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The global need for lithium (Li) is increasing due to its use in batteries which are
used tomake electric vehicles, wind turbines and fuel cells to facilitate theworld’s
‘green transition’ to low carbon economies. The mining of Li, like that of other
Earth materials, produces large volumes of waste such as tailings and processing
chemicals. A growing body of research is addressing the resource potential and
environmental impacts of wastes from mining of Li-bearing granites and
pegmatites that produce around 40% of the world’s Li. The wastes are
dominated by SiO2 and Al2O3, with lesser Na2O, K2O and Fe2O3, that are
hosted in quartz, feldspar and micas. They can contain around 1 wt% Li2O that
is found in residual spodumene, lepidolite and zinnwaldite, and trace (<1 wt%)
amounts of Rb, Cs, U and Be. Some exploitation of the Li from granite-pegmatite
tailings is occurring on a commercial scale. There is also good potential for the
waste quartz, feldspar andmica to be used in ceramics and buildingmaterials, and
for the Rb, Cs and Be to be used for photovoltaic cells, alloys and other
applications. Spodumene-bearing wastes can contain potentially toxic and/or
radioactive U, Th and Tl, but the concentrations are generally low. Overall, Li-
bearing granite-pegmatite mine wastes have good potential to be reused,
remined and recycled. More research is required to characterize their
geochemistry and mineralogy in detail to improve recovery and to understand
how processing and weathering may affect environmental risk.

KEYWORDS

lithium, mine waste, granite, pegmatite, spodumene, lepidolite, quartz feldspar sand

1 Introduction

The mining industry produces huge volumes of waste because the economic commodities
form only a small proportion of the materials extracted (Hudson-Edwards, 2016). A variety of
solid wastes are produced, including coal and mineral fuels, sediment, overburden soil, mill
tailings, processing chemicals and metallurgical slag (Hudson-Edwards et al., 2011). In 2022 the
global amount of mine wastes was estimated to be around 268 billion tonnes, and this has been
projected to increase to around 379 billion tonnes by 2030 (Research and Markets, 2024). The
main reason for this is that most high-grade deposits have already mined, leading industry to
exploit larger deposits with lower grades (Hudson-Edwards et al., 2011). A secondary reason is
that there is increasing demand for Critical Raw Materials (CRMs), Earth materials with high
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economic and/or strategic importance for which there is no adequate
substitute and a high supply risk (EC European Commission, 2014).
CRMs are essential components for modern technologies such as
batteries, photovoltaics, wind turbines, electronics, fuel cells, mobile
phones, computers and other products, many of which are required to
provide renewable energy as the world aims to reduce its reliance on
fossil fuels.

Lithium (Li) is regarded by many countries as a CRM because it
is a major component of Li-ion batteries that power electric vehicles
and other electrical devices, and because it is currently mined in only
a few countries. The World Bank Group predicted that the
production of lithium could increase by 500% by 2050 to meet
demand (World Bank Group, 2020). Around 60% of lithium is
produced from salar brines, and the rest is extracted from ‘hard rock’
Li-bearing granites and pegmatites (Tadesse et al., 2019). Little is
known about the salar Li mine wastes except that they are salts rich
in all cations in the brines except Li (Vera et al., 2023). By contrast,
wastes from Li-bearing granite and pegmatite mining are better
studied and some are being exploited for Li and other commodities.

Knowledge of the geochemistry and mineralogy of wastes is
essential for evaluating their potential for reuse, remining and
recycling, in designing and optimising schemes to extract their
economic components and in understanding and managing their
environmental impacts (Brough et al., 2013; Jamieson et al., 2015).
In this review the generation of Li-bearing granite-pegmatite wastes
are outlined, and their geochemistry, mineralogy, resource potential
and environmental impacts are described, and themes for future
research are presented.

2 Lithium-bearing granite-pegmatite
systems: Origin, extraction, processing

Li-bearing granites and pegmatites occur in every continent of the
world except, to our knowledge, in Antarctica. The largest deposits are
found in Australia, China and Brazil (Shaw, 2016). The parent magmas
form at the post-collisional stage of orogenesis (Bradley et al., 2017), and
the Li-bearing granites crystallise from these. Coarse-grained Li-bearing
pegmatites are thought to form by crystallisation of highly fractionated
melts that are derived from the graniticmagmas (London, 2018; Li et al.,

2023), or anatexis of sedimentary rocks (Shaw et al., 2016; Müller et al.,
2017) or Li-rich clays and borates (Simmons and Webber, 2008).

These rocks contain a variety of Li-bearing minerals that are
summarised in Table 1. Lepidolite and zinnwaldite are the most
common minerals in Li-granites, whereas spodumene and petalite
are the main minerals found in pegmatites (Gourcerol et al., 2019).
The other minerals shown in Table 1 occur in lesser amounts,
mainly in pegmatites.

Despite their global occurrence, in 2022 Li-bearing granites and
pegmatites were mined only in Australia (accounting for most of the
production), China, Zimbabwe, Portugal and Canada (USGS, 2023).
Spodumene was also recovered from tailings produced by AMG’s
tantalum Mibra Mine in Brazil (AMGLithium, 2024). In 2022,
considerable exploration and development of Li-bearing granites
and pegmatites was taking place globally (Australia, Austria, Brazil,
Canada, China, Congo (Kinshasa), Czechia, Ethiopia, Finland,
Germany, Ghana, Kazakhstan, Mali, Namibia, Nigeria, Peru,
Portugal, Russia, Serbia, Spain, Thailand, Zimbabwe; (USGS,
2023), and so many more mines may be operational in the future.

Spodumene is the main Li-bearing mineral that is processed by
industry due to its abundance and high Li content (Table 1) (Tadesse
et al., 2019). It is concentrated using heavy media separation, froth
flotation and/or magnetic separation processes (Amarante et al., 1999)
To extract Li, spodumene concentrates undergo calcination at
temperatures between 850°C and 1,100°C (Salakjani et al., 2016;
Karrech et al., 2021b; Pickles and Marzoughi, 2022). This process
causes the original monoclinic α-spodumene to transform to
tetragonal β-spodumene that has a 30% larger structure and lower
bulk density than the α-spodumene (Paris et al., 2023). These new
properties allow the β-spodumene to be easily leached, often in
concentrated sulfuric acid (H2SO4), resulting in the production of
soluble Li2SO4 which is used to make Li hydroxide and Li carbonate
(Salakjani et al., 2019). Digestion of the β-spodumene with HF and
Ca(OH)2 is also used to extract the Li (Rosales et al., 2014). The wastes
produced from these processes are known as delithiated β-spodumene
(DβS) tailings (Karrech et al., 2021b; Karrech et al., 2021a).

Zinnwaldite can also be concentrated by flotation (Samková,
2009) and because it contains relatively high amounts of Fe
(Table 2), by magnetic separation (Botula et al., 2005; Tadesse
et al., 2019). The resulting concentrate can be calcined with
CaCO3 and leached with water. A very high quality (>99% pure)
Li2CO3 concentrate can then be produced (Jandová et al., 2010).
Lepidolite can also be concentrated using flotation, but it can be
difficult to separate from muscovite due to their similar
compositions (Tadesse et al., 2019). As with spodumene,
lepidolite concentrates can also be digested in hot H2SO4 to
recover Li. The resultant solutions can also contain K, Al, Rb
and Cs, making separation and purification of the Li challenging
(Li et al., 2019). Research is ongoing to attempt to crystallise the
contaminating cations as mixed alums to provide a higher purity Li
solution (Vieceli et al., 2018).

3 Geochemistry of Li-bearing granite-
pegmatite wastes

The major and trace element geochemical compositions of a
range of wastes from lithium (spodumene), Sn-W and kaolinite

TABLE 1 Lithium-bearingminerals in Li-bearing granite-pegmatite ores and
mine wastes. Adapted from Brown (2016) and Aylmore et al. (2018).

Mineral Chemical formula Li2O (wt%)

Amblygonite Li(F,OH)AlPO4 7.3–10.1

Eucryptite LiAlSi4O10 2.1–5.53

Hectorite Na0.3(Mg,Li)3Si4O10(OH)2 0.54

Jadarite LiNaSiB3O7(OH) 7.3

Lepidolite (Li,Al)3(Al,Si)4O10(F,OH)2 3.3–7.7

Petalite LiAlSi4O10 3.5–4.5

Polylithionite KAl(Fe,Li)(Si3Al)O10(OH)F 2.0–7.7

Spodumene LiAlSi2O6 6.0–7.5

Zinnwaldite (Li,Al,Fe)3(Al,Si)4O10F2 2–5
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TABLE 2 Geochemistry of a range of Li-bearing granite-pegmatite mine wastes. All values in wt.%.

Waste Jiajika lithium mine
tailings, China (Tian

et al., 2018)

Transbaikal mining-
and-processing
integrated works,
Russia (Yusupov

et al., 2015)

Spodumene-
pegmatite

flotation tailings,
Whabouchi
mine project
Québec,

Canada (Roy
et al., 2023)

Quartz feldspar
sand (QFS) tailings
from spodumene
concentration,

Keliber Oy, Finland
(Lemougna et al.,

2019b)

Delithiated β-
spodumene

(DβS-Covalent)
tailings,
Australia

(Karrech et al.,
2021b; Karrech
et al., 2021a)

Spodumene
tailings from
spodumene
processing

plant, Jiangxi
Province, China

(Bian et al.,
2023)

Zinnwaldite
waste from
dressing of
Sn–W ores,
Cinovec,

Czech republic
(Jandová et al.,

2010)

Deposit type Pegmatite Pegmatite Pegmatite Pegmatite Pegmatite Pegmatite Sn-W

Major Li

mineral

Spodumene Spodumene Spodumene Spodumene Spodumene Spodumene Zinnwaldite

Li2O 0.17 0.26 0.97 1.02 0.45

SiO2 76.4 77.8 >64.0 77.5 62.0 69.2 65.3

Al2O3 14.2 12.9 14.9 13.5 20.8 21.5 25.1

Fe2O3 0.86 0.41 0.88 0.2 1.4 0.61 8.39

MnO 0.02 0.11 0.2

MgO <0.10 0.5

CaO 0.36 0.28 0.3 0.68 0.88

Na2O 5.14 4.69 3.57 4.8 0.6 3.14 0.40

K2O 2.23 2.55 2.53 3.3 0.6 2.92 13.2

TiO2 0.04 0.0 0.6 0.27

P2O5 0.10 0.1 0.3 0.78

Cs2O 0.11

Rb2O 0.19 0.22

SO3 <0.03 3.9

LOI 0.80

Waste 53 μm–500 μm size
fraction kaolinite
mine waste, new
sink G5, St Austell,

Cornwall,
United Kingdom
(Iqbal, 2015)

53 μm–500 μm size
fraction kaolinite
mine waste, stope
13 G4, St Austell,

Cornwall,
United Kingdom
(Iqbal, 2015)

Lepidolite
flotation reject,

Alvarroes-
Goncalo

(Sousa et al.,
2018)

>1,000 μm size
fraction kaolinite

mine waste,
Beauvoir, France

(Iqbal, 2015)

>1,000 μm size
fraction

kaolinite mine
waste,

Beauvoir,
France (Iqbal,

2015)

>1,000 μm size
fraction

kaolinite mine
waste,

Beauvoir,
France (Iqbal,

2015)

Nb-Ta tailings,
Yichun tantalum
and niobium
mine tailing
dam, Jiangxi
Province, China
(Huang et al.,
2020)

Deposit type Kaolinised granite Kaolinised granite Pegmatite Kaolinised granite Kaolinised granite Kaolinised granite Nb-Ta

Major Li

mineral

Zinnwaldite Zinnwaldite Lepidolite Lepidolite Lepidolite Lepidolite Lepidolite

Li2O 0.09 0.02 0.61 1.1 1.3 0.8 0.61

SiO2 81.0 50.7 74.6 81.5 70.3 66.0 70.1

Al2O3 8.29 27.0 14.8 11.0 18.3 19.7 19.8

Fe2O3 3.81 6.5 0.19 0.2 0.2 0.1 0.76

MnO

MgO

CaO 0.1 0.1 0.1

Na2O 4.65 1.2 4.2 6.7 5.38

K2O 1.96 2.8 3.5 2.3 2.98

TiO2 0.52 0.2

P2O5

Cs2O

Rb2O 0.14 0.3

Nb2O5 0.0058

Ta2O5 1.12 0.0117

SO3

LOI 1.4 1.6 3.4
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mining are summarised in Table 2. All wastes have high
concentrations of SiO2 (50.7–81.5 wt%) and Al2O3 (8.29–27.0 wt
%) and moderate concentrations of Na2O (0.4–6.7 wt%), K2O
(0.6–13.2 wt%) and Fe2O3 (0.1–8.39 wt%). Variable but low
(<1 wt%) concentrations of CaO, MgO, TiO2, P2O5, BeO, Rb2O
and SO3 have also been reported. Lithium oxide (Li2O)
concentrations range from 0.02 to 1.3 wt%. Concentrations of
potentially toxic metal (loids) such as As, Cd, Cu, Pb and Zn are
generally not reported for Li-bearing granite-pegmatite wastes, but
when they are, they tend to be very low (Lemougna et al., 2019a).
Concentrations of U, Th and Tl are discussed in the Environmental
Impacts section of this paper.

Lithium-bearing granite-pegmatite wastes are normally white in
colour (Figure 1A) and fine-grained, with heterogeneous grain sizes
and angular shapes (Figure 1B). The major (>5 vol%) and minor
(<5 vol%) minerals in the wastes are summarised in Table 3. Quartz,
plagioclase, K-feldspar and muscovite are the major minerals
present and account for the high to moderate concentrations of
SiO2, Al2O3, Na2O and K2O in the wastes (Table 2). Minerals such as
Nb-Ta oxides (Table 3) account for the minor amounts of Nb2O5

and Ta2O5 present (Table 2).
Most of the mineralogical determination of Li-bearing granite-

pegmatite wastes is done using X-ray diffraction (e.g., (Lemougna et al.,
2019b; Karrech et al., 2021a). While this method can identify minerals,
it does not give information on their trace element compositions. Roy

et al. (2023) sampled spodumene from the raw ore, concentrator feed
and tailings from density separation and spodumene flotation at the
Whabouchimine project inQuébec, Canada. They conducted extensive
mineralogical analysis using automated mineralogical analysis with a
QEMSCAN™ instrument, scanning electron microscopy (SEM) with
energy dispersive spectrometers (EDS) and electron probe micro
analysis (EPMA) for major and trace element chemical analysis,
respectively. They showed that the processing reduced the amount
of spodumene from ore to tailings but did not alter mineral
compositions. Many of the minerals were shown to have trace
impurities. The spodumene, for example, contained trace amounts
of Fe, Mn and Nb whereas the petalite did not. Nb-Ta oxides ranged in
composition from columbite-rich ((Fe,Mn)(Nb>>Ta)O6) to pure
tantalite ((Fe,Mn)TaO6), and contained trace Ti, Sn and U. Such
data are useful in evaluating the resource potential and
environmental impact of the wastes.

4 Resource potential

4.1 Lithium

The Li concentrations in the granite-pegmatite wastes (Table 2)
have been considered high enough for researchers and industry to find
optimal methods for their reprocessing. Froth flotation has been

FIGURE 1
(A) Lithium-bearing wastes in former kaolinite mine pit, Cornwall, United Kingdom (B) scanning electron microscope (SEM) photomicrograph of
quartz feldspar sand (QFS) from spodumene tailings waste. Q: quartz, (A) albite, M: microcline. Numbered stars show point that were analysed to
determine mineral composition. Reprinted from Minerals Engineering, 141, Lemougna, P.N. et al., Spodumene tailings for porcelain and structural
materials: Effect of temperature (1,050°C–1,200°C) on the sintering and properties, 105,843, Copyright (2019), with permission from Elsevier.
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successfully shown to concentrate the spodumene (Yusupov et al., 2015;
Tian et al., 2018), lepidolite (He et al., 2013; Sousa et al., 2018) and
zinnwaldite (Samková, 2009; Jandová et al., 2010; Siame and Pascoe,
2011) from these wastes to upgrade their Li content (Table 3). Flotation
can be followed by magnetic separation to further increase the amount
of Li in the concentrate to around 4.5–6.0 wt% Li2O (Siame and Pascoe,
2011; Yusupov et al., 2015; Tian et al., 2018). The remaining feldspars
and quartz can also be separated by flotation and used for other
products (Sousa et al., 2018; Tian et al., 2018)(see next section).
These combined actions can use of the majority of the wastes
produced from the primary mining (e.g., 70%; Tian et al. (2018)).

The resultant Li waste concentrate can be processed using
similar methods to those used for primary Li ores. This can
involve roasting with additives such as limestone, gypsum and

sodium sulfate (Siame and Pascoe, 2011). This process is
followed by leaching with H2SO4 or other acids (e.g., HF) at
moderate to high temperatures to recover the Li and make it into
saleable products such as Li2CO3 and Li(OH) (Jandová et al., 2010).

4.2 Quartz, feldspar and mica

The resource potential of the quartz, feldspar and mica
components of Li-bearing granite-pegmatite wastes have been
evaluated by several researchers. Two types of wastes have been
studied: DβS tailings (Karrech et al., 2021b; Karrech et al., 2021a)
and quartz and feldspar rich tailings from spodumene tailings, known
as quartz feldspar sand (QFS) (Lemougna et al., 2019a; Lemougna

TABLE 3 Resource potential and environmental risk of minerals in Li-bearing granite-pegmatite mine wastes.

Mineral Chemical formula Waste type
occurrence

Resource potential Environmental
risk

Major minerals (>5 vol%)

Quartz SiO2 spodumene DβS for construction and geotechnical materials; QFS
for ceramics geopolymers, cement mortar, aggregate

Sn-W kaolinite

Nb-Ta

Plagioclase (Na1-xCax)Si3AlO8 spodumene DβS for construction and geotechnical materials; QFS
for ceramics geopolymers, cement mortar, aggregate

Sn-W kaolinite

Nb-Ta

K-feldspar KAlSi3O8 spodumene DβS for construction and geotechnical materials; QFS
for ceramics geopolymers, cement mortar, aggregate

Sn-W kaolinite

Nb-Ta

Muscovite KAl2(Si3Al)O10(OH)2 spodumene DβS for construction and geotechnical materials; QFS
for ceramics geopolymers, cement mortar aggregate

Sn-W kaolinite

Nb-Ta

Minor minerals (<5 vol%)

Ankerite Ca(Fe,Mg,Mn)(CO3)2 spodumene

Beryl Be3Al2Si6O18 spodumene alloys

Fluorite CaF2 spodumene

Garnet (Ca,Mg,Fe,Mn)3(Fe,Al,Cr)6(SiO4)3 spodumene

Lepidolite (Li,Al)3(Al,Si)4O10(F,OH)2 kaolinite Li for batteries, ceramics, glass, greases, polymers

Nb-Ta Rb for photovoltaic cells

Nb-Ta oxides various spodumene

Spodumene LiAlSi2O6 spodumene Li for batteries, ceramics, glass, greases, polymers

Rb for photovoltaic cells

Uraninite UO2 spodumene Radioactivity and toxicity

U-bearing
zircon

U-bearing ZrSiO4 spodumene Radioactivity and toxicity

Zinnwaldite (Li,Al,Fe)3(Al,Si)4O10F2 Sn-W Li for batteries, ceramics, glass, greases, polymers

kaolinite Rb for photovoltaic cells
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et al., 2019b; Lemougna et al., 2020). DβS has been characterised as a
silt loam with variably shaped and sharp-edged grains (Karrech et al.,
2021a). It requires addition of granulated blast furnace slag to make
construction and geotechnical materials. When such mixtures are
made, often with other wastes such as fly ash, the addition of DβS has
been shown to increase workability and setting time, and to reduce
shrinkage (Karrech et al., 2021b; Karrech et al., 2021a).

QFS has been evaluated as a raw material for ceramic
production. Lemougna et al. (2019a), Lemougna et al. (2019b)
and Lemougna et al. (2020) carried out experiments using QFS
from Keliber Oy in Finland to evaluate its suitability for porcelain
and construction materials. The QFS comprised quartz, albite,
microcline and minor muscovite (Table 3). QFS was combined
with kaolinite (Lemougna et al., 2019b), ladle slag (Lemougna et al.,
2019a) and glass wool waste (Lemougna et al., 2020) and analysed to
determine optimal mixtures for porcelain, brick and construction
materials, respectively. Grinding of some of the components,
sintering temperatures, secondary mineral formation and
addition of fluxes such as sodium hydroxide and carbonate were
the major factors affecting the density and strength of the final
products. It was concluded that QFS had significant potential to be
used as a resource.

4.3 Rubidium, caesium and beryllium

Lithium lies in Group 1 of the Periodic Table can be substituted
in minerals by other elements in this group. One of these is Rb,
which is known to occur in spodumene, lepidolite and zinnwaldite
(Kunasz, 2006). Rb2O concentrations between 0.17 and 0.40 wt%
have been reported in lepidolite- and zinnwaldite-bearing wastes
from Sn-W and kaolinite mining (Table 1). The Rb can be recovered
from these minerals when processing for Li (Buttermann and Reese
Jr, 2003). Jandová et al. (2010), for example, recovered Rb by
roasting zinnwaldite concentrates containing 1.21wt% Li and
0.84wt% Rb with CaCO3 and leaching the produced calcine with
water. The concentrate was prepared from zinnwaldite wastes
containing 0.21wt% Li and 0.20wt% Rb that were generated
through the processing of Sn-W ores. Notable concentrations of
Rb2O have been documented in spodumene tailings (Melentiev
et al., 2022; Roy et al., 2023) (Table 2), and Rb is also known to
occur in muscovite, which is present in all Li-bearing granite-
pegmatite mine wastes documented in Table 2. As a result, many
authors have suggested that these wastes may be suitable exploration
targets for Rb that could be used in photovoltaic cells and other
applications (Siame and Pascoe, 2011; Iqbal, 2015; Melentiev et al.,
2022; Bian et al., 2023).

Trace concentrations of Cs (0.11 wt%) have been found in
zinnwaldite-bearing wastes from the dressing of Sn-W ores
(Jandová et al., 2010). Samková (2009) demonstrated that the
zinnwaldite from such wastes could be effectively separated
using flotation with an amine-based cationic collector at
laboratory scale.

The mineral beryl has been found in spodumene tailings
(Table 3) and has been proposed to be a source of Be for alloys
(Browning et al., 1964; Melentiev et al., 2022). Browning et al. (1964)
showed that it could be recovered using an HF activator and an oleic
acid collector.

5 Potential environmental impacts

The potential environmental impacts of the minerals and their
included elements are summarised in Table 3. Kinetic leach testing of
spodumene-bearing tailings from the Whabouchi mine project in
Québec, Canada, produced waters with mg to sub-mg/L amounts of
U (Roy et al., 2023). These were attributed to the weathering of primary
uraninite and U-rich zircon in the tailings in the presence of a Ca-
bearing fluid. Phases with uranophane (Ca(UO2)2SiO3(OH)2·5H2O)
compositions and U-Ca-phosphates were found in filling voids and
fractures in spodumene tailings, and were proposed to precipitate from
these fluids. Overall, however, the U concentrations in these wastes
(2.97–5.28 mg/kg) are well below Canadian Soil Guideline Values of
23–300 mg/kg (CCME, 2024).

Other potentially ecotoxic elements have been found Li-bearing
granite-pegmatite tailings. Melentiev et al. (2022) detected Tl
(1.51–5.49 mg/kg) in spodumene tailings from the Zabaikalsk
mining and processing plant in Russia. Thallium (1.2–2.8 mg/kg)
was also found in the Whabouchi tailings, in addition to minor
amounts of Th (1.2–2.8 mg/kg) (Roy et al., 2022).

Sulfur contents of Li-bearing granite/pegmatite wastes are
not always reported, but those available are low (Table 2),
suggesting that the wastes will not generate acid. This is
confirmed by paste pH and leaching tests that yield waters
with pH values between eight and nine (e.g., Chen and
Goulet, 2022; Roy et al., 2022).

The evolution of spodumene flotation and analcime-
containing tailings from the former Quebec Lithium
Corporation site in La Corne, Quebec, Canada during
55 years of storage was evaluated by (Roy et al., 2022).
Textural analysis and sequential extraction data suggested that
the tailings had not been significantly weathered nor formed
secondary minerals. Despite this, elevated concentrations of Li,
Al, K, Rb and Be were found in the chemical extractant solutions
derived from the analcime tailings. These were suggested to
result from the acid roasting and pressured alkaline leaching
that the materials had experienced, which would have made
them more susceptible to breakdown. High (mg/L-level)
concentrations of Li in the tailings porewaters may have been
due to this process, but their environmental impacts were
unknown. Chen and Goulet (2022) compared metal
concentrations from static and kinetic leach tests on wastes
from three unnamed proposed spodumene Li mines in Quebec
to Canadian and USA groundwater and aquatic life water quality
guidelines. They found that some of the As, Cu and Li
concentrations were above the guideline values. Based on their
analysis, they recommended that the As and Cu data should be
used in environmental risk assessment models and that Li toxicity
testing should be conducted to optimise mine waste management.

The published studies of Roy et al. (2022), Roy et al. (2023) and
Chen and Goulet (2022) are, to the author’s knowledge, the few that
have evaluated the long-term stability and potential impacts of Li
granite-pegmatite mine wastes and related these to potential
environmental impacts. Given the potential increase in hard-rock
Li mining that may occur in the 2020s and 2030s, more research is
needed, especially as high concentrations of Li have been found in
other mining-affected areas (e.g., 13 mg/L Li in mine drainage; Aral
and Veccio-Sadus (2008)).
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6 Summary and outlook

Mine wastes generated from Li-bearing granite and pegmatite
extraction and processing have high contents of SiO2 and Al2O3, and
moderate contents of Na2O, K2O and Fe2O3, which are hosted in
quartz, feldspar and micas. They also contain 0.02 to 1.3 wt% Li2O
that is found in residual spodumene, lepidolite and zinnwaldite. A
growing body of research has shown that there is significant
potential for the wastes to be reused, remined and recycled to
recover Li, quartz-feldspar sand, Rb, Cs and Be for a variety of
applications. Overall the wastes are not toxic nor acid-generating,
but some contain U and Th that may generate radioactivity.

Although bulk geochemical and mineralogical data for the Li-
bearing granite/pegmatite wastes are documented in the literature, they
are insufficient for understanding the effects of processing and
weathering on the potential mobility of elements from the wastes,
and for understanding how the presence of mineral impurities may
affect the quality and stability of reuse, recycling or remining products
(Table 3). Detailed mineral chemical and textural evidence such as that
presented in Roy et al. (2022) and Roy et al. (2023) is required for these
wastes to enable their full resource and environmental risk potentials to
be evaluated. This information can be combined with geochemical data
and leaching tests to understand the geochemical behaviour of the
wastes and their products (Parbhakar-Fox et al., 2013; Jamieson et al.,
2015), and in turn potentially increase themarket value and demand for
the latter.
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