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Cardiometabolic health across
menopausal years is linked to
white matter hyperintensities up
to a decade later
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Introduction: Themenopause transition is associatedwith several cardiometabolic
risk factors. Poor cardiometabolic health is further linked to microvascular brain
lesions, which can be detected as white matter hyperintensities (WMHs) using
T2-FLAIR magnetic resonance imaging (MRI) scans. Females show higher risk
for WMHs post-menopause, but it remains unclear whether changes
in cardiometabolic risk factors underlie menopause-related increase in
brain pathology.
Methods: In this study, we assessed whether cross-sectional measures of
cardiometabolic health, including body mass index (BMI) and waist-to-hip ratio
(WHR), blood lipids, blood pressure, and long-term blood glucose (HbA1c), as well
as longitudinal changes in BMI and WHR, differed according to menopausal status
at baseline in 9,882 UK Biobank females (age range 40–70 years, n
premenopausal = 3,529, n postmenopausal = 6,353). Furthermore, we examined
whether these cardiometabolic factors were associated with WMH outcomes at
the follow-up assessment, on average 8.78 years after baseline.
Results: Postmenopausal females showed higher levels of baseline blood lipids
(HDL b=0.14, p , 0.001, LDL b=0.20, p , 0.001, triglycerides b=0.12,
p , 0.001) and HbA1c (b=0.24, p , 0.001) compared to premenopausal
women, beyond the effects of age. Over time, BMI increased more in the
premenopausal compared to the postmenopausal group (b=−0.08, p , 0.001),
while WHR increased to a similar extent in both groups (b=−0.03, p = 0.102).
The change in WHR was however driven by increased waist circumference only in
the premenopausal group. While the group level changes in BMI and WHR were
in general small, these findings point to distinct anthropometric changes in pre-
and postmenopausal females over time. Higher baseline measures of BMI, WHR,
triglycerides, blood pressure, and HbA1c, as well as longitudinal increases in BMI
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and WHR, were associated with larger WMH volumes (b range = 0.03–0.13,
p ≤ 0.002). HDL showed a significant inverse relationship with WMH volume
(b=−0.27, p , 0.001).
Discussion: Our findings emphasise the importance of monitoring cardiometabolic
risk factors in females from midlife through the menopause transition and into the
postmenopausal phase, to ensure improved cerebrovascular outcomes in later years.

KEYWORDS

menopause, female health, cardiometabolic health, body anthropometrics, white matter

hyperintensities, brain health, UK Biobank
1 Introduction

Themenopause is a natural biological process that characterises the

change from reproductive to post-reproductive life among females. The

phase leading up to the cessation of menstrual cycles, known as

perimenopause, involves irregular menstrual cycles, hormonal

fluctuations, and a gradual decline in ovarian function. Decreasing

endogenous oestradiol levels during the menopause transition have

been associated with increased risk for poor cardiometabolic health,

including abdominal adiposity, dyslipidaemia, diabetes, and

hypertension (1–7). Poor cardiometabolic health is a key risk factor

for white matter (WM) lesions or areas of dysmyelination in the

brain (8, 9), which can be quantified using WM hyperintensities

(WMH) from magnetic resonance imaging (MRI) scans (10, 11).

Although WMHs are common with advancing age (9, 12), larger

WMH volumes have also been associated with increased risk of

dementia (13–16), of which females have higher prevalence (17, 18).

Pertinently, a number of studies report greater WMH load in

postmenopausal females compared to age-matched males or

premenopausal females (19–25). It is however unclear whether

changes in cardiometabolic risk across menopausal years and beyond

are linked to WMH outcomes.

Both cross-sectional and longitudinal studies indicate that the

menopause transition poses a risk for accumulation of abdominal

adipose tissue (6, 26–28) and an unfavourable lipid profile

(4, 5, 29, 30), beyond the risk related to advancing age. However,

higher levels of abdominal adiposity, blood lipids, blood pressure

(BP), and blood glucose are generally linked to greater WMH

volumes (8, 31–41), and it is challenging to disentangle

menopause-specific risks from those linked to increasing age (6).

In addition, recent studies show age- and sex-specific associations

between cardiometabolic risk factors and brain measures (24, 42,

43), indicating dynamic body-brain relationships across the

lifespan. To our knowledge, no population-based studies have yet

assessed the relationships between both cross-sectional and

longitudinal measures of cardiometabolic risk and WMH

outcomes in pre- and postmenopausal females.

In the present study, we aimed to investigate associations

between markers of cardiometabolic health, menopause status, and

WMH volumes in 9,882 female UK Biobank participants. First, we

examined whether females who were pre- and postmenopausal, as

categorised based on self-reports at the baseline assessment,

differed on baseline measures of body anthropometrics (body mass

index (BMI) and waist-to-hip ratio (WHR)), blood lipids (high
02
density lipoprotein (HDL), low density lipoprotein (LDL), and

triglycerides), BP (systolic and diastolic), and long-term glucose

levels (glycated haemoglobin; HbA1c). Next, we assessed changes

in BMI and WHR between baseline and the imaging timepoint

(timepoint 2; mean assessment interval ¼ 8.78 years) by

menopause status. Lastly, we examined the relationships of the

baseline markers and the longitudinal BMI and WHR changes

with WMH volume measured at timepoint 2.
2 Methods and materials

2.1 Sample characteristics

The initial sample was drawn from the UK Biobank cohort

(www.ukbiobank.ac.uk), and included 21,930 female participants

with data entries across self-reported demographic factors

(education, ethnic background, and assessment location), blood

lipids (HDL, LDL, and triglycerides), BP (systolic and diastolic),

and HbA1c measurements at baseline, WMH volume,

hysterectomy (removal of the uterus), and bilateral

oophorectomy (removal of both ovaries) at timepoint 2, and

body anthropometrics (BMI and WHR), age, and menopausal

status at both timepoints. An overview of the variables, including

their UK Biobank data-fields, is available in Supplementary

Table S1. Participants with missing values (“Not a Number

(NaN),” “prefer not to answer,” “do not know”), were excluded

(missing datapoints ¼ 520 for demographic factors, 2,974 for

WMH volume, 8,448 for cardiometabolic risk factors, 4,562 for

menopausal status, and 101 for hysterectomy/bilateral

oophorectomy, with 10% of all participants having missing

values for more than 2 variables). 1,015 participants who had

undergone a hysterectomy and/or bilateral oophorectomy were

excluded in order to focus the study on variation in natural

menopause, as surgical menopause may involve independent

risks for cardiometabolic diseases (4, 44), as well as brain ageing

and dementia (45–47). 17 participants were excluded due to

implausible menopause status data or age at menopause outliers

(see Section 2.2 for details). 794 participants with known brain

disorders were excluded based on ICD10 diagnoses including

Alzheimer’s disease and dementia, mild cognitive disorder,

neurodegenerative diseases, stroke, mental and behavioural

disorders (36, 48). 9,882 participants were included in the final

dataset. Sample demographics are provided in Table 1.
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TABLE 1 Sample characteristics.

Premenopausal Postmenopausal
Number of subjects 3,529 6,353

Age at baseline (years) Mean+ SD 46:58+ 3:77 58:39+ 4:97

Range 40.00–63.00 41.00–70.00

Assessment interval (years) Mean+ SD 8:93+ 1:63 8:71+ 1:70

Range 4.33–12.51 4.29–12.41

Education % University/college degree 51.03 44.23

% A levels or equivalent 15.95 13.58

% O levels/GCSE or equivalent 19.95 21.30

% NVQ or equivalent 8.04 6.34

% Professional qualification 3.43 6.63

% None of the above 1.59 7.92

Ethnic background % White 95.89 98.03

% Black 0.82 0.35

% Mixed 0.85 0.30

% Asian 1.11 0.66

% Chinese 0.74 0.13

% Other 0.60 0.54

BMI Mean+ SD 25:43+ 4:45 25:93+ 4:29

Range 16.23–47.98 15.20–48.91

WHR Mean+ SD 0:79+ 0:06 0:81+ 0:07

Range 0.59–1.06 0.59–1.12

HDL (mmol/L) Mean+ SD 1:59+ 0:33 1:68+ 0:37

Range 0.75–3.19 0.74–3.80

LDL (mmol/L) Mean+ SD 3:27+ 0:72 3:76+ 0:82

Range 1.26–6.89 1.36–7.57

Triglycerides (mmol/L) Mean+ SD 1:18+ 0:63 1:46+ 0:75

Range 0.35–6.69 0.35–10.38

Systolic BP (mmHg) Mean+ SD 126:44+ 16:72 136:17+ 19:29

Range 80.00–213.00 85.00–247.00

Diastolic BP (mmHg) Mean+ SD 77:85+ 10:43 79:79+ 10:08

Range 46.00–131.00 41.00–120.00

HbA1c (mmol/mol) Mean+ SD 33:06+ 4:26 35:58+ 4:45

Range 20.70–87.10 15.30–148.10

Notes: Mean + standard deviation (SD) and ranges for age at baseline, assessment interval (years between baseline assessment and imaging timepoint), and

cardiometabolic markers at baseline for the premenopausal and postmenopausal group. Percentages for education and ethnic background. GCSE, General Certificate

of Secondary Education; NVQ, National Vocational Qualification; BMI, body mass index; WHR, waist-to-hip ratio; HDL, high density lipoprotein; LDL, low density

lipoprotein; BP, blood pressure; HbA1c, glycated haemoglobin.
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2.2 Menopause status group assignment

All females were classified into two groups based on their self-

assessment to the question “Have you had your menopause (periods

stopped)?”. Participants answering “no” at baseline were classed as

premenopausal, and those answering “yes” at baseline were classed

as postmenopausal. Premenopausal females who were older than 63

at baseline and postmenopausal females who were younger than 39

at baseline were excluded (n = 4), based on outlier estimations for

the variable ‘age at menopause’ conducted on all UK Biobank

females in our previous work (36). 13 participants were removed

due to implausible menopause status data (e.g., responses indicating

postmenopausal status at baseline and premenopausal status at

timepoint 2). The final sample consisted of 3,529 premenopausal

females and 6,353 postmenopausal females. Supplementary

Figure S1 shows the baseline age distributions in the two groups.

Due to the minimal age overlap between the groups in this sample,

we were unable to use propensity matching [see e.g., (49)] to

analyse sub-samples matched on age.
Frontiers in Global Women’s Health 03
2.3 Body anthropometric measures and
cardiometabolic markers

The primary measures of body anthropometrics included BMI

(kg/m2) and WHR (waist circumference/hip circumference), which

were obtained at both timepoints. The other cardiometabolic

markers (collected only at baseline) consisted of BP (systolic and

diastolic), HbA1c, triglycerides, and cholesterol (LDL and HDL;

the latter of which is considered protective (50)). The BP

measurements were taken using the Omron Digital BP monitor

with the default automated option. All other markers (i.e., HDL,

LDL, triglycerides, HbA1c) were obtained through blood assays.

Cholesterol (HDL and LDL in mmol/L) were measured by

enzyme immunoinhibition analysis on a Beckman Coulter

AU5800, and triglycerides (mmol/L) were measured by GPO-

POD analysis on the same device. The HbA1c assay was

conducted using a Bio-Rad Variant II Turbo analyser, which

utilises a High Performance Liquid Chromatography (HPLC)

method to obtain a measurement (mmol/mol). Detailed
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descriptions of all assessment procedures can be found in the UK

Biobank protocol (51). The means, standard deviations, and ranges

for each marker are provided in Table 1. Detailed descriptions of

the markers can be found in Supplementary Table S2, the

distribution plots are provided in Supplementary Figure S2, and

the correlations between markers are depicted in Supplementary

Figure S3. As some variables did not show a normal distribution,

the statistical analyses provided in Section 2.5 were re-run after

log-transforming the variables. The results are provided in

Supplementary section 6.4.
2.4 MRI data acquisition and processing

Information about the UK Biobank data acquisition protocols is

available in Alfaro-Almagro et al. (52) and Miller et al. (53). Total

volume of WMH was derived for each participant based on T2

fluid-attenuated inversion recovery (FLAIR) images and T1-weighted

data (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=25781)

using the Brain Intensity Abnormality Classification Algorithm

(BIANCA) (10), which is part of the FMRIB Software Library FSL

(54). BIANCA is a fully automated tool for segmentation of WMH

based on the k-nearest neighbour algorithm, and is documented as a

reliable method for WMH segmentation in large cross-sectional

cohort studies (10). The WMH volume measures were log-

transformed to normalise and stabilise the variance (55, 56).
2.5 Statistical analyses

The statistical analyses were conducted using Python 3.8.17. All

variables were standardised. Multiple comparisons using false

discovery rate (FDR) correction (57, 58) were conducted across

all p-values of the four main analyses, and separately across all

p-values of the twelve supplementary analyses.

2.5.1 Group differences in baseline
cardiometabolic markers

To test for group differences in cardiometabolic markers at

baseline, a weighted least squares approach was used by assigning

weights based on the number of participants in each group (59) to

account for differences in menopause status group size.

Menopause status group was used as the independent variable.

Due to indications of multicollinearity (see Supplementary

section 4 for correlations and variance inflation factors), the

analyses were run separately for each of the cardiometabolic

markers (dependent variables), whilst adjusting for age at baseline:

CMmarker ¼ b0 þ b1MPstatus þ b2Age (1)

where CMmarker represents the cardiometabolic marker (body

anthropometrics, blood lipids, BP, or HbA1c; all measured at

baseline), b0 indicates the intercept, MPstatus indicates the

categorical group assignment based on menopause status, and Age

is age measured at baseline.
Frontiers in Global Women’s Health 04
2.5.2 Longitudinal changes in body
anthropometrics by menopause status

To assess age-adjusted changes in BMI and WHR over

time, and whether changes depended on menopause status

group, we ran two separate linear mixed effects models with

Bodyvar (BMI and WHR, respectively) as the dependent

variable, timepoint and menopause status as categorical

predictors, and timepoint * menopause status group as an

interaction term.

Bodyvar ¼ b0 þ b1TP þ b2MPstatus þ b3TP�MPstatus

þ b4Ageþ b0j þ e (2)

In this equation, TP indicates the timepoint of measurement

(baseline, timepoint 2), MPstatus indicates the categorical group

assignment based on menopause status, TP�MPstatus indicates the

interaction term between time and menopause status, Age

represents the age term, b0j is the random intercept term for

each participant j, which allows for modeling individual-level

variability in the baseline BMI and WHR that is not explained

by the fixed effects, and e is the residual error term.
2.5.3 Associations between baseline
cardiometabolic markers and WMH volume

To test whether baseline cardiometabolic markers were related

to WMH outcomes (measured only at timepoint 2), we ran a series

of linear regressions to test for main effects of each marker on

WMH volume, respectively:

WMH ¼ b0 þ b1CMmarker þ b2Ageþ b3AssessmentInterval (3)

where CMmarker represents the cardiometabolic marker (body

anthropometrics, blood lipids, BP, or HbA1c; all measured at

baseline), Age is age measured at timepoint 2, and

AssessmentInterval is the time between baseline and timepoint 2

assessments in years. The models were run separately for each

cardiometabolic marker (see section 2.6.1 for models run with all

other markers as covariates).
2.5.4 Associations between BMI and WHR changes
and WMH volume

To test whether changes in BMI and WHR were associated

with WMH volume at timepoint 2, we first regressed the effect

of baseline values on the timepoint 2 values to capture changes

in BMI and WHR independent of starting point, and used the

residuals as independent variables in a linear regression model.

WMH ¼ b0 þ b1Bodyvarres þ b2Age

þ b3AssessmentInterval (4)

Here, Bodyvarres represents timepoint 2 BMI or WHR

residualised for baseline values, Age is age measured at timepoint

2, and AssessmentInterval is the time between baseline and

timepoint 2 assessments in years.
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2.6 Sensitivity analyses

2.6.1 Adjustment for potential confounding
factors

To account for potential confounding factors that could influence

brain structure, hormone levels, or cardiometabolic health, models 3

and 4 were rerun with the following covariates, in addition to age:

lifestyle factors including alcohol use (60–62), and smoking status

(63, 64), socioeconomic factors including education level (65–67)

and ethnic background (68), and female-specific factors including

hormone replacement therapy use (user vs never user) (69, 70),

oral contraceptive use (user vs never user) (71), and number of

previous childbirths (48, 72). In addition, we included assessment

location to adjust for potential effects on the measurements (73,

74). Missing values (“Not a Number (NaN),” “prefer not to answer,”

“do not know”), were imputed for 71 participants using the

SimpleImputer function from the scikit-learn Python library (75)

(70 participants had one missing value, and one participant had

three missing values). Additionally, model 3 was re-run while

including all other markers as covariates in addition to age, to

probe independent contributions of each baseline cardiometabolic

marker. We also tested if the effects of BMI and WHR change on

WMH volume (model 4) persisted when adjusting for baseline

cardiometabolic markers, as well as change in systolic and diastolic

BP in a subsample of participants who had BP data available at

both baseline and timepoint 2 (n = 8,101).
2.6.2 Additional age adjustments
To evaluate the independence of the group status effect from

age-related influences, we report supplementary results from

models 1 and 2 both with and without age as a covariate. In

addition, the models were repeated including both age and age2

as covariates, to account for possible non-linear relationships

between age and the dependent variables.
TABLE 2 Results from the weighted regression models measuring group
differences in baseline cardiometabolic factors by menopause status
(n premenopausal ¼ 3,529, n postmenopausal ¼ 6,353), with age included
as a covariate in the models.

DV b SE t p-value Adj. p-value
BMI 0.026 0.034 0.764 0.445 0.490

WHR 0.037 0.033 1.119 0.263 0.303

HDL 0.139 0.033 4.243 <0.001 <0.001

LDL 0.304 0.032 9.641 <0.001 <0.001

Triglycerides 0.121 0.032 3.786 <0.001 <0.001

Systolic BP -0.063 0.031 �2.014 0.044 0.056

Diastolic BP 0.044 0.034 1.298 0.194 0.231

HbA1c 0.239 0.032 7.470 <0.001 <0.001

Notes: The b values indicate the estimated group difference, with premenopausal

status used as the reference group. Adjusted p-values represent FDR-corrected

values. Group differences with p�values , 0:05 are marked in bold. DV,

dependent variable; SE, standard error; BMI, body mass index; WHR, waist-to-hip

ratio; HDL, high density lipoprotein; LDL, low density lipoprotein; BP, blood

pressure; HbA1c, glycated haemoglobin.
2.6.3 Exclusion of participants with values of
cardiometabolic markers above healthy levels

To assess if results were consistent when utilising stricter

exclusion criteria, we repeated the analyses using a subsample

excluding participants whose values for the cardiometabolic

markers exceeded established healthy thresholds, as defined by

the World Health Organisation (WHO) and the National

Cholesterol Education Program Expert Panel (76–80). This

included values for BMI above 30, WHR above 0.85, HDL below

1.03 mmol/L, LDL above 4.13 mmol/L, triglycerides above

2.26 mmol/L, Hba1c levels above 48 mmol/mol, in addition to

hypertension, determined manually using systolic and diastolic

BP measurements with a threshold of 140/90, and a confirmed

medical diagnosis of diabetes (see also Supplementary Table S2).

6,019 participants were excluded (3,575 for body

anthropometrics, 3,584 for blood lipids, 3,502 for hypertension,

and 269 for diabetes and HbA1c, with 48.9% of excluded

participants having values above the thresholds for two or more

variables). The final subsample consisted of 3,863 participants (n

premenopausal = 1,974, n postmenopausal = 1,889).
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2.6.4 Separating premenopausal females from
menopause-transitioning females

Given the mean age at baseline (46.58 ± 3.77) and the mean

assessment interval (8.93 ± 1.63) in the premenopausal group, we

separated females in this group who were transitioning to

menopause between timepoints from those who remained

premenopausal. We classed participants as “transitioning” if their

self-reported menopause status changed between baseline and

timepoint 2 (“Have you had your menopause (periods stopped)?”).

Since we did not have data on whether participants were

perimenopausal or not, we use the term “transitioning” to describe

participants changing from a “premenopausal” status to a

postmenopausal one between timepoints. To assess whether this

fine-grained group assignment could influence the results, we

repeated the analyses testing for group differences of longitudinal

changes in body anthropometrics (model 2) and associations with

WMHs (model 4) using three groups: premenopausal (n = 735),

transitioning (n = 2,794), and postmenopausal (n = 6,353).
3 Results

3.1 Group differences in baseline
cardiometabolic markers

As shown in Table 2, postmenopausal females had significantly

higher values for HDL, LDL, triglycerides, and HbA1c compared to

premenopausal females, when adjusting for age. BMI, WHR, systolic

BP, and diastolic BP did not show significant group differences.
3.2 Longitudinal changes in body
anthropometrics by menopause status

Figure 1 shows mean BMI and WHR plotted at both timepoints

for each menopause status group. We found significant main effects

of time for BMI and WHR, and significant interactions with

menopause status group for BMI (Table 3). On average, age-
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FIGURE 1

Body mass index (BMI) and waist-to-hip ratio (WHR) at baseline and timepoint 2, plotted separately for the premenopausal and postmenopausal
groups. The shaded bands indicate 95% confidence intervals. Note that these plots illustrate the raw mean values and are not adjusted for age.
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adjusted BMI increased over time in the premenopausal group, while

the postmenopausal group showed a decrease; however with small

changes at group level. WHR increased on average in both groups

over time. To interpret the WHR results in more detail, we ran

exploratory analyses utilising waist circumference (WC) and hip

circumference (HC) measures in each of the groups

(Supplementary section 5). The results showed that premenopausal

females had a steeper increase of WC compared to the

postmenopausal group, while postmenopausal females had a

steeper decrease of HC compared to the premenopausal group.
3.3 Associations between baseline
cardiometabolic markers and WMH volume

All baseline cardiometabolic markers except LDL were

significantly associated with WMH volume at timepoint

2. Figure 2 displays the associations between baseline

cardiometabolic markers and WMH volume. Full results are

provided in Table 4.
3.4 Associations between BMI and WHR
changes and WMH volume

As shown in Table 5, a greater increase of BMI and WHR

between timepoints was significantly related to higher WMH
TABLE 3 Results from the mixed linear models for BMI (body mass index)
and WHR (waist-to-hip ratio).

DV Term b SE z p-value Adj. p-value
BMI TP 0.048 0.012 4.00 <0.001 <0.001

TP � MP status �0.075 0.015 �5.08 <0.001 <0.001

WHR TP 0.133 0.012 11.33 <0.001 <0.001

TP � MP status �0.025 0.015 �1.73 0.083 0.102

Notes: Adjusted p-values represent FDR-corrected values. Associations with

p�values , 0:05 are marked in bold. DV, dependent variable; SE, standard error;

TP, timepoint (baseline and timepoint 2); MP status, menopause status.
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volume at timepoint 2. Figure 3 displays the associations between

BMI and WHR changes and WMH volume.
3.5 Sensitivity analyses

When including the additional covariates specified in (2.7), the

results were highly consistent with our main results, as seen in

Supplementary section 6.1 and 6.2 (Supplementary Tables S5 and

S6, and S8–S13). When adjusting for all other cardiometabolic

markers in each model, blood lipids and HbA1c no longer

showed statistically significant associations with WMH volume

(Supplementary Table S7). Similarly, when excluding participants

whose values for the cardiometabolic markers exeeded
FIGURE 2

Associations between baseline cardiometabolic markers and white
matter hyperintensity (WMH) volume at timepoint 2, with age and
assessment interval included in the models. The figure shows the
standardised b coefficients and their standard errors. Positive b

values indicate relationships between higher marker levels and
greater WMH volume. BMI, body mass index; WHR, waist-to-hip
ratio; HDL, high density lipoprotein; LDL, low density lipoprotein;
BP, blood pressure; HbA1c, glycated haemoglobin.
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TABLE 4 Results from the linear regression models testing associations between baseline cardiometabolic markers and WMH (white matter
hyperintensity) volume at timepoint 2, with age and assessment interval included in the models.

DV Term b SE t p-value Adj. p-value
WMH vol BMI 0.091 0.008 11.15 <0.001 <0.001

WHR 0.078 0.008 9.40 <0.001 <0.001

HDL �0.027 0.008 �3.24 0.001 0.002

LDL 0.011 0.009 1.33 0.185 0.223

Triglycerides 0.040 0.008 4.75 <0.001 <0.001

Systolic BP 0.121 0.009 14.06 <0.001 <0.001

Diastolic BP 0.128 0.008 15.76 <0.001 <0.001

HbA1c 0.030 0.009 3.46 0.001 0.001

Notes: Adjusted p-values represent FDR-corrected values. Associations with p�values , 0:05 are marked in bold. DV, dependent variable; SE, standard error; BMI, body

mass index; WHR, waist-to-hip ratio; HDL, high density lipoprotein; LDL, low density lipoprotein; BP, blood pressure; HbA1c, glycated haemoglobin.
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established healthy thresholds, the associations of blood lipids and

HbA1c with WMH volume were no longer statistically significant

(Supplementary Table S16).

Supplementary section 6.5 shows the longitudinal changes of

BMI and WHR in females who remained premenopausal at both

timepoints, transitioned between timepoints, and were

postmenopausal across timepoints. Premenopausal and

transitioning females did not differ significantly in their BMI and

WHR slopes over time (Supplementary Figure S6 and Table S19).
4 Discussion

In summary, this population-based study of 9,882 UK Biobank

females showed that poorer cardiometabolic health, as indicated by

higher baseline levels of blood lipids, BP, and HbA1c, as well as

baseline levels and longitudinal increases of BMI and WHR, was

associated with larger WMH volume measured up to a decade

later. The findings highlight the importance of maintaining

cardiometabolic health in females across midlife, during the

menopause, and into postmenopausal years, to optimise future

cerebrovascular health outcomes.
4.1 Group differences in baseline
cardiometabolic markers

Postmenopausal females exhibited significantly higher levels of

baseline HDL, LDL, triglycerides, and HbA1c compared to

premenopausal females, after adjusting for the effects of age.

These results align with prior studies reporting higher levels of
TABLE 5 Results from the linear regression models testing associations
between BMI (body mass index) or WHR (waist-to-hip ratio) changes
and WMH (white matter hyperintensity) volume at timepoint 2, with age
and assessment interval included in the models.

DV Term b SE t p-value Adj. p-value
WMH vol BMI change 0.038 0.008 4.53 <0.001 <0.001

WHR change 0.047 0.008 5.63 <0.001 <0.001

Notes: BMI and WHR changes were measured using timepoint 2 values residualised

for baseline values (see Section 2.5.4). Adjusted p-values represent FDR-corrected

values. Associations with p�values , 0:05 are marked in bold. DV, dependent

variable; SE, standard error.
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blood lipids and blood glucose in post- compared to

premenopausal females (3–5, 7, 81–83), and indicate that

hormonal changes related to menopause may exacerbate

cardiometabolic risks beyond those of advancing age.

However, the postmenopausal group also demonstrated higher

levels of HDL, which is typically considered protective (50, 84, 85),

and the groups did not differ in baseline BP and body

anthropometrics when adjusting for the effects of age. While

these results are in contrast to some studies showing group

differences in BP (86) and body anthropometrics (4, 87), a

population-based study of 908 females found no difference in BP

between pre- and postmenopausal females (88), and another

study of 3,064 females found no association between change in

menopausal status and changes in body anthropometrics (89).

Recent reviews and meta-analyses highlight conflicting findings

on the links between menopause-related processes and BP

(7, 90), body anthropometrics (6), and HDL levels (5, 91), noting

that observed differences in some cardiometabolic risk factors

may be largely driven by increasing age rather than menopause-

specific processes (6, 30), and that discrepancies in methodology

and design may also contribute to conflicting findings.

A key challenge in menopause research is to disentangle the effects

of chronological vs endocrine ageing given their concurrent

progression in females. Although methods such as age-based

propensity matching can be useful [see e.g., (49)], they rely on

sufficient overlap in age distributions between groups, which was

minimal in our sample (Supplementary Figure S1). Given the

complex interplay between endocrine and cardiometabolic processes

(92, 93), longitudinal menopause research (e.g., (94)) is crucial to

clarify how these processes interact in females over time. Moreover,

future studies could aim for classifications of menopausal status

based on hormonal or symptom profiles (95, 96), which may

provide more accurate results than self-assessment (97).
4.2 Group differences in longitudinal body
anthropometric changes

The premenopausal group demonstrated an average increase in

both BMI and WHR between baseline and the imaging timepoint. In

this group, the observed change in WHR was driven by an increase

in waist circumference (Supplementary Figure S4). Since 79.2% of
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FIGURE 3

Associations between age-adjusted body mass index (BMI) and waist-to-hip ratio (WHR) changes (from baseline to timepoint 2) and white matter
hyperintensity (WMH) volume. BMI and WHR changes were measured using timepoint 2 values residualised for baseline values (change
independent of starting point, see section 2.5.4). The shaded bands indicate 95% confidence intervals.
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the females in the premenopausal group underwent menopause

between timepoints (see section 2.6.4), this finding aligns with

previous literature highlighting a redistribution of adipose tissue

towards the waist during the menopause transition (2–4, 6). For

example, a longitudinal study in 1,246 females from the Study

of Women’s Health Across the Nation (SWAN) showed that the

trajectory of fat mass doubled across menopausal years before

decreasing two years post-menopause (98). In our study,

however, changes in body anthropometrics did not differ

between transitioning and premenopausal females

(Supplementary section 6.5). Given the lower age limit of our

sample (40 years), this could indicate overlapping changes in

adipose tissue distribution between transitioning and pre- or

perimenopausal females in this cohort.

The years prior to menopause are characterised by changing

levels of reproductive hormones such as oestradiol (99–102),

with perimenopause often highlighted as a cardiometabolic risk

phase (3, 7, 92, 103). Although oestradiol assessments could

potentially have clarified the changes observed in

premenopausal and transitioning females, these measures were

only available for a smaller subset of our sample from the

baseline assessment. As previous studies highlight fluctuations

and high variability of such reproductive hormones across early

and late perimenopause (99, 104, 105), relying on a single

baseline measure would prevent definitive conclusions. Given

that the years surrounding menopause are characterised by

distinct endocrine, menstrual, and ovarian markers that could

influence cardiometabolic risk and brain health, future research

should aim to include detailed data on hormone levels,

menstrual cycle length and regularity, and occurrence of

symptoms, in line with criteria established at the Stages of

Reproductive Aging Workshop (STRAW) (106).

Importantly, our results might also reflect influences of factors

beyond menopause, such as genetic predisposition for

cardiometabolic disease (107–109) or lifestyle behaviours in early

adulthood and midlife (110, 111). For future studies, it will be

crucial to distinguish oestradiol-related effects from other

contributing factors to enhance our understanding of

cardiometabolic health trajectories in females across menopausal years.
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In the postmenopausal group, we found an average decline of

BMI, in addition to an increase in WHR that was driven by

decreasing hip circumference (Supplementary Figure S4). Lower

BMI and sarcopenia (muscle loss) are commonly observed in

ageing (112–115), but have also been linked to lower oestradiol

levels during menopause (30, 116, 117). Although the group-

level changes in body anthropometrics were in general small,

these findings could be indicative of processes such as

sarcopenia among the postmenopausal participants. Overall, our

longitudinal results point to time-sensitive impacts on body

anthropometrics in females, and highlight the complexity of the

relationships between menopause, ageing, and changes in

cardiometabolic factors.
4.3 Associations between markers of
cardiometabolic health and WMH volume

Our results showed associations between markers of poor

cardiometabolic health at baseline and greater WMH volume

measured almost a decade later. This is in line with previous

literature linking midlife cardiometabolic health to WMHs,

highlighting the long-term implications of cardiometabolic risk

factors on brain health (8, 31–41, 56, 118).

Higher systolic and diastolic BP showed prominent

associations with larger WMH volume, and the associations

persisted when adjusting for other cardiometabolic markers as

well as excluding participants whose marker levels exceeded

healthy thresholds. This finding corresponds to studies reporting

stronger relationships between BP and WMHs compared to body

anthropometrics, blood lipids, or HbA1c (119–121), particularly

in females (9), and highlights the importance of monitoring and

controlling midlife BP levels to protect against cerebrovascular

decline (56, 122).

In addition to BP, greater baseline BMI and WHR, as well as

increasing levels between timepoints, showed robust associations

with larger WMH volume. Previous studies in females have

shown associations between increasing BMI and cortical thinning

(123, 124), as well as reductions total grey matter volume (125)
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and hippocampal volume (126). To our knowledge, the current

study is the first to support a link between longitudinal

increases in body anthropometric measures and WMH volume

in mid- to older-aged females. While a global measure of total

WMH volume was used in the current study, future research

could aim to investigate periventricular and deep WMHs

(127–129) to elucidate their distinct associations with

changes in cardiometabolic risk factors [see e.g., (34, 130)],

as well as menopause-related processes and vasomotor

symptoms (20, 131).

Furthermore, our study measured changes in BMI and WHR

independent of starting point, and prospective studies might

benefit from characterising differences in trajectories based on

initial level (126, 132). While this approach could help to

identify individuals at high risk for deteriorating

cardiometabolic and brain health, it is important to note that

research indicates influences of genetics (133) and early life

factors (134) on individual variation in WMHs, as well as age-

sensitive variations in body-brain relationships across the

lifespan (42, 43). Hence, multifactorial studies with longitudinal

designs are needed to map the factors linked to cardiometabolic

and microvascular risk across adulthood, the menopause

transition, and into older age.

Finally, the demographic context of our study should be taken

into account. The UK Biobank cohort is highly homogeneous in

terms of “WEIRD” criteria (from Western, educated,

industrialised, rich, and democratic societies (135)), and

additionally characterized by a “healthy volunteer effect” (136).

Consequently, our results offer valuable insights but may not

necessarily generalize to other samples. Yet, our study

contributes to a critical area in public health, given the rising

prevalence of chronic, non-communicable diseases such as

cardiometabolic disease and neurodegenerative conditions (137,

138). Despite known sex differences in the aetiology, prevalence,

and outcomes of these diseases (139–142), there remains a severe

lack of research on female-specific factors and risks (143–145).

While our study highlights distinct cardiometabolic patterns in

pre- and postmenopausal females and relationships of these with

cerebrovascular outcomes, it also underscores the critical need

for detailed, longitudinal studies encompassing both midlife and

older age in females. Future research should assess the interplay

between cardiometabolic health, female endocrine processes, and

brain outcomes to lay the groundwork for effective health

interventions.
5 Conclusion

This population-based study demonstrates that markers of

cardiometabolic health in middle- and older aged females are

linked to future cerebrovascular health outcomes. The results

highlight the importance of maintaining cardiometabolic health

in females across menopausal years, and emphasises the critical

need for longitudinal studies addressing cardiometabolic risk and

brain health in females throughout adulthood, menopausal years,

and into older age.
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