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Objectives: Spontaneous cervical artery dissections (SCeAD) and coronary artery
dissections (SCoAD) are major causes of neurovascular and cardiovascular
morbidity in young adults. Although multiple aspects of their etiology are still
unknown, most consensuses are focused on the presence of constitutional
genetic aspects and environmental triggers. Since recent evidence of genetic
contribution points to a possible overlap between these conditions, we aimed to
describe current information on SCeAD and SCoAD genetics and their potential
shared pathological aspects.
Materials and methods: A narrative review is presented. Publications in English and
Spanish were queried using database search. The articles were evaluated by one
team member in terms of inclusion criteria. After collecting, the articles were
categorized based on scientific content.
Results: Given that patients with SCeAD and SCoAD rarely present connective
tissue disorders, other genetic loci are probably responsible for the increased
susceptibility in some individuals. The common variant rs9349379 at PHACTR1
gene is associated with predisposition to pathologies of the arterial wall, likely
mediated by variations in Endothelin-1 (ET-1) levels. The risk of arterial
dissection may be increased for those who carry the rs9349379(A) allele,
associated with lower expression levels of ET-1; however, the local effect of this
vasomotor imbalance remains unclear. Sex differences seen in SCeAD and
SCoAD support a role for sex hormones that could modulate risk, tilting the
delicate balance and forcing vasodilator actions to prevail over vasoconstriction
due to a reduction in ET-1 expression.
Conclusions: New evidence points to a common gene variation that could explain
dissection in both the cervical and coronary vasculatures. To further confirm the
risk conferred by the rs9349379 variant, genome wide association studies are
warranted, hopefully in larger and ethnically diverse populations.
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Introduction

Arterial dissections are characterized by the separation of the arterial wall layers, creating

an intramural hematoma either between vessel intima and media or media and adventitia. This

can impair blood flow and adequate tissue perfusion, leading to ischemia and organ failure,

and eventually cause death (1). Recently, there has been a renewed interest in spontaneous

cervical artery dissections (SCeAD) and coronary artery dissections (SCoAD), due to

improved diagnosis and the recognition that ischemic events derived from them can have

severe clinical consequences (2, 3). Both types of artery dissections affect young populations
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and are particularly important in women since they occur more

frequently during pregnancy and postpartum (4).

The pathological mechanisms behind SCeAD and SCoAD have

still to be clarified. Although their presentation is mostly sporadic

(5, 6), consensus exists regarding the presence in these patients of a

constitutional genetically determined weakness of the vessel wall

that, combined with triggering environmental factors, such as

acute infection, minor trauma or physical stress, results in vessel

injury (7–9). An underlying vasculopathy is suggested by the fact

that patients with SCeAD and SCoAD commonly present with

concomitant arterial anomalies, such as fibromuscular dysplasia

(FMD) (1, 10). Classically considered distinct entities, recent

evidence describes possible genetic associations for both types of

dissections (11, 12). Our aim is to describe the current literature

on SCeAD and SCoAD genetics and the potential shared

mechanisms underpinning these two conditions.
Methods

The studies included in this narrative review (Supplementary

Table eS1) were identified by searching in the electronic databases

PubMed and ScienceDirect. Keywords were related to the

pathological conditions and genomic/genetic terms “cervical artery

dissection”; “carotid artery dissection”; “coronary artery

dissection”; “mRNA”; “single nucleotide variant”; “single

nucleotide polymorphism”; “polymorphism”; “genetic”; “genomic”

using Boolean connectors AND/OR respectively. The search was

restricted to manuscripts published from 1950 to present

published in English. The selection criteria were as follows: (i)

type of study: case studies, case-control studies, cohort studies; (ii)

population type: diagnosis of SCeAD or SCoAD, without age or

comorbidities restrictions; (iii) type of measurements: biological

confirmation through genetic testing; (iv) type of outcomes:

genetic/genomics reports, e.g.,: copy number variants (CNV),

single nucleotide variants (SNV) and microRNA.
Results

Epidemiology and clinical implications of
spontaneous cervical and coronary
dissections

While SCeAD has an annual incidence rate of 2.6–2.9 cases per

100,000 people (13), official epidemiological data from SCoAD is

not so well documented (14). There is a sex predominance for

SCoAD, affecting more women (81%–92%) (15). Conversely, it

appears that SCeAD has a slight tendency for higher cases in

males (53%–57%), with the caveat that this estimated

predominance can be biased because SCeAD patients with local

symptoms might go under-recognized (13, 16). The overall

population affected by these dissections is classically young-

middle aged adults with scarce cardiovascular risk factors. The

mean age of onset for SCeAD is 45 years (13); similarly, SCoAD

reports a mean age ranging between 42 and 53 years (15, 17).
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Both dissections can lead to severe clinical consequences.

SCeAD accounts for 10%–25% of all stroke events in young

patients (13) with increased risk within the first 2 weeks after

dissection (18). Likewise, SCoAD can lead to myocardial injury

and infarct, causing 1%–4% of all acute coronary syndromes and

it has been associated to 0.5% of sudden cardiac deaths,

particularly in young individuals (7, 19).

The occurrence of each condition is related to different

environmental triggers. While SCeAD associates with minor

cervical trauma (20), seasonal peak during winter (21), recent

acute infection and migraine (11), SCoAD has been related to

physiological and physical stress (e.g., strenuous exercise), leaving

aside traumatic, iatrogenic or atherosclerotic etiologies (7–9).

Nonetheless, SCeAD and SCoAD share common risk factors,

including connective tissue disorders (CTD), FMD, and

pregnancy/postpartum (8, 20, 22, 23), as it will be discussed later.

Regarding sex differences, the clear predominance of SCoAD in

women is particularly important since this entity represents the

major cause of myocardial infarction in pregnant women,

particularly during the third trimester or early postpartum (14).

Likewise, a series of SCeAD cases have been reported involving

postpartum women, not only related to the stress of vaginal

delivery but also after cesarean section (4). Estrogen, a steroid

hormone whose most active metabolite is 17β-estradiol, increases

its levels among adolescence, pre-menopause women and

fluctuates and drops at older ages (24). Estrogens have

vasodilatory effects throughout the activation of its receptors,

promoting the release of nitric oxide in endothelial cells by

activation of the PI3-kinase/AKT pathway (25); as well as

endothelial prostacyclin (PGI2) production via arachidonic acid

derivatives (26, 27). Additionally, the action of estrogens on the

inhibition of the vasoconstrictor role of the renin-angiotensin-

aldosterone system has been shown, favoring vasodilatation by

increasing natriuretic peptide (28, 29). Also, estradiol has an

inhibitory effect on endothelin 1 (ET-1) synthesis, further

favoring a vasodilatory phenotype (30–32). Also, preclinical

studies have suggested that pregnancy can increase the

expression of oxytocin receptors in vascular tissue and can

influence the risk of dissection. Previous research in murine

models with CTDs showed that oxytocin levels are involved in

extracellular signal-regulated kinase (ERK) pathway activation

inducing aneurysm progression. This was confirmed by

dissection reduction after suppression of lactation stimulus, ERK

inhibition and oxytocin antagonist treatment (33, 34).

Thanks to the improved recognition and more precise diagnosis

of these conditions by clinicians during the last couple of decades, a

gradually more robust data have been accumulating that hopefully

will help to better describe the role of modulating factors and

environmental triggers, which end up resulting in arterial dissection.
Fibromuscular dysplasia, spontaneous
cervical and coronary dissection

FMD is defined as “an idiopathic, segmental, non-

atheromatous disease of the musculature of arterial walls, leading
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to stenosis of small and medium-sized arteries” (35). The presence

of FMD has been described in series of both SCeAD and SCoAD

patients, ranging between 5%–31% and 45%–86%, respectively (1,

36–40). Several epidemiological reports of US and European

origin point to a preponderance of females in FMD cases, mostly

diagnosed at age 50–55 years (41, 42), highlighting

epidemiological similarities with SCoAD, where FMD is believed

to be the underlying arteriopathy in the majority of cases (43).

Considering the possible association between FMD, SCeAD and

SCoAD, it has been suggested that these disorders comprise

clinical manifestations of a common pathological entity (44).

Beyond its association to vessel dissection, FMD in the renal

arteries can lead to arterial hypertension, further increasing

cardiovascular risk.

Recently, systematic recognition of FMD has been performed

in large prospective cohort studies. For example, among 750

SCoAD patients, the overall presence of FMD was identified in

31.1% (39). Specifically, 56.7% (233/411) of patients with

complete screening had FMD (39). Meanwhile, the screening of

1,283 SCeAD resulted in 8.0% of FMD diagnosis (103/1,283). Of

note, the cerebrovascular FMD was detected as a potential

marker of recurrence (40). However, a delay in FMD diagnosis

and incomplete screening in SCeAD and SCoAD patients might

favor the underestimation of the shared prevalence between these

conditions.

FMD appears to be much more prevalent than previously

thought. For example, silent FMD has been recognized in up to

6% of potential kidney donors (45, 46). While renal and cervico-

cephalic arteries are the most commonly affected vascular beds,

almost half of patients can have multivessel compromise,

including visceral, ilio-femoral and coronary arteries (47).

Furthermore, a familial presentation of FMD has been previously

described (48–50), however, this association is now believed to be

uncommon. In the ARCADIA study, familial FMD was present

in 2.9% of cases (47); thus, most cases are sporadic. Nevertheless,

as genetic background is highly probable, potential gene variants

have been proposed. Using exome sequencing, the presence of

multifocal FMD was associated to myosin light chain kinase

(MYLK – also involved in thoracic aneurysms), dynein

cytoplasmic heavy chain 1 (DYNC2H1), sarcomeric protein

obscuring (OBSCN), and RNF213 (involved in Moyamoya

disease) genes (42). Additionally, (51) Kiando et al. 2017 found

that allele A of a genetic variant (rs9349379) of the phosphate

and actin regulator 1 gene (PHACTR1) was associated to a 40%

increase in the relative risk of FMD (51). As it will be discussed

later, this gene is also associated with vascular dissections

(Figure 1).
Spontaneous cervical artery dissection
genetic studies

The CTDs monogenic disorders have been explored in regard

to the predisposition to SCeAD. Autosomal dominant conditions

such as Marfan syndrome (MFS) caused by variants in FBN1

gene (52), vascular Ehlers-Danlos syndrome (vEDS) caused by
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variants in COL3A1 (53) and Loeys-Dietz syndrome (LDS)

caused by variants in TGFBR1, TGFBR2 and SMAD3 (54, 55),

among other genes, have been considered as potential disorders

favoring SCeAD (3, 56). However, a comprehensive systematic

review in 2009 reported low frequency of these heritable cases,

showing that vEDS accounted for only 2% of all SCeAD cases,

while in MFS the overall reported cases were less than 1% (10).

Although these studies may have resulted in an underestimation

due to the lack of a systematic diagnostic protocol and disease

recognition mainly derived from clinical features without

molecular confirmation, clinical registry data seem to support

these findings, as an association with CTDs is low (56, 57). The

systematic review also reported predominantly negative findings

from 15 genetic association studies, although the candidate genes

coding for intercellular adhesion molecule 1 (ICAM-1), collagen

type III a-1 (COL3A1) and methylenetetrahydrofolate reductase

(MTHFR) involved in regulation of extracellular matrix (ECM)

were associated in five studies (58–62). Moreover, a meta-analysis

based on evidence of MTHFR 677TT genotype yielded significant

association with SCeAD; however, a subsequent case-control

study elicited opposite evidence, where the genotypic frequencies

for this variant and others linked to SCeAD, thrombosis,

coronary artery disease, hypertension and lipoprotein levels did

not differ with their control counterparts (63). Furthermore,

analyses of other gene variants involved in ECM homeostasis,

(promoter region of matrix metalloproteinases or MMPs), lacked

statistical differences between individuals with SCeAD and

controls (64).

Regarding the identification of causative copy number

variants (CNVs) in SCeAD, a case-control study from patients

with or without dermal tissue alterations and its comparison

with control samples and earlier published data, retrieved 34

CNVs associated with SCeAD (65). Those affected with dermal

tissue alterations showed higher density of CNVs and ontology

analyses revealed enrichment for genes related to ECM and

collagen fibril organization. Although authors found novel rare

CNVs in SCeAD population (duplication MYH11/ABCC6 and

deletion SGCZ) that have also been described for aortic

dissection, none of these were located in any other dissected

participant (65). In line with exploration of CNVs, Grond-

Grinsbach et al. used a Single Nucleotide Polymorphism (SNPs)

array and genotyped a large set of SNPs in 883 patients. CNVs

of SCeAD carriers covered 433 protein-coding genes associated

to muscle organ development and cell differentiation of

cardiovascular system; interestingly, the altered MYH11

encoding for smooth muscle myosin heavy chain and ABCC6

involved in membrane transportation were also found in

SCeAD cases (3 patients) (66). Continuing with SNPs

examination, the association between variants and arterial

connective disorders was tested in SCeAD cases from 9 families

with 2 affected members. The SNPs genotyping yielded 1,242

variants in the sample from which 142 were nonsense or

missense substitutions. Among them, 9 were non-benign

variants identified in 4 out of the 9 families. Specifically, these

variants were found in COL3A1, FBN1, COL4A1 and TGFBR2

genes each in one of these 4 families. Although an increased
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FIGURE 1

Overview and associated arteriopathy of spontaneous cervical and coronary dissection and fibromuscular dysplasia. SCeAD, SCoAD and FMD have been
previously associated as clinical manifestations of a common pathological entity. Though, literature reported specific genetic contribution and its
functional correlation for each condition, the common variant rs9349379 at PHACTR1 might represent a potential shared underlying mechanism.
Specifically, SCeAD and SCoAD results from the separation of arterial wall layers producing an intramural hematoma with or without intimal tear. A
low frequency of SCeAD, SCoAD and FMD cases are related to connective tissue disorders. SCeAD, spontaneous cervical artery dissection; SCoAD,
spontaneous coronary artery dissection; FMD, fibromuscular dysplasia; CNVs, copy number variants; SNVs, single nucleotide variants; PDK1,
polycystin-1; vEDs, vascular Ehlers-Danlos syndrome.

Rada et al. 10.3389/fgwh.2023.1007795
susceptibility is suggested due to familial SCeAD, genetic

heterogeneity makes difficult to establish a single causal variant,

thus favoring a polygenic model (67).

More recently, an inverse association of a variant located in

PHACTR1 with SCeAD was recognized in a large collection of

cases from European origin recruited in European and US

centers (11). Specifically, a genome wide association analysis

revealed an association of rs9349379 variant in PHACTR1 with

SCeAD during discovery and follow-up phases with the

rs9349379(G) allele conferring lower risk of dissection (11)

(Figure 2). This variant has been previously associated with

myocardial infarction and coronary calcifications in various

ancestry groups (68–71), with effects in the opposite direction

of that in SCeAD. Conversely, a comparison between African

American (AA) and European American (EA) population with

stroke and SCeAD from the 1,000 genome project data,

showed a higher allele frequency for rs9349379(A) in the AA

group with SCeAD, but, paradoxically, AA had less SCeAD

prevalence compared to EA (72). Of note, those from AA

group with allele A also presented a greater rate of

cardiovascular risk factors. These conflicting results could be

explained by the existence of intermediate modulators of the

effect of this variant, but also to bias of a single center

database, where SCeAD can be underdiagnosed in low

cardiovascular risk populations (72).
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Spontaneous coronary artery dissection
genetic studies

Similarly to SCeAD, CTDs have historically represented the

main focus of SCoAD genetic research, yet it has been identified

as the causative disorder in less than 5% of these cases (73). Few

case studies have reported the presence of vEDS-related variants

in COL3A1 gene, mainly in patients with multivessel events and/

or SCoAD recurrence (74–77). Interestingly, two of these cases

were pregnancy-associated SCoAD (74, 76). Studies referring

patients to genetic analysis from larger SCoAD case series have

led to the detection of a small proportion of participants with

disease-causing variants. Henkin et al. (78), used diverse panels

of genes associated with CTDs to test SCoAD-affected

individuals, in which only 3 out of 59 - the total sample who

underwent genetic testing - had variants either in FBN1 or

COL3A1 (78). Similarly, a prospective cohort confirmed the

presence of COL3A1 variants in 3 patients and SMAD3 in one

case from subjects who agreed to the genetic evaluation.

Noteworthy, one patient with variants in polycystin-1 (PKD1) -

who was diagnosed with polycystic kidney disease - had a

previous SCeAD, followed by a SCoAD four years after the first

dissection event (79). The autosomal dominant polycystic kidney

disease (ADPKD) might produce arterial wall weakening and

increase susceptibility to vascular events. Evidence has
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FIGURE 2

Role of rs9349379 genotypes on endothelin-1 levels and its risk associated with vascular diseases. The genetic variant rs9349379 in PHACTR1 gene
regulars EDN1 gene expression, influencing protein levels and inducing its imbalance. The rs9349379 major allele (A) down regulate EDN1 gene
expression, lowering ET1 secretion and favoring vasodilatation. Those carrying A allele are at risk for SCeAD, SCoAD migraine and FMD predominantly
in the female population. Contrary to the effect G allele which increase ET1 levels that favors vasoconstriction and is associated with HBP, CAS, and
AMI, mainly affecting the male population. EDN1, endothelin-1 gene; ET1, endothelin-1 protein; SCeAD, cervical artery dissections; SCoAD,
spontaneous coronary artery dissections; P-SCoAD, pregnancy-associated SCoAD; FMD, fibromuscular dysplasia; HBP, high blood pressure; CAS,
coronary artery disease; AMI, acute myocardial infarction.

Rada et al. 10.3389/fgwh.2023.1007795
documented that half of deaths among patients with ADPKD were

produced by myocardial ischemia (80). Moreover, studies looking

beyond traditional CTDs have reported the detection of rare

variants in the gene encoding cytoskeletal protein Talin 1 (TLN1)

in a familial SCoAD case composed of 5 members from which 3

had dissections. This variant was subsequently found in 10 cases

of a large SCoAD cohort, thus, it is believed to have detrimental

vascular effects, since TLN1 alteration has been also found in

aortic dissection (81).

The association of SCoAD with the variant rs9349379 in

PHACTR1 has been recently recognized. This variant was

previously described for coronary diseases such as atherosclerosis

and acute myocardial infarction (82–84). Adlam et al. (12)

analyzed SCoAD cases and controls studies, along with

pregnancy-associated SCoAD cases from the United States,

United Kingdom, Australia and France with confirmed European

Ancestry. In accordance with epidemiological data of SCoAD, the

study revealed a female predominance (87%–96%), with

pregnancy-associated SCoAD accounting for 10% of cases.

Besides sex influence, based on more than 1,000 cases, it was

estimated that those who carried the rs9349379-A allele had 70%

greater risk of SCoAD. This was associated with lower plasma

levels of Endothelin-1 (ET-1) according to measurements from a

subset of SCoAD patients from the United Kingdom with similar

characteristics (Figure 2) (12). Similarly, a meta-analysis of

genome wide SCoAD discovery and replication reported an

association with the variant rs9349379 in PHACTR1 (85). In

addition, the genome wide approach in a prospective large

cohort of SCoAD patients revealed an association of the variant

rs12740679 in ADAMTSL4 gene chromosome 1q21.2, which

encode an extracellular matrix protein involved in microfibril

formation (85). Although the pathophysiology of SCoAD is not

yet well understood, these latest findings give new insights for
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further research focused on elucidating the role of the common

rs9349379 variant.
Potential common underlying mechanisms
in spontaneous cervical and coronary
dissection

As previously mentioned, the common variant rs9349379 at

PHACTR1 locus on chromosome 6p24 has been proposed as a

potential causative variant for pathologies of vascular phenotype,

mostly described for chronic coronary diseases (84, 86, 87).

However, the emerging evidence of other vascular disorders such

as FMD (51), SCeAD (11, 72, 88) and SCoAD (12, 85) have

raised the attention to explore the potential underlying

mechanisms of this genetic locus. Gupta et al., reported a

common intergenic area between rs9349379 at PHACTR1 locus

and the promoter of endothelin-1 gene (EDN1), with putative

regulatory function on the expression of these genes (89).

Specifically, PHACTR1 encodes for a protein of phosphatase and

actin regulator family related to regulation of the actin

cytoskeleton and, indirectly, on the endothelial cell survival (90).

In turn, this could have deleterious effects in several vascular

phenotypes such as formation of atherosclerotic plaques (91),

neo-angiogenesis (92), cell proliferation and migration in cerebral

microvasculature (93). Several experiments in stem cell lines

reprogramed with CRISPR/Cas9 validated the influence of the

genotype at rs9349379 on EDN1 levels, in which the minor allele

in homozygosity (G/G) resulted in higher EDN1 expression,

contrary to the reduced levels observed in association with

homozygous major allele (A/A) (89). The association was

confirmed in plasma samples from healthy individuals: those

who carry the minor allele expressed higher levels of the
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precursor Big- ET-1 that is subsequently converted to the active

form ET-1. The authors proposed a model where rs9349379 (G)

confers risk for coronary artery disease/myocardial infarct,

whereas it reduces susceptibility to SCeAD, FMD and migraine

(58, 89). Given these findings, the major allele rs9349379 (A)

may impose the risk genotype for both dissections, along with

reduced ET-1 levels as described in a large sample of SCoAD

patients (12). ET-1 is a peptide with potent vasoconstrictor

action synthesized by different cell types, predominantly vascular

endothelium. ET-1 activates receptors ETA y ETB2 generating a

vasoconstrictor effect mediated by calcium, while ETB1 promotes

the release of vasodilator agents as nitric oxide and prostacyclin

(94). Although the response of increased levels of ET-1 have

been widely characterized as endothelial damaging (95), the

vascular susceptibility that could result from reduced expression

of EDN1 has not been explored.

The findings of the present study may have relevant clinical

implications for the prediction of dissection, based on genetic

contribution described in the evidence. Particularly, populations

carrying the major allele rs9349379 (A) at PHACTR1 might have

down regulated expression of EDN1 and lower ET-1 levels. This

imbalance favoring vasodilation and affecting vascular integrity,

could also interplay with sex hormones. This can be critical for

specific interest groups such as women at all stages of their life,

particularly during pregnancy. Therefore, the study of the

hormonal influence on arterial wall vulnerability could improve

the understanding of female predominance in SCoAD and

pregnancy-associated dissections.
Conclusion

Emerging evidence has related vascular disorders such as

SCeAD, SCoAD and FMD to the common variant rs9349379 at

PHACTR1, likely mediated by ET-1 levels. The risk of arterial

dissections may increase for those carrying the rs9349379(A)

variant and thus express lower ET-1 levels; however, local effect

or vascular remodeling resulting from this vasomotor imbalance

remains unclear. Sex differences support a role for sex hormones

on risk modulation, by which vasodilator actions might likewise

prevail over-active vasoconstriction. Further research is needed to

confirm the risk conferred by the rs9349379 variant, including

genome wide association studies in larger and ethnically diverse

SCeAD, SCoAD and FMD patients.
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