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Queensland, Brisbane, QLD, Australia, 5Department of Neurology—Division of Epilepsy, Division of
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Epilepsy, is a serious neurological condition, characterized by recurring,
unprovoked seizures and affects over 50 million people worldwide. Epilepsy has
an equal prevalence in males and females, and occurs throughout the life span.
Women with epilepsy (WWE) present with unique challenges due to the cyclical
fluctuation of sex steroid hormone concentrations during their life course. These
shifts in sex steroid hormones and their metabolites are intricately intertwined
with seizure susceptibility and affect epilepsy during the life course of women in
a complex manner. Here we present a review encompassing neurosteroids—
steroids that act on the brain regardless of their site of synthesis in the body; the
role of neurosteroids in women with epilepsy through their life-course;
exogenous neurosteroid trials; and future research directions. The focus of this
review is on progesterone and its derived neurosteroids, given the extensive
basic research that supports their role in modulating neuronal excitability.
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1 Neurosteroids

1.1 Neurosteroid synthesis

1.1.1 Distant synthesis
Traditionally sex steroids are produced by endocrine regulation and feedback by the

hypothalamic-pituitary-ovarian axis. The hypothalamus is involved with regulation,

production, and pulsatile secretion of gonadotropin-releasing hormone (GnRH), which

then controls the release of follicle-stimulating hormone (FSH) and luteinizing hormone

(LH) from the pituitary gland. These hormones induce ovulation, stimulating estradiol

and progesterone production that provides feedback to neuronal cells, in particular the

temporo-limbic system (amygdala, hippocampus) (1). This is a well-established pathway

whereby steroids synthesized in the distant endocrine glands, cross the blood brain

barrier, and then act directly in the brain.

1.1.2 Local synthesis
There is a second mechanism which is de novo synthesis in the brain. French

endocrinologist Etienne-Emile Baulieu first introduced the term neurosteroids in 1981

to describe steroids produced in the brain ‘de novo” (2), based on the identification of

steroids accumulating in rat brain, independent of the traditional endocrine pathway.

Animal models demonstrated neurosteroid concentrations higher in the nervous system

compared with plasma concentrations. It has been well established with animal models
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that the neurosteroid biosynthetic enzymes are also present within

the human brain and that precursor steroids are produced de novo

in glial cells and neurons (3). There is complexity of neurosteroid

biosynthetic enzymes, with regards to region and cell type-

specific expression as well as developmental regulation of

these enzymes (4).

There are 3 distinct steps in de novo synthesis of neurosteroids

(NS). The first is that cholesterol is directed to the outer

mitochondrial membrane by the steroidogenic acute regulatory

(StAR) protein; StAR is complexed with the translocator protein

(TSPO) on the outer membrane of the mitochondria, which then

mediates cholesterol transport from the outer mitochondrial

membrane to the inner membrane; and finally the cytochrome

P450 side-chain cleavage (P450scc) enzyme on the inner

mitochondrial membrane creates the precursor pregnenolone (5).

The term “neuro-active steroids” has been utilised for locally

synthesized steroids, which can be brain derived or from

systemic precursors (6). For the scope of this review, we will

refer to all sex steroids and their derivatives, produced both

distally and locally in the brain, as “neurosteroids” (NS), as their

combined actions are of interest from a clinical perspective.

Figures 1A,B demonstrates the sites of production of NS.
1.2 Neurosteroid regulation

Synthesis of NS occurs in neurones and glia and is controlled

by the translocator protein (TSPO) (3). From vertebrate studies,

it is thought that neuropeptide control, such as gonadotropin-

releasing hormone (GnRH) may also regulate NS biosynthesis as

GnRH is expressed in the brain, outside of the hypothalamus

and pituitary (5). In females, pulsatile GnRH secretion regulates

estradiol synthesis in ovaries and NS in the hippocampus,

highlighting the basis for the cyclical nature of NS production in

women (7) and why NS production fluctuates with the ovarian

cycle (8). The GnRH-induced rise in estradiol establishes a

connection between the hypothalamus and the hippocampus,

potentially underpinning the cyclical modulation of spine density

in the female hippocampus (9).

Figure 2 demonstrates the NS pathway and the most common

enzymes involved as well as differing modulation on the GABA-A

receptor. The neurosteroids derived from deoxycorticosterone are

tetrahydrodeoxycorticosterones (THDOC), which are part of the

hypothalamic-pituitary-adrenal axis. This represents a more

distant pathway compared with the direct progesterone-derived

neurosteroids. Also of note is the reduction of testosterone by

aromatase leads to the generation of 17-β estradiol.
1.3 Neurosteroid mechanisms of action

The mechanism of action differs for each NS. One mechanism

being non-genomic mechanisms where the sex steroids act on

membrane ion channels/receptors (rapid action, within minutes)

and the other mechanism being genomic, where the sex steroid
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hormones act in the nucleus and alter mRNA transcription

(delayed action) (6).
1.3.1 Progesterone
The largest body of literature is on progesterone-derived NS

and their action on the GABA-A receptor (membrane action).

The GABA A-type receptor represents a pentameric protein`

with five protein units, including 2α and 2β sub-units and one

subunit of either δ, γ and ϵ, θ, π. Some of the protein subunits

have multiple isoforms (α1–α6, β1–β3 and γ1–γ3) (11). The α1,

β2 γ2 is the most common subunit within the brain and

different sub-unit compositions are observed in different

brain regions (11).

The opening of the GABA ion channel allows for movement of

chloride ions across the cell membrane following a gradient and

this may lead to hyperpolarization, pending movement of the

chloride ions. This receptor modulates most of the inhibitory

neurotransmission in the brain through synaptic (phasic) and

extrasynaptic (tonic) inhibition (3). The extra-synaptic GABA-A

receptors are the key target for NS (12).

NS are the most potent modulators of δ-GABA-A receptors

(13). If a specific NS binds to the δ-GABA-A receptors, this can

lead to an increased affinity for GABA, termed a positive

allosteric modulator. Higher NS concentrations can also lead

to activation of GABA-A receptors in the absence of GABA.

There are positive, allosteric modulators of the GABA-A

receptor (allopregnanolone, THDOC, and androstanediol),

which enhance the GABAergic response and negative,

allosteric modulators (DHEA, pregnenolone) which suppress

the GABAergic response. Figure 2 shows that NS can be

positive or negative modulators of the GABA-A receptor

pending on the steroid molecule structure. Positive modulators

of GABA-A receptors are anti-convulsant whilst negative

modulators are pro-convulsant.

Progesterone also activates the progesterone receptors

(genomic mechanism), isoforms A and B, expressed in the brain,

and especially in the hippocampal neurons, and their expression

is regulated by estrogen (14). Joshi and colleagues demonstrated

that progesterone receptor activation also increased expression of

GluA1 and GluA2 subunits of AMPA receptors in the

hippocampi (15). These findings shifted the dominant paradigm

of progesterone as a solely anticonvulsant agent and reveals that

it has dual actions on the brain: inhibition via NS and excitation

via the progesterone receptor.
1.3.2 Estrogen
There also exists rapid, membrane-initiated, 17β-estradiol

mediated actions in addition to the classic nuclear signaling

pathway. 17β-estradiol acts as a posttranscriptional modulator of

excitatory NMDA receptors (16). Estrogen activates estrogen

receptors, isoforms α and β, and enhances the expression of the

GluA1 subunit of AMPA receptors via activation of estrogen

receptor β (17). Compared to progesterone metabolites that act

predominantly on GABA-A receptors, membrane-mediated

effects of 17β-estradiol trigger various intracellular cascade
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FIGURE 1

(A) Hypothalamic-pituitary-ovarian axis responsible for distal steroid hormone production. This figure has been adapted from Tauboll et al. (1). (B)
Neuronal and glial pathways for local neurosteroid production within the brain. (C) The complex inter-relationship between epilepsy and
neurosteroids. GnRH, gonadotrophin releasing hormone; LH, luteinizing hormone; FSH, follicle-stimulating hormone.
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pathways, leading to changes in ion channel regulation and

neuronal excitability (18).

17β-estradiol also facilitates neuroprotection, synaptic and

cognitive preservation, has anti-inflammatory effects and

regulates microglial activation and function (19). The is evidence
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for interactions between 17β-estradiol and the signalling molecule

brain-derived neurotrophic factor (BDNF) (20). Experimental

models have also demonstrated increased concentrations of

BDNF in the hippocampus, has both a protective effect as well as

increased excitability (21).
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FIGURE 2

Neurosteroid pathway and enzymes involved. This diagram has been adapted from Finn and Jimenez (10).
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A potential mechanism to explain the effect of estradiol on

hippocampal excitability was demonstrated in a rat model, where

spine density in excitatory postsynaptic synapses positively

correlated with estradiol concentrations (22). This work could

have implications for cognitive performance not only during the

menstrual cycle but also during the menopausal transition and

later in life.
1.4 Neurosteroids and epilepsy

1.4.1 Altered expression of GABA-A receptors due
to seizures

Multiple studies have similarly concluded that altered

GABA-receptor expression in epileptic animals is the

basis for the reduced NS sensitivity, evidenced by reduction

in δ and α1 subunits and increased α4 and γ1 sub-units

(23). This has been demonstrated by NS at physiological

concentrations failing to lead to increased synaptic

and tonic inhibition in epileptic animals. Joshi

demonstrated reduced δ- subunit-containing GABA-A

expression and upregulation of γ2 subunit following

status epilepticus (23).
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1.4.2 Altered expression of GABA-A receptors due
to neurosteroids

In late diestrus cycle of the mouse (high-progesterone phase),

there was increased δ subunit-containing GABA-A receptors

and decreased γ2 subunit-containing GABA-A receptors (24).

This enhanced expression of δ subunit-containing GABA-A

receptors increased tonic inhibition, reducing neuronal

excitability and decreased seizure susceptibility (24). This study

also found that by eliminating the cycling of δ GABA-A

receptors by antisense RNA treatment or gene knockout,

changes in excitability were prevented and hypothesized that

cyclical seizures (as seen in catamenial epilepsy) maybe due to

abnormalities in regulation of the normal cycling of δ subunit-

containing GABA-A receptors (24).
1.4.3 The complex interplay of neurosteroids and
seizures

There is a complex inter-relationship between NS and epilepsy,

with epilepsy affecting multiple sites in the NS biosynthesis process

(as shown in Figure 1C). Epilepsy has direct effects on the ovaries,

can alter GnRH regulation (1, 9) and can also alter receptor

sensitivity to NS (as described earlier).
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1.4.4 Animal studies
Over the past few decades, there has been extensive research

into NS using preclinical models to explore their implications

in depression, anxiety, and excitability disorders. Miziak and

colleagues provide a comprehensive table summary of animal

models demonstrating the anticonvulsant and proconvulsant

actions of the different NS, based on their particular

chemical structure (25).
2 The role of neurosteroids in women
with epilepsy across their life-course

2.1 Pre-puberty

In Protocadherin 19 in female epilepsy (PCDH19-FE), seizure

onset and offset coincides with periods of changes in NS (26).

Seizure onset occurs after mini-puberty (around 8 months of

age), which seems to start after the fall of in utero NS

concentrations. The median age of onset was 8 months old,

while the median age of offset was 12 years old, when NS are

elevated in association with puberty (26).

This landmark publication reviewed transcriptomics in PCDH

19-FE patients and identified 94 dysregulated genes, involved with

NS metabolism. Interestingly, nearly half of the genes

demonstrated gender-biased expression when compared with

transmitting males (26).

Of particular interest within the dysregulated gene set were the

genes AKR1C2 and AKR1C3, members of the aldo-keto reductase

1C (AKR1C) family (AKR1C1-4), of which only AKR1C1-3 is

expressed in the brain (26). These enzymes are responsible for

reducing NS into downstream metabolites such as allopregnanolone.

AKR1C3 gene encodes steroid hormone-metabolizing enzyme, 3α-

HSD. Figure 2 demonstrates the location of this enzyme in the

biosynthetic pathway. They found that AKR1C3 mRNA and 3α-

HSD protein levels were significantly reduced in PCDH19-FE (26).

To further support their hypothesis, they reviewed blood

allopregnanolone concentrations, which were also reduced,

highlighting the potential role of NS in PCDH19-FE (26).
2.2 Childbearing Age

There is growing evidence for the key role of NS in catamenial

seizure exacerbation. It is the cyclical changing balance of sex

hormone concentrations that drives an increased seizure

frequency with certain menstrual/ovarian cycle phases. There are

three common patterns C1 (around menstruation); C2

(ovulation); C3 (anovulatory cycles from mid-cycle to

menstruation). Building upon clinical observations, the concept

of treatment with cyclical progesterone was conceived leading to

the only NIH-approved clinical trial to-date to test a hormonal

treatment for catamenial epilepsy (27). This study, led by

Herzog, yielded inconclusive results for women with focal

catamenial epilepsy overall. However, sub-group analysis

demonstrated superior efficacy in women with a prominent C1
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pattern (3-fold increase in seizure frequency around

menstruation) (27, 28). Herzog’s subsequent investigation

implicated allopregnanolone as the mediator of seizure reduction

in progesterone-treated women (29). Notably, the trial employed

progesterone and not allopregnanolone. The previously describer

proconvulsant effect via the progesterone-derived NS nuclear

action may play a role in seizure exacerbation (15). A more

recent pilot study of 173 menstrual cycles from 23 women with

epilepsy demonstrated that 52.2% of women met the criteria for

one or more catamenial pattern (30), further supporting the role

of NS in seizure exacerbation.
2.3 Pregnancy

A novel study during pregnancy study demonstrated that lower

allopregnanolone concentrations were associated with increased

seizure frequency (31).
2.4 Peri-menopausal and menopause

Harden reviewed the effect of menopause and perimenopause

on the course of epilepsy and in women with a history of

catamenial epilepsy, seizures increased during perimenopause in

and decreased at menopause (32). This data re-affirming the role

of fluctuating hormones on seizure control during

perimenopause and then reduction in seizures when hormones

no longer fluctuate during menopause.
3 Exogeneous neurosteroid trials

3.1 Aromatase inhibitors- exemestane and
letrozole

The enzyme aromatase and where it acts in the biosynthetic

pathway is shown in Figure 2. A clinical case report

demonstrated seizure reduction with tamoxifen and complete

seizure freedom with the aromatase inhibitor exemestane (given

for the management of breast cancer in a post-menopausal

woman), highlighted the link between hormones and

seizure control (33).

Harden and MacLusky reported a case report of a 61-year-old

man with temporal lobe epilepsy who was commenced on letrozole

(aromatase inhibitor) off-label to improve libido and energy levels.

There was sustained improvement in seizure control, seizure

exacerbation with withdrawal of letrozole and subsequent

improvement with re-commencement, once again highlighting

the link between hormones and seizure control (34).
3.2 Reductase inhibitor- finasteride

Finasteride is a 5α reductase enzyme blocker, which blocks the

conversions of progesterone and deoxycorticosterone to
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pregnanolone, allopregnanolone and THDOC. Figure 2 highlights

where in the biosynthetic pathway this enzyme plays a role. A

case report of a woman by Herzog and Frye demonstrated that

finasteride (commenced for male pattern baldness) increased

seizures, which had been controlled with progesterone (35).
3.3 Ganaxolone (3β-methylated analog of
allopregnanolone)

Natural NS such as allopregnanolone have low bioavailability

due to rapid inactivation, however synthetic NS, such as

ganaxolone may overcome these limitations (3). Ganaxolone

(ZTALMY®; Marinus Pharmaceuticals) is a positive allosteric

modulator of the GABA-A receptor (36). Phase 1 trials were

undertaken in 1994 and orphan drug status was achieved for

PCDH19-FE, status epilepticus and fragile X syndrome (36).

A phase II trial of two patients were given oral ganaxolone

from day 21 of their menstrual period until 3 days after their

menstrual period for 4 months demonstrated a decrease in total

seizure burden with cessation of perimenstrual seizure activity.

This promising outcome is yet to be replicated with a larger

sample size and longer follow-up (37).

Safety and efficacy of galaxolone was demonstrated in a double-

blind phase of the randomized, placebo-controlled phase III trial in

patients with cyclin-dependent kinase-like 5 (CDKL5) deficiency

disorder, leading to the first FDA approval of ganaxolone (38).
3.4 Brenaxolone (aqueous formulation of
allopregnanolone)

A phase III trial of brenaxolone was undertaken for refractory

status epilepticus. The primary endpoint did not differ significantly

from placebo at the end of the double-blind period (39). During the

open label extension, 37% of patients on brexanolone achieved

treatment response (39).
3.5 PF-06372865 (selective GABA-A
receptor positive allosteric modulator)

This is a positive allosteric modulator of α2/3/5 subunit-

containing GABA-A receptor. A phase 2A double-blind study of

seven patients with photoparoxsymal response demonstrated a

statistically significant suppression of the photosensitivity

response compared with placebo, with similar responses to

lorazepam, highlighting the potential of a selective GABA-A

positive allosteric modulator (40).
3.6 Hormone replacement therapy

A randomized, double-blind, placebo-controlled study limited

in numbers (n = 21), due to the outcomes from the Women’s

Health Initiative, reviewed women taking Prempro (0.625 mg of
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conjugated equine estrogens plus 2.5 mg of medroxyprogesterone

acetate) daily, or double-doses for a 3-month treatment period

(41). The outcomes demonstrated a dose-related increase in

seizure frequency in post-menopausal women (41).
4 Further research directions

There is solid evidence that NS modulate neuronal excitability.

Yet, there is much to be understood about their complex actions in

the brain and the inter-relationship between NS and epilepsy.

While there are many research avenues to pursue, this

relationship is easier to measure in WWE during their life

course. There are the cyclic monthly fluctuations during

reproductive years; the extreme effects of high NS concentrations

during pregnancy; and low NS concentrations at menopause.

There is an enormous knowledge gap at the clinical level. We

hypothesize the potential role of exogenous NS administration to

improve cyclical seizure exacerbation in patients with catamenial

epilepsy; for the pregnant women to reduce seizure and medication

burden to the mother and foetus; and for peri- and post-

menopausal women to reduce seizure burden and improve cognition.

At the basic science level, we hypothesize that seizure

susceptibility can be influenced by: (1) NS concentrations,

influenced by multiple variables: synthesis capacity, genetics,

biological stage; (2) GABA-A receptor expression and sensitivity,

with a different degree of influence based on the location of the

epileptogenic focus.

From a clinical science perspective, the only placebo-control

blinded study employed a pulse progesterone treatment in a

population of women with catamenial seizure exacerbation. It failed

to show an impressive benefit, except for patients with significant

perimenstrual worsening, yet the timing of the treatment in this

trial would not be expected to clearly be helpful for other

catamenial patterns. Moreover, the lack of an impressive response is

not surprising now that we learned about the progesterone dual

actions on excitability. However, there are already synthetic

allopregnanolone analogues available and some are FDA-approved

for other indications. The trials to assess for their efficacy in

epilepsy were not tailored to a patient population where one would

expect a benefit (for example catamenial epilepsy), but rather to

status epilepticus patients where seizures are provoked by different

factors or to very heterogenous groups of refractory epilepsy

patients. In the absence of a dedicated treatment option, many

clinicians employ continuous progestins or combined contraceptive

pills to suppress sex hormone fluctuation, a strategy that they know

works for many, despite the lack of solid clinical evidence for it.

At the other end of the life-course, peri-menopause and

menopause remain a largely unmapped territory. The essence is to

better understand the complex relationship between changing NS

concentrations and seizure burden. This will enable greater insights

into the pros and cons of exogenous hormone replacement in

women with epilepsy.

The role of NS in epilepsy, particularly in the context of

women’s health, represents a fascinating and uncharted field of

research. The potential for advancements in understanding NS
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molecular underpinnings holds great promise for developing more

personalized treatments, to enhance clinical outcomes for women

with epilepsy.
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