Peru and the
moratorium on living modified
organisms in the Latin
American context

Most, if not all, countries that have ratified and implemented the
Cartagena Protocol on Biosafety (CPB) will regulate transgenic
organisms as living modified organisms (LMOs) based on their
implementation of the CPB into national law. Peru introduced the
LMO definition in its biosafety legislation in 1999 (Law no. 27104) and
subsequently ratified in the CPB in 2004. However, with the appearance
of targeted mutagenesis and other potentially non-transgenic
techniques, various countries are adopting different regulatory
approaches to the resulting products and this is a complicating
factor not least in international trade with agricultural products. In
Latin America, seven countries so far have introduced specific
provisions addressing the regulatory status of the products of such
precision breeding (Gatica-Arias, 2020; Rosado and Eriksson, 2022).
Argentina was the pioneer in 2015 (Whelan and Lema, 2015) and since
then also Brazil, Chile, Colombia and Paraguay have adopted similar
approaches. This approach includes a pre-submission consultation
where the regulatory status of the product is determined, most
notably focusing on whether or not the final organism has a novel
combination of genetic material. Guatemala and Honduras have
adopted a bilateral agreement to facilitate commercial agricultural
exchange between the two countries, including certain provisions on
the regulatory status of the products of precision breeding. Peru has
hitherto not adopted any official declaration beyond the adoption of the
CPB, however initial discussions point to the possibility that some
products derived from precision breeding may be treated as LMOs

FIGURE 5
Map of Peru showing the main crops by regions with potential for gene editing research.
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(Rosado and Eriksson, 2022). In this case, it remains to be seen what
would be the definition of biotechnology-derived products that are not
to be regulated as LMOs in Peru. It is important though that the
lawmakers take into consideration the potential impact on international
trade in the Latin American region, which will be hampered if countries
adopt widely different approaches to the regulation of the products of
precision breeding.

Peruvian regulations emphasize the protection of biodiversity
and public health based on the precautionary principle. Although
the objective of this strategy is to conserve natural resources, it has
caused controversy by restricting the use of technologies that could
help increase the sustainability and efficiency of agricultural
production. The moratorium not only reflects concern about the
potential socioeconomic and environmental consequences of LMOs,
but also serves to protect traditional agricultural methods and
ancestral practices.

However, transgene-free editing presents a promising approach
to overcoming these limitations while ensuring environmental
safety, given that the Peruvian government develops an enabling
regulatory framework that does not put unnecessary restrictions on
innovation. Given advancements such as RNP complexes or ‘mobile’
CRISPR/Cas9— both transgene-free and widely applied in crops of
agronomic importance—there is a need to reassess existing
regulatory frameworks. Updating and approving these regulations
would facilitate the safe and efficient adoption of biotechnological
innovations in Peru, contributing to the sustainable development of
agriculture.

In this context, cooperation between scientists, legislators, and
farmers is crucial to creating an exemplary regulatory framework
that promotes technological innovation while ensuring safety and
environmental sustainability. Policies should consider all
stakeholders’ needs and concerns and be guided by scientific
knowledge. In addition, increasing public awareness of modern
biotechnologies is essential and requires well-structured outreach
and education programs.

6 Conclusion and future prospects

Gene editing, mediated by CRISPR/Cas system, particularly
through transgene-free approaches in crops, offers promising
opportunities for research, development, and practical
application. This technology could significantly contribute to
agricultural innovation within Peru’s agrifood systems by
enhancing crop resilience and climate adaptability across the
country’s diverse agroecosystem.

The adoption of transgene-free approaches, such as RNP-based
editing and ‘mobile’ CRISPR/Cas9, could be a viable pathway to use
biotechnological innovations in the Peruvian agriculture face to the
strict provisions of the Peruvian moratorium on GMOs, ensuring
greater compliance with biosafety standards.

Finally, the establishment of robust regulatory frameworks that
balance technological innovation with ecological and social
responsibility is crucial to fully harness the potential of gene
editing and to advance a sustainable and globally competitive
agricultural sector in Peru. Achieving this goal will require
effective collaboration among scientists, policymakers, and
farmers. Public awareness and education campaigns will also go a

long way in promoting acceptance and understanding of this
technology base on science.
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